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AERODYNAMIC SYMBOLS

I, GENERAL

m
¢
V
Q
P

v

R

ZrUNTore® scns .8

Mass

Tince

Resultant linear velocity

‘Resultant angular velocity

Density, o relative density

Kinematic coefficient of viscosity

Reynolds number, R = IV /» (where / is a suitable linear dimension)
Normal temperature and pressure for aeronautical work are 15° C
and 760 mm.
For air under these [ p = 0-002378 slug/cu. ft.

conditions | v = 1:56 x 10~* {t.%/sec,

The slug is taken to be 32-2 lb.-mass.

Angle of incidence

Angle of downwash

Area

Span

Chord

Aspect ratio, A = b5

Lift, with coefficient C,, = L/§pV?S

Drag, with coefficient C;, = D/4pV?S

Gliding angle, tan y = D/L

Rolling moment, with coefficient C, = L/1pV25S

Pitching moment, with coefficient C,, = M/{pV2S

Yawing moment, with coefficient C, = N/} pV?2S

2. AIRSCREWS

SO

Revolutions per second

Diameter

V/nD

Power

Thrust, with coefficient &y = T/pn2D*
Torque, with coefficient &y = Q [pn?DP
Efficiency, n = TV/P = Jk/2nk,



NAHENRE Acrenaync, -
LIBRARY

On the Stressing of Polygonal Tubes with Particular
Reference to the Torsion of Tapered Tubes
of Trapezoidal Section

By
H. L. Cox, M.A., A.F.R.Ae.S.

el ‘1:‘;

Reports and Memoranda No. 1908
' December, 1942

CONTENTS

Part I. Stress Analysis of the General Polygonal Tube.

Part II.  Torsion of Symmetrical Parallel Tubes of Rectangular Cross Section with Deformable Frames.

Part III. Torsion of Tapered Tubes of Rectangular Section with Rigid Frames.

Part IV. Torsion of Tapered Tubes of Trapezoidal Section with Rigid Frames.

Part V. Torsion of Conically Tapered Tubes of Uniform Wall Thickness with an Infinite Number of Rigid Frames.

Appendix The Simple Theory of Bending and Shear for Tzipered Beams.

Note—Part IT is complete in itself and the notation in this part differs slightly from the common notation of Parts IIT,
IV and V.

Introduction and Summary.—A general method for stressing polygonal tubes is described and :
applied to the torsion of parallel and tapered tubes of rectangular and trapezoidal section. It is
assurhed that the shape of the tube is maintained by a limited number of frames. In treating
parallel tubes deformation of these frames in their own planes is taken into account ; the effect
of this deformation is shown to be small, and in treating tapered tubes the frame$ are assumed
to be rigid in their own planes. The method of stressing tapered tubes in torsion is applicable
to any tube of trapezoidal section with one plane of symmetry, no mattcr how the dimensions
may vary along the length of the tube; in particular the method is directly applicakble to
tubes having portions of their walls cut away. The successive stages in the computation are
set out in tabular form and illustrated by worked examples, including cases with * cut-outs .

The final stage in the computation involves the solution of a set of simultaneous equations
equal in number to the number of frames, but these equations are of a special type, readily
soluble by a straightforward process without danger of any serious loss of accuracy. The length
of the computation is directly proportional to the number of frames, but it is demonstrated by
examples that the stress distribution is affected only slightly by the addition of extra frames,
so that in practice it should normally be permissible to ignore all but a few of the frames. In
the special case of a conically tapered tube in which the wall thicknesses are uniform along the
length of the tube, the results can be generalized to include the case of a tube with an infinite
number of rigid frames. In this case the results obtained by the present method become identical
with those obtained by Williams in R. & M. 1761! and by others using Williams’s method.

_The author wishes gratefully to acknowledge the help he has received in the preparation of
this paper from Messrs. H. E. Smith and A. E. Johnson of the National Physical Laboratory,
Mr. W. S. Hemp of the Bristol Aeroplane Co., Ltd., and Mr. E. H. Atkin of Messrs. A. V. Roe
and Co., Ltd. ‘
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PART 1
Stress Analysis of the General Polygonal Tube

1.1, Introduction, Terminology and Basic Assumptions.—This part describes a general method
for stressing thin-walled polygonal tubes built up from a number of planar elements, which
resist distortion in their own planes but which offer no resistance to warping out of their planes.
A planar clement transverse to the axis of the tube (that is, intersecting all the walls of the
tube but not necessarily normal to any particular axis of the tube) is termed a frame ; a planar
element bounded between adjacent frames is termed a (fube) wall. A frame of which the warping
is prevented or restricted by external constraint is termed a bulkhead. A longitudinal member
along the line of intersection of adjacent tube walls between adjacent frames is termed a boom: ;

a boom as a separate component is assumed to resist extension or compression, but to offer no
resistance to flexure or torsion.

The general method is applicable to all loading cases, including both flexure and torsion ;
but the applications made in sugceeding parts of the paper all concern cases of torsion, to which

attention is therefore chiefly devoted. The method is directly applicable to cases in which
portions of the tube walls are cut away.

1.2, Principles of Method.—(a) Distribution of Stresses in the Tube Walls.—Since a tube wall
offers no resistance to warping, at its edges it can be subjected only to stresses in its own plane.
Further, at the intersection of adjacent tube walls along a boom, any direct stresses normal to
the edges of the walls would have a resultant, which could be resisted only by flexural stiffness
of the boon itself. Since the flexural stifiness of the boom is assumed to be negligible, the direct
stresses normal to the edges of the walls-at the booms may also be neglected, so that at these
edges the walls are subjected only to shear and to direct stress parallel to the edge.
Following the ordinary simple theory of bending it is then permissible to assume* that a¢ any
part of the wall the stress system consists only of shear and direct stress in the radial direction
through the apex of the wall (i.e., the point of intersection of the booms bounding the wall).

(b) Separation of Shear and Bending : Equivalent Boom Areas.—The systems of radial stress
in the walls co-operate with the stresses in the booms in resisting bending of the tube as a whole
and local bending associated with warping of the cross section. The analysis may therefore be
considerably simplified by representing the resistance of the tube walls to direct (radial) loads
and bending by appropriate additions to the areas of section of the booms themselves. The
validity of this approximation is discussed below. By its adoption the general problem is
reduced to that of a tube, in which the booms alone carry all the direct loads whilst the walls

joining the booms carry all the shear loads ;1 at the frames shear loads are applied to the walls,
at a bulkhead end loads are applied to the booms.

(¢) Shear and Bending Strains.—The load in each Loom due to the shear loads applied to the
two adjacent walls can then be written down by inspection and the true boom stresses are found
by dividing these boom loads by the equivalent boom areas of section. The beunding deflections
follow Ly the ordinary simple theory of bending (see Appendix). The effective shear loads in

the walls, and the corresponding shear stresses and strains may also be computed by the rules
stated in the Appendix.

(d) Conditions for Continuity of the Tube Sections : Warping of the Tube Walls.—The displace—
ments of each pair of adjacent walls in their own planes must be reconciled at their common
boom by warpipg each wall out of its own plane ; by this means the distortion of any frame} -

* llns a%umptlon is C‘(aCtIV cquiv alcnt to the use of the 51mple theory of bendlng, and in thls respect the taper of the

wall, provided that it be not very great, has no significance. The simple theory of bending for a tapered beam is given
in the Appendix, where the conditions which govern its validity are also discussed.

t Or strictly, the shear loads carried as shear stresses, because owing to the taper of the walls the boom loads themselves
may have shear and even torsion components,

§ For brevity ““ frame ” is used here in place of “‘section of the tube at a frame ” : in the context the two terms are
SYyNoNnymous,
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is completely described in terms of the distortion and warping of an adjacent frame and of the
distortion of the tube walls between the two frames. Moreover, the rotations of sections of the
walls, in the planes of the walls due to distortion and out of these planes due to warping, both
resolved in planes normal to the frames, relate the warping of the two frames. The rotation,
distortion and warping of the section of the tube at any frame may then be expressed in terms
of the rotation, distortion and warping of an adjacent frame and of the shear and boom loads
transmitted by the tube between the frames.

(¢) Elimination of the Shear Loads.—The differences of the boom loads at the two ends of the
> bay between adjacent frames are linear functions of the shear loads in pairs of adjacent walls,
and the torque transmitted is also a linear function of the shear and boom* loads. This system
of relations is sufficient to enable all the shear loads to be expressed in terms of torque and boom
loads, so that only the latter need be retained as dependent variables.
i

(f) Conditions for Compatibility of Distortion at the Frames.—The difference between the shear
loads transmitted by a wall immediately on either side of a frame is the load transmitted between
frame and wall. At any frame the difference between this system of *‘ shear load differences ™’
and the system of shears externally applied at that frame represents a distribution of internal
load in the frame itself; this “ frame load system ” must of course be self-equilibrated{ and
the distortion of the frame under this system of load must be consistent with the distortion of
the section of the tube at that frame. In any N-sided tube each frame has N-3 degrees of
freedom, and there are therefore N-3 conditions for compatibility of distortion of frame and tube.

(g) Determination of the Boom Loads.—Each frame introduces N dependent variables (the
boom loads at the frame) but the complete system must be in equilibrium with the system of
applied loads. The conditions for equilibrium with the applied torque and shear loads in the
plane of the frame are already fulfilled, so that there are three further conditions establishing
equilibrium with the resultant direct load normal to the frame and with two bending moments
in planes normal to the frame. Thus N-3 dependent variables remain and the values of these
are determined by the N-3 conditions for compatibility of frame distortions.

At whichever frame of the tube is regarded as the reference frame the total number of unknowns
is 2N-3, namely N displacements of the walls in their own planes and N movements of the booms
in the directions of their own lengths less 3 average values which represent merely rigid body
displacements ; these unknowns are determined by N-3 ‘‘ frame conditions ”’ as previously
a}rlld N “ bulkhead conditions ”, relating the movement of the end of each bopm to the load in
the boom. - J

1.3. Effect of Cut-Outs.—A cut-out in a wall of the tube may be regarded as a portion over
which the thickness of the shear web tends to zero. The shear load over this portion must also
be zero, but the “ shear stress ”’, being the ratio of the shear load to the area of section of the
web, may tend to a finite limit. Accordingly the shear strain over the cut-out may also be
finite and it represents a new unknown which replaces the shear load over the cut-out.

Variation of the area of cross section of the booms past cut-outs introduces no special problem ;
but if any boom be cut right away, the case may be treated in the same way. The beuding
moment and the moment of resistance, in both walls adjacent to the missing boom, both tend
to zero, whilst the “ curvatures "’ may remain finite ; the unknown “ strain of the missing boom
. replaces the boom load at one end of the cut-away, which is now of course zero. The boom
load at the other end of the cut-away is also zero because the shears in the adjacent.walls are zero.

_ * The boom loads contribute directly to the torque only in tubes tapered unequally in different longitudinal sections :
in a conically tapered tube all the boom loads pass through the apex of the tube and reduce to a single resultant force.

T The system of load applied at the frame has of course three Tesultant components, two shears and a torque.
(66203) . ' A2
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L4. Validity of the Approximate Allowance for the Resistance of the Tube Walls to Divect Loads.—
By representing the resistance of the tube walls to direct loads by the addition of equivalent
areas of section to the booms, the detail of the distribution of shear stress in the wall is mis-
represented ; but this fault may readily be corrected in the final results and is therefore no
disadvantage. A more serious objection is that the area of section to be added to the boom may
have any value between one-sixth and one-half the area of section of the wall, the lower value
being appropriate if the wall is simply bent and the upper if it is simply extended or compressed.
A close estimate of the appropriate ratio may always be made by reference to the nature of the
loading condition ; for instance, in cases of torsion, in which the tube walls are usually mainly
bent, the value one-sixth is nearly always appropriate, whereas in cases of flexure of a rectangular *
section the appropriate value is one-half* for the flanges and one-sixth for the webs. In any
case the error of the first estimate may always be judged by comparison with the final solution,
and, when the areas of section of the actual booms are fairly big, the effect of errors in the
estimates of the equivalent boom areas to represent the walls may be quite trifling.

LS. Applicability of General Method.— The ease with which the general method may be applied
depends mainly upon the number of sides in the tube and the disposition and stiffness of the
frames ; slight taper, in the sense that all the booms should be inclingd at angles not greater
than about 5°-10° to a common axis,t complicates the coefficients but does not otherwise affect
the analysis ; variation of the section along the length of the tube, including the extreme case
of cut-outs, is also quite unimportant.

The examples treated in the succeeding parts of the paper are all cases of torsion of four-sided
tubes, for which, corresponding to the single degree of freedom at each frame, there is only one
unknown boom load at each frame. In Part IT the method is applied to a symmetrical parallel
tube of rectangular section with deformable frames ; in Part III it is applied to a symmetrical
tapered tube of rectangular section with rigid frames and Part IV extends the results of Part 111
to the case of a trapezoidal section with one plane of symmetry. The special case of a conically
tapered tube having walls of uniform thickness along the span and with an infinitely close spacing
of rigid frames is treated in Part V.

When the frames are deformable, each of the conditions for compatibility of frame distortions
involves either three, four or five of the unknown boom loads. Solution of the final set of
simultaneous equations for a large number of frames may therefore be a little laborious. When
the frames are rigid each of the final equations involves at most threc] of the boom loads and
at the ends of the tube only two. In solving the final set of simultaneous equations therefore,
each equation is used in turn to eliminate one boom load, and the complete solution is obtained
by a series of steps equal in number to the number of the equations. The examples worked in
Parts IT and III illustrate this difference ; in practice in cases of rigid frames the solution of the
simultaneous equations should take only a few minutes.

The application of the general method to problems of flexure is worth while only in cases in
which cut-outs or other concentrations of load render simpler treatment impossible. Unfortu-
nately from this field the four-sided tube must be excluded, because with only four booms the
method cannot represent ““ shear lag ””. The method should be uscful in relation to tubes with
six_or more sides, but the complexity of the analysis is greatly increased by the additional
unknown boom loads. This complexity is less serious if the frames may be regarded as rigid ;
but in practical examples, representative presumably of fuselages, it would be unwise to assume
ab tnitio that the distortions of the frames could be disregarded.

L6. [ilustrative Example of Stressing Procedure.—An interesting example for the application
of the method described is afforded by the case of a box of rectangular section with rigid end
frames, cach side being a symmetrical trapezium but adjacent sides being tapered in opposite
directions.

’U;ﬂesm the iiz;ngc buckles or is subject to marked shear lag effcct, when values less than one-half would be appropriate.

T There is another sense in which the taper need not be slight : this is explained and illustrated by the example in
§ 1.6 below. '

i Except at a cut-out where two adjacent equations involve respectively two and four of the boom loads. -
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" A sketch of the box is shown in Fig. 1, and the dimensions of each wall and the shear loads
applied at the end frames are shown in Fig. 2. Taking moments about the point of intersection

’ . F .
of the longitudinal edges of a wall (see Appendix), we have s—— == ira= 1, and by sym-
metry, the torque T = F (d — a) + F' (d 4 a) = 24 (@ + a?).

The direct load P in each corner is A7 g N and
2x N ,
ds = d + a(l -7 ) Substituting for F, and dsx.
@~ a7y @+ a7
l l
P=a ny 2
X ¥
a+a(1—25) a—a(t -5
% x a
. —ada 2 (1 %) 4%

or o =

M a2 — “2(1 — gz—jf)z 1 — (%)2(1 — 4u) |

where % :%O ——%) The direct load is zero at both ends, and a maximum at x = §/

where P = ——Zl%. |

If the tube has no booms, the effective area carrying the load P is d#/3 where { is the wall
thickness. The direct stress fis then '

a

341 4 ' 2 (d g
' . 5 - The maximum shear stress ¢m is about —( 6{—)7 , so that the

a (d — a)t

a1 — ya (1 — 4u)
‘ £ 3i "Z" (1 o ”f‘z’)

ratio of the maximum direct stress fm to gm is == — ——————=+ This is a maximum

‘ qm d 1+ a :

: 4

when a/d =, (d'— a)}(d + a) =V/'2Z — 1, and is then fu/gm = 3(3 — 2V/2) %Z_: 0-515 —ﬁ—l In the

tube having walls of the shape shown in Fig. 3, the direct stress at A is about three times the
shear stress at B. : ,

* No allowance is made for the variation of shear stress down the web, because at this section the wider walls act as
heavy flanges. (See Appendix.)
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This example illustrates the two senses in which taper can be slight or marked. In the tube
shown in Fig. 3, the taper, in the sense of inclination of booms to the axis of the tube, is certainly
slight ; but the effect of the taper in setting up direct stress is marked and actually grows more
marked as the length of the tube is increased, although the inclination of the booms is thereby
still further reduced. In the sense that (d — a)/(d + &) differs counsiderably from unity, the
taper is marked, and it is in this sense that the degree of taper should be judged. The addition

of a rigid frame at the centre (square) section of the tube reduces the boom load to one-quarter
of its value when no frame is fitted.

PART 1II °

The Torsion of Symmetrical Parallel Tubes of Rectangular Cross Section with
Deformable Frames

11.1. Introduction.—The effect on the torsion of rectangular tubes of axial constraint due to
bulkheads has been treated by Williams in R. & M. 16192, R. & M. 1761 and succeeding papers
on the assumption that all sections of the tube remain rectangular. Here the same problem is
treated on the assumption that the shape of the tube is maintained only by a limited number of
frames, not necessarily rigid. As would be expected, the latter method leads to.lower estimates
of the torsional rigidity ; but the difference from the estimate by the method of R."& M. 1761 is
rapidly reduced as the number of frames is increased, and in the limit when the number of frames
is very large the present method hbecomes identical with that of R. & M. 1761.

The method is closely related to that developed by Ebner and described in N.A.C.A. Tech.
Memo. No. 744 ; but it is herc presented in a tabular form designed to simplify computation.
By the use of a table of coefficients (Table 1) the set of simultaneous equations relating the
boom loads along the span to the torques transmitted can be written down from the dimensions
of the tube, no matter how the dimensions vary along the span. By the solution of these equations
the boom loads are computed and the shear stresses and twist follow from simple relations.
Complete solution of any specific numerical example should seldom take longer than one hour.

I1.2. Effect of IFrame Load Systemns in Causing Bending of the Tube Walls and Distortion of
the Cross Sections.—Any pair of couples applied as pairs of shear loads to the sides and to the top

)
d
¥

%’(7\47&1)09 —A
e L "

“
« F1G, 4.

and bottom walls of the tube at a cross section perpendicular to the axis of the tube may be
regarded as composed of a Batho torsion system and a frame load system. The Batho torsion
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system is represented by a coefficient ., the load per unit length of edge ; this system, of course,
causes only shear stresses and shear distortion. The frame load system is represented by a
coefficient 4*, which again is the load per unit length of edge ; but in this system the two couples

,are equal and opposite and represent the self-equilibrated reactions from a frame or series of
frames in pure shear. The frame load system causes both shear and direct stresses.

The resistance to direct load parallel to the axis of the tube being concentrated in booms at
the corners, §I.4, it is clear that the two components of the frame load system make equal
contributions to the boom load (the contributions of the two components of the Batho system
are, of course, equal and opposite). Thus the boom loads P due to the complete A-system are
twice those due to either component separately.

In a tube of length L, width w, and depth d, supported at one end section from a rigid wall
(frame bulkhead), let the shear force per unit length of edge in the 724 bay due to frame load

systems be 4, and let the boom load at the outer end of this bay be P.. Then, if the length of
the bay is o,L, P,—y — P, = 20,L4,.

If the area of section of the booms in the 7t bay is A;, the curvature of the side walls is EgAIi i

and P =P, , (1 — —x—>—}— P, JL, where % is measured outwards along the span from the
oL oL :

2 - ‘
7—1th frame. This curvature is % where v is the downward deflection of the side wall;
but 6, the rotation of the side wall about the centre line of the tube, is %@)}i. Therefore

%0 2 dy = 4P s .
P wdrt— Ehdw’ From symmetry it is clear that the rotation of the top and bottom

walls is the same but in the opposite sense. Therefore, if ¢ is that part of the shear distortion
of the section of the tube due to bending of the tube walls,

a¢ 8P - 8 %
ix ~ FAdw  EAdw {Pr St (P =Py }
Integrating over the bay :

dp  (dp\ . 8 { 2\
f%*‘%lﬂ—E@wI?ﬁ+ﬁE‘PmﬁDv

(%), (), 2 o 2,

br — by _ 4oL / dg
and oL~ 3EAdw (T T 2P + FA
... Ap, , . ) _ '
Writing = o,’, where A is some convenient standard value of A, ;

T

g\ . dp\ 4L
<Eﬁ? 1-—1—— <7Z;C_ r-2 mgr _1.(Pr—1 + Pr—z)

b N AL,

| (T s (5 s= Eigwres's Pema + Pocd
G

(%), = wagw o ®u+ P

* The A-system is, of course, closely related to the 1-system described by Williams in R. & M. 1619 ; but it has not
the property of the I'-system that its effect is zero at infinity.
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d 4L 1 I3 13 1] ! !
(di r-1: FAdw {91 Po+ (91 +02),P1+ (92 + Q3)P2“l‘ + or -1Pr—1}'
Hence, finally

r — Pr— 4L ’ ’ I ’ ’
(ﬁ QrI:ﬁ 1: SEAdw {391P0+3(91 +92)P1+',"+3(9r*2+9r—1)P—

-+ (391',—1 -+ 29r,) Pr—l + Qr' Pr} .

11.3. Shear Strain of Tube Walls.—The deflection due to shear of a side wall of the tube over
the #h bay is o, L(4, + #.)/Gt,, where ¢, is the effective shear thickness of the side wall ; p, is the
shear force per unit length of edge due to the Batho load system. But 1, = (P,_;, — P,)/2¢,L

and pu, = T,/2wd, where T, is the torque transmitted over the #th bay. The shear deflection
of the side walls over the 74 bay is therefore

{(Pi—y — P,) + Tio,L/wd}/2Gt,, and the rotation due to shear is { (P, — P,) + Tro.Ljwd}/Gwt,.

Similarly the rotation of the top and bottom walls is {Pry — P} — Tr0,L/wd}/Gds, in the
opposite sense where s, is the effective shear thickness of the top or bottom wall. Therefore, if »
is that part of the shear distortion of the cross section due to shear of the tube walls,

S S GL‘E; (Pr 1 >sr( - %St fw; ss (1- ;l; )E

where s is any convenient standard value of s,

L (o T,
or Gaw’s Lo, (Pey — Py} — By T
' dsr w? ds,
where (1 45 and 8, = 5 (1 — i )d

11.4. Shear Distovtion at Frames.—If hy is the effective shear thickness of the 7¢4 frame, the
shear strain of the #4 frame is

(ra=i) 1 ((Pe=Pe) _@tl_':_f_’zz},*

Gh, ~ 2GLh,

and the difference in shear distortion between the (»-1)th and rth frames divided by the distance
between them is

o [~ s T P <em TR

—1(?1'

{hrgr_{—h wt e %“L‘_lgr 1]'

Or—1

I1.5. Relations between Boom Loads and Torques in the Bays.—The sum of the distortions of
the tube section due to bending and shear of the tube walls must at each frame be identical
with the shear strain of that frame, and the shear strain of the root frame being zero, this

* Note the close correspondence to the second difference of the Ps.



9
conditior; applies equally to the differences determined in §§11.2, I1.3 and I1.4. These identities
then lead to the system of equations. ' .

%Py — ) + L Py — | %
¢ Sr+l

r

1

r+1

+ —91—)+ %}}Pr

Pr 1 1 } Yr-1
e, (L p, — Y1ip
+§Qr+yl<9'r—|_9r—1) L e, TR

+ K{SQllPo + 3(91’ + 92,)P1 + e 3(91‘,—2 “|“ Qr,—-]) Pr—z
+ (391',—1 + 2Qr')Pr—i -+ erPr}

T, -
=k
s fw\3d 4Gws
where yr = g7 ('L‘) w 2nd K =3

- This systent of equations* is set out in tabular form in Table 1, where their structure is more
easily seen. If any s; or 4 be zero, the equation in which it occurs reduces to -

12 T
Pr—-l“‘Pr::{IQrW’f; |

2

the remaining equations are not affected.

I1.8. Twist of the Tube.—The true twist of the tube over the 74/ bay is

Tl 1 ds,\  Pra—Pif,  ds
2Gwd ds, <1 + wi, T 2Gds, <1 wt,
or .

TL s (aTe(y , 45  (Pea—PJL wd(, _ ds
2Gwsd® s; L T (1 T wtr> 1T L2 (1 o z@tr)}’

where T is some convenient standard value of T,. The total twist can be found by summation.

The rotation of the upper and lower surfaces differs from the true twist by half the shear
strains of the frames : this difference is usually quite negligible.

_If s, is zero, the twist due to shear of the top or bottom surface over the cut-out can of course
assume any valde, so that in this bay the top and bottom walls cannot affect the distortion of
the sides. Accordingly the twist in this bay, determined by the side walls along, is

{(P,—; — P.) + Tro,L/wd}/Gwt, plus half the expression for ¢r — ¢,—, at the end of §IL.2.

L2 T, : 2T, 0, L
=0y T the first term reduces to Guwdl.
to shear and the complete expression for the twist becomes
TL , 4 [ s Tt KL
oY w 1

Gwsa? 2¢ + T T 1 8aPet (e + 02)Py + -

+ 3(91"—2 + Qr,—l) Pr—z + (391"—-1 + 201‘1) Prey + Qr’Pr}:l .

Since P,-; — P, which is the rotation due

* Table 1 would be considerably simplified by differencing in rows ; but at the expense of the loss of the easy treatment
of cases in which parts of the tube walls are cut away. Moreover although the difference Ty — Ty, is the torque applied
at the ##h frame, this difference results only if fr = fr_;, and in any case the transmitted torques Ty are needed for
computation of twist and shear stress. See §I1.8 and cf. Part IV.
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11.7. Application of Method.—The computation is conveniently carried out in tabular forni, of
which four examples are given. LExample 2 includes literally all the working necessary apart
from additions or multiplications done mentally or by slide rule.

These examples are intended primarily to demonstrate the method ; but they have in fact
been chosen from the series of tubes previously investigated by Allwright using Williams’s
method of R. & M. 1761, and it is of some interest to compare the results. Referring first to

the tube without cut-out, we have the following comparative values of the twist under unit
torque :

Allwright’s investigation (infiriite number of rigid frames) .. .. .. 0-3905
Frames at 0-1, 0-3, 0-75 and 1-0 of the span .. .. .. 0-3989

Present | I'rames at 0-75 and 1-0 of the span .. .. .. .. .. 0-4077
Paper Rigid frames at 0-75 and 1-0 of the span .. .. .. .. 0-4076
Frame at 0-75 only of the span .. .. .. .. . 0-4294

FFor the tube with cut-out 0-2 span long with its centre line at 0-2 of the span (Example 2),
Allwright gives 0-896 and the present paper 1-099. With the same cut-out now with centre -
line at 0-4 (Example 3), Allwright gives 0-924 and the present paper 1-153. For a cut-out
0-1 long with its centre line 0-15 from the root, Allwright gives 0-465 and the present paper
0-567.

In the case of the tube without cut-out the comparison is quite satisfactory ; but in the other
cases the differences are rather larger thah had been expected. However, all the differences
are in the right direction, and the fourth example with eight frames more than halves the
diffcrence between the two twists for the 0-2 cut-out at 0-2 span.



' I1.8. Examples—

Table 1 —Eqmztwns for the
Determination of the Boom Loads from the

Values of the Torques in the Bays.

|
P, P, P, | P, !| P, ]
- | |
(e Y1) o+ "1 "1 i [ L
2Kp, 4+ ——— Ko — — = —_— - — =B
! + 1 4 @1 ' @3 Q2 L
Y1 %Y Tvs ayFyi+re Ve V2 T,
3K, — s K30, +20, ) +— ++——— Koy — ———mMm——— — o =
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3Ko, 3K (o, - 3 2 = Koy —-—-——— —_— = B, —

01 (01" +es) 2 K(3ey' +205 4+ — 05 =+ o5 g3 o3 01 0s Bs 1
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@3 Q4 Q4 25 L

’ ' ’ 7 ’ 7 ’ ’ Ya 5+74+V5 5

3Kg, K(e, +02) 3K(ey -+05) 3K(egs +o) — K(3e, +2¢ )+ +~—— = f5 j

0 0 05 L

, A 4Gws s dsp dsr
J — = _ _ = — JE— —_ —_—
-Z\’ otes. Or Or Ar— 2 K 3EA s O Sy 14 T > 12 3 51‘ * ( wtr > d y YT = 2h ( >

A and s are any convenient means of the values of Ay

the inboard end of that bay.

(Pr

—P)L wd

. T
The shear stresses in the rZk bay are iy {1 +

The twist over the 7tk bay is

[tr

G sd2

T:L
9Gwsd? sp Qr<

4 Tr %391’130

Tr orL 2

+ d3r>—

Ty

} in the sides and L Y1 —

(-

3(91’+92')P1 + e T+ 3(91"—2 + Qr’—1)Pr—2 + (301"—1 + 29r/)Pr—1+Qr/Pr}] if sy =0.

(Pry — P)L wd

L2

Pra—

POl  wd ).

2wdsy z T

)

~

nL)\

in top and bottom.

and s; respectively. Ty is the torque transmitted over the 7tk bay, and Pr_; is the boom load at



P

12

Example 1.—Plain Tube without Cut-out—No Added Booms.

w/L.=0-2,dfw=0-25 A = 1/6 (ws + id) = ws(6 (1 + tdjws) = ws/4 in all bays.
Torque T applied at frame 3.

Bay 1 Bay 2 Bay 3 Bay 4 | Average Value Notes
o’ = or 0-1 0-2 0-45 0-25 Specified
Ahes 3 1 3 3 3 K =2 (G/E = 3/8)
Sp/s 1 1 1 1 1 Specified
tefs 2 2 2 2 Specitied
hyfs 1 1 1 1 Specified
oy 0-045 0-045 0-045 0-045
Br 3-5 35 3-5 3-5
Vr 0-001 0-001 0-001 0-001
Ty/T 1 1 1 0 Specified
© Table ! | P, | P P, P, T/L
1st eqn. \ 0-860 —0-2685 0-005 — 3-5 (3-500)
ond o i i ) ) T q.& (a. Check back
2nd eqn. \ 0-590 1-645 0-163 0-002 3:5 (3-500)1 | shows
3rd e . . . . .5 (3 accuracy
3rd eqn. _0 600 1-795 3-109 0-792 35 (3-500) | [ vintained
dthean. | 0600 | 1800 | 388 | 3890 | 0 (0-000
06 o
1st X 086 0-600 —0-1849 0-0035 — 2-442
. 0-60
2nd x 0-59° 0-600 1-6729 0-1658 0-0022 3-559
T T T T os  [ome B9 | =35
1 157-8 619-6 —700-0
1-9849 3:8945 3-890 —2-442
1 1-9621 1-9598 —1-2308
1-8578 0-1623 0-0022 1-117
1 0-0874 0-0012 0-6013
155-8 617-6 —698-7
1 3-9640 —4-4846
1-8747 1-9586- —1-8316
1 1-0448 —0-9770
2-9192 —3-5076
1 —1-2016
© Boom Loads | 4-2465 | 0-578¢ | 0-278¢  |-1-2006 | x T/L
Py —Pr 3-6681 0-3000 1-4800 —1-2016 x T/L
o Side 0-6834 0-5075 0-5164 —0-0240
' %hcdl‘r . X T/2wds
stresses | Top 0-6332 0-9850 0-9671 0-0481 Twist at load
Twists 0-0402 0-1112 0-2466 0-0053 x TL/Gwds? | 0-3980
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Example 2. kPZm'n Tube with Cut-out—No Added Booms.

(As Example I, but with top surface of Bay 2 removed.)
w/L =02, djw = 0-25, A = ws/4. Torque T applied at Frame 3.

Bay 1 Bay 2 Bay 3 Bay 4 Average Value Notes
or 0-1 0-2 0-45 0-25 S Specified
Ayfws i 1/12 1 1 1 K =2 (G/E _ 3/8)
or’ , 0-1 0-6 0-45 o2
sefs 1 0 1 i 1 Spce)ﬁiﬁed with cut-
Ipfs ] 2 2 2 2 Specified
Bfs I 1 | 1 Specified
op 0-045 . — 0-045 0-045
Br 35 : - 35 35
Ve 0:001 0-001 0-001 0-001
Ty/T 1 Sl 1 0 Specified
Table 1 P, P, P, P, T/L
Ist eqn. 0-880 | —0-265 1 0005 — 3-5 (3-513)
- | - — e || ke
3rd eqn. - 0600 4-195 5-510 0-792 3-5 (3-506) igfgé}f represented
4th eqn. | 0600 4-200 6-298 3-890 0 (0-008)
0-6
Ist” X —— 0-600 —0-1849 0-0035 2-442
0-86
0-005 0-788 3-008 —3'5 Diff. 4th—3rd.
4-3849 6-2945 3-890 —2-442 Diff. 4th—1st><g'_—g6
0-793 3-008 1 —36 Eliminating
10-6794 3-890 —90-140 | j Tefrom 2nd
0-9960 3-890 —4-520
9-6834 "~ | —85-62
Boom Loads | 7-574 11-158 —8-842 1-102 x T/L
P —P _3-584 0 —9-944 1102 X TL
Sh(;?;esses {Siie_ 0-321 1000 0-389 0-022 }X s |
Top 1-358 0 1-221 —0-044 Twist at load
Twists 0-0674 0-7352 0-2966 —0-0048 » TL/Gwsd?| 1-099
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Example 3.—Plain Tube with Cut-out—No Added Booms.

@/ =0-2,dfw=0-25 A = ws/4. Torque T applied at Frame 3.

Bay 1 Bay 2 Bay 3 Bay 4 ‘ Average Value Notes
0-3 0-2 0-25 0-25
Adfws 1 112 1 3 1 K =2 (G/E = 3/8)
Sefs I 0 1 1 1
tefs 2 2 2 2
hyfs 1 1 1 1
or 0-3 0-6 0-25 0-25
op ” 0-045 — 0-045 0-045
Br 35 — 35 35
Yr o 0-001 0-001 0-001 0-001
T,/T 1 1 1 0
 Table 1 P, P, P, P, L
1st Bay 1-3533 0-4417 0-005 - 3:5 (3-5009
2nd Bay — 1 —1 — 20 (20
3rd Bay 1-800 5-395 4-793 0-308 3-5 (3-499)
4th Bay 1-800 5-400 5-096 2-692 0 (—0-001)
1-800
Ist > - 1-800 0-5875 0-0066 — 4-6563
1-353
0-005 0-303 2-384 —35 N
- 4-8125 5-0894 2-692 —4-8563
o 0-308 2-384 —3-6
1 7-7403 —11-6883
9-9019 2-692 —100-906
1 0-2719 —10-1906
7-4684 —1-4977
~ Boom Loads | ~0-59 | 19:864  |—10-136  |—0-201 . T/L
PPy —_16“‘460 20 —9-935 —0-201 x T/L
jShear ) Side 0-326 1 0-301 —0-004 }x T 2uds
SEesses | Top | 1349 0 1-397 0-008 Twist at Load
Twist 0-2145 0-7548 0-1841 0-0009 X TL/Gwsd?| 1-153

[
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Example 4 —Plain Tube with Cut-out—No Added Booms.
(As Exaniple 2, but with more and rigid frames.)
w/L =02, d/w = 0-25, A = wsf4. Torque T applied at Frame 6.

Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 | Bay 6 Bay 7 Bay 8 |
or 0-05 0-05 0-20 0-15 0-15 0-15 0-15 0-10
Agfios 1 1 1 : 1 1 2 K =2
sgfs 1 1 0 1 1 1 1 1
befs 2 2 2 2 2 2 2 2
hrls © o o © o oo © ©
or 0-05 0-05 0-60 | 0-15 0-15 0-15 0-15 0-10
oy 0-045 0-045 — 0:045 | 0-045 | 0-045 0-045 | 0-045
il 3:5 3-5 —_ 3:5 3-5 3-5 3-5 3-5
Yr 0 0 0 0 0 0 0 0
)T 1 1 1 1 1 1 | 0 0
Table 1 1-100 | —0-800 — — — — - - 3-5
0-300 1-400 | —0-800 — — — — — 3-5
— — 1 —1 — - e — 20
0-300 0+600 3-900 4-500 | 0 — — — 3-5
0-300 0-600 3-900 4-500 | 1-800 | O — — 35
0-300 | 0-600 3-900 4-500 | 1-800 | 1-800 0 — 35
0-300 0-600 3-900 4-500 | 1-800 | 1-800 1-800 | 0 0
0-300 0-600 | 3-900 4-500 | 1-800 | 1-800 1-800 | 1-75 0
1-78 —0-88 2-80
—0-80 4-70 4-50 0
1-800 0
1-800 0
1-800 —3:5
1-75 0
P, .| 8-1104 6-7769 | 10-3719 | —9-6281 | O 0 —1-9444 | 0
P, P, [1-3335 | —3-5950 | 20 —9-6281 | 0 1-9444 | —1-9444 | 0 }X i
Twist 0-0223 0:0439 0-6237 0-1265 | 0-0844 | 0-0759 0-0085 | 0 X TL/Gwsd?
Twist at Load = 0-977 TL/Gwsd? -
Shear load Frame Frame Frame Frame Frame | Frame Frame Frame
in 1 2 3 4 5 6 7 8
per unit length
of edge —98-6 | 171-9 —164-2 64-2 18-0 | —25-9 13-0 0 x T/2L




16

I1.9. Umiform Tube with Infinite Number of Rigid Frames—It is useful to demonstrate the
relation of the treatment in this part to the treatment by Williams (R. & M. 1761), by considering
the case of a upiform tube with an infinite number of rigid frames. In this case y, is zero,

. a 2 a .
o = op = 0,0 = o = (1 + ié}; %—2 and f; : B = <1 f—w% Z) The first differences of

Table 1 (first row, second row minus the first, third minus the second, etc.) then reduce to

x 2 W
(2K9+E) P0+<KQ—E>P1—/31: O €1
Coo 20 o LT =T
(Ko = %) Pyt (e + )Py o (Ko = 9) P p 1 e @)
oL 2&, Tn - Tn_
and (K@ — 5> Po_, + <4Kg + " P, = V,,._,_I;__,l, .. .. . .. (3)
We may.write ‘
. ap 1 o ( 42P
Pryy =P £ 0L<;ﬁ)r+§(9L) ii%é>r+ SRR
and drop the suffixes, and
ar
.Tr—l = T, — oL ( dx )r’
x being measured outwards from the root.
Substituting in (2) we have
d?P dT |
— R il
6KoP — oal. dxzhgﬁ I’ .. .. .. .. .. .. (4)
in (1)
apr a*pP T
3KQP e O(Lﬁ_dﬁ-é-_ %QOCLz %2* — [)) "f ) .. . L e ‘e ‘e .. (5)
and in (3)
o ap . _,ad® 4T '
to terms in g2
Proceeding to the limit ¢ -0, we have
azp 6K g dT ‘
E;z_a—]:l-é_iﬂgﬁz{;_o . .. .. .. .. .. .. (7)

over the whole length of the tube with discontinuity - T/«xL?* in dP/dx at any section where a
concentrated torque T is applied. In addition, at the free end equation (6) requires P = 0.

The solution is of the form P = H cosh px + J sinh px, with adjustment of the constants to
the end conditions, where

: _BK __ 8Gst
P27 a2 = EA (wf + ds)

* The torque T, in equation (5) is really the reaction torque and should be regarded as a torque — T, at this section.
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Converting to Williams’s notation

L, I 1, | .
A= ‘,‘Zﬁ + fci% = 5550 (a?l, 4 0%1,), w = 2a, d = 26,
1 1
b= 2Gbr, and s = 2Gar,
Making these substitutions,
’ 4a2b%E

. . i
u2 = @, 7 0°L,) (6%, + a%ry) as given by Williams.

This comparison demonstrates that the use of the conception of ““ effective boom area ” is
fully consistent with the treatment of R. & M. 1761.

An interesting special case arises out of equations (1) to (3) and is partially illustrated in
Example 4. In a uniform tube if ¢ be chosen so that ¢? = /K, boom loads occur only in the
two bays on either sides of frames at which torques are applied, and the value of the boom load

at the frame at which a torque T is applied is — - ’3 T_», except at the root where the boom load is
64/ Ka |
3/3 ZIZ_ . The doubling of the boom load at the root’is in a sense due to reflection ; the bulkhead
v/ Ko

effect of the root fixing could be reproduced by reflecting the tube in the root plane and twisting
both ends in the same sense against the (double) reaction applied at the centre.

(68203) ’ B
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PART III
The Torsion of Tapered Tubes of Rectangulay Section with Rigid Frames

IIL.1. Introduction.—In this part the general method of Part I is applied to the torsion of
tapered tubes of rectangular section, using the rules for the bending of tapered beams derived
in the Appendix. The tube is assumed to be symmetrical about two perpendicular planes through
its axis, but the taper and the variation of section spanwise is entirely arbitrary.

. 1IL.2. General Scheme of Present Method.—The general scheme of the method is to establish
systems of equations relating values of the boom loads directly to the values of the applied
torques, and by solution of these equations under the conditions determined by the nature of the
end fixings directly to compute the values of the boom loads. Associated with the torques (T’s)
are the twists (6’s), and similarly with the boom loads (P’s) are associated the warpings (e’s).
At this stage if is not necessary specifically to define the conceptions of boom load and warping ;
it is sufficient to regard ¢ as a numerical measure of the warping of the tube cross section in some
prescribed form and P as a numerical measure of the corresponding system of axial loads. It
is later assumed that plane sections of the tube walls remain plane but this is not necessary to
the general argument,* and any other prescribed form of warping might be used. Similarly,
the precise definition of the boom load P must be varied in sympathy with the prescription of
the form of warping. The definition of P later adopted is consistent with the assumption that
plane sections remain plane and is thus completely in accord with- the general method of

R. & M. 1761 ; in comparison with M; and M, of that paper, P here represents no more than a
change of notation.

Considering any section of a tube between two cross sections 0 and 1, and using suffixes to
distinguish between the two ends, it must be possible to establish relations in the forms :—

0, — 9 = BT, + C,P, + D;P; .. .. .. .. .. 8)

— ¢, = C T, + H,Py, + J1P; .. . .. .. .. (9)

e, = DT, + JiPy + K Py . .. .. .. .. (10)

The warping e being measured in the same sense at each section, e, and ¢, are in effect of opposite
sign, so that, if Py = 1producese; = J;, P; = 1 must produce ¢, = — J;. The other correspond-

ences (C and D) also follow by the reciprocal theorem, but, of course, it is assumed that boom
load and warping are so defined that multiplying constants are avoided. In consequence the
forms of equations (8), (9) and (10) have to be modified by the introduction of geometrical
constants multiplying (0, — 8), ¢,, ¢; and T, (see §I111.6 below).

If consideration is confined to a section of the tube between two rigid} frames, the values of
the coefficients B, C,, etc., may be computed directly ; this computation is carried out for a
doubly symmetrical but arbitrarily tapered tube of rectangular section in §I11.4 below, and the
forms of the coefficients are shown in §I11.6 where their numerical evaluation is discussed.

By consideration of the next bay (1 to 2) (9) above gives — ¢; = C,T, + H,P; + J,P,
Eliminating e,, and thus satisfying the condition of continuity from bay to bay, Ieads to the

relation
]1P0+( ;1 + Ky) 1—|—J2P2+D1T1+C2T2=0.. .. . . (11)

* Cf The comparison between R. & M 1619 and R & M. 1761 ; where the cond1t1ons under which the ordinary
assumption that plane sections remain plane may lead to serious error, are explored.

f If the frames are not rigid, the forms for 8, — 6,; ¢y and ¢; will include terms in the frame distortions.
afterwards be eliminated by correlation with the frame loads, which are functions of the P's and T’s ; but the process

is complicated and should scldom be necessary. The small effect of frame stiffness is demonstrated in Part 1I and by
the example in §III 7.

These can
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This relation is one of a system equal in number to the number of bays, the forms of the first
and last relations of the system being slightly modified by the end conditions, e.g., P = 0 at a
free end, or ¢ = 0 at a bulkhead. The values of the coefficients By, etc., havmg been computed,
this system of simultaneous equations in the P’s rhay at once be written down, and by their
solution the values of the P’s are determined. In general no difficulty or abnormal loss of accuracy
is encountered in solving these equations.

The values of the P’S'héving been determined, the twists follow from the expressions for
6, — 0,, etc., and the shears in the tube walls and the frame loads may also be computed from
simple relations to the P’s and T’s.

Neither variation of the thickness of the tube walls from bay to bay nor variation of the
effective area of the booms causes any difficulty ; they merely affect the values of the coefficients
B,, etc. In particular, if any tube wall be completely cut away over any bay, the same general
method is still applicable. The shear force over the absent bay must be zero, but the shear
strain takes the form 0/0 and is, of course, arbitrary. As a result, in place of the two relations
of type (11) above, which include both the P’s at either end of the absent wall, two other relations
are found, one involving these two P’s and these two only, and the other these two P’s and the -
pair next on either side. Again the setting up and solution of the simultaneous equations in
the P’s is straightforward.

II1.3. Special Assumption and Range of Applicability of Presewt Treatment—The general
method so far described could be developed for use for any four-sided tube, no matter how
steeply tapered ; but, since in practice the rate of taper is seldom likely to be great, it is worth
while to make use of this restriction in order to simplify the derivation of the coefficients B, etc.
The detailed development is therefore based on the assumption that the angles of inclination
of the tube walls and tube edges to the tube axis are all so small that their cosines may be taken
as unity ; but sines of these angles cannot be disregarded. In order to simplify the presentation
of the analysis it is here assumed that the tube is doubly symmetrical about its axis. The
coefficients for a tube of trapezoidal section with one plane of symmetry are derived in Part 1V.
Apart from these two assumptions there is no restriction on the type of taper; the taper in
adjacent walls need not be the same, nor need the taper be uniform from bay to bay. In cases
of non-uniform taper from bay to bay the reactions at the frames necessary to maintain equi-
librium of the booms are imposed on the frames ; in exceptional cases the frames may as a result
be liable to buckle in compression.

§111.4 below describes the derivation of the forms of the constants By, etc., and the establish-
ment of the relations of type (11) in §III.2 above. The compatibility of the computed
deformations is demonstrated in §II1.5, and the forms of the constants By, etc., are summarized
in §I11.6, where the computation of these constants is discussed. The application of the method
is illustrated by a worked example in §II1.7. In this application the values of certain rather
awkward integrals are required ; a fairly satisfactory method for the computation of these
integrals is described in §I1I1.6. Apart from these integrals (tables of values of which might
easily be prepared) §II1.7 contains all the information necessary for the application of the method,
and all the computation involved is straightforward arithmetic, involving no other reference to
tables.

The case of umform conical taper, which represents a special case of the general problem,
is treated in Part V, where the results obtained are compared with results obtained by Williams
in R. & M. 1761.

II1.4. Derivation of Coefficients.—(a) Deformation in @ Bay—In this section, by consideration
of the deformation of a single bay of a tapered tube between two rigid frames formulae are
obtained for the twist between the two ends of the bay and for the warping of each end section
in terms of the boom loads at the two ends and the torque transmitted.

(66203) B2
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Notation as in Fig. 6

/—?'\\ d, w, ’
Wo : =

B d_o - Wy 2
)
a Fl . F F’
e TR Py — Pyl = 5+ — -
2o § = td! (Py 1)/ dy _+ w,
Olo % }Vi [ @Ew;’ Torque transmitted
,QJ_‘ % A P
Pé I_afﬁ__-—-———" T T = Fw, — F'd, + (dge; — 17”0)71'
FiG. 6.
F T P, 1
Hence @ = Cags + oy == By y )/ (0 + B) .. .. .. (12a)
¥ ¢ T P, Py
- (- wde TR )+ e .. .. (12b)

Boom load P at distance x from section 1 — P, + Fx/d + F'x/w, where d ( = ad,) and w(= Bw,)
are the depth and width at section x. Effective area of section of booms A (= yAy) may vary
over the length of the bay. The length I is presumed to be so large in comparison with the
differences dy — d, and w, — w, that squares and higher powers of the ratios (d, — d,)/l and
(wy — wy)/l are negligible. ~ As a result distinction between the directions of the tube cdges and
of the tube axis is unnecessary, in so far as only cosines of the wall angles are involved ; on the
other hand sines of the wall angles are not negligible (see below and §I11.5).

Deflection of front wall downwards § — 4, ) at section x, relative to original section .
Deflection of top surface backwards e — ¢, % at frame 0, with appropriate suffixes at
Rotation of section 6 — 0, " J  ends of bay.

0y — 8y = 2(8; — &) fw, =

2 r2( 7t dxd ° % dxd O dnd %,  (d, -+ d.)FI
ELR(n] ot o] [ 20 g

= =2 (51 - 30)/d1:

- {

where ¢ and s are the effective shear thicknesses of the sides and top and bottom respectively.

Eliminmating ¢, by multiplying (13a) by wydy/i2, (13b) by wd,/i? and adding

(0, — 80) (2 + B) w(l)go _ E%{%l”(%" 7” dudu

Y
el 1N wdud
o 1G5
FI

+ (1 + o) o — (L + By o whereu =%

Foost 1N udud
+w51”1 'a——g)f‘;’;”}
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or

EA 42 ¥
(6, — 0¢) (o + ‘31)"*‘&: Woly {Il ll + Iy —- d + I 0%
EA, F EA, F

+ (1 + O('l) Gtw d ( + ﬂl) GSd

Wo
=[G - %)‘“;ﬂ, Iz=n<—;—— A
| nd I, = “(_* 1)l

Substltutmg for F and F’ from (12a) and (12b) .

a
%f@—)@ﬁ%&EM

where

B EA EA, TI
= | L—T+ 5 {(1 to) G, T F A Gsd(,} @ode
a
+ “12+.6'1I+w00{1(1+0(1)(}t /3(1+f91 Gd}]P
+ | (o + B) 11—13112““11‘ ‘ |
EA, EAy )
| IR e G w8 G B
Eliminating (6, — 0 ) by subtracting (13b) from (13a)
EA 4 F’
(0514‘51) —[4l‘|'15d+1—

EA, F EA, F’
+ 4l2{1(1+ )Glfod +ﬁ1( +61)Gsd wo}]

=Jf<061_[_ d%f%I_IJ<OC1 ududu

11

aid 1, - H(“i+ By ) uluds

Substituting for F and F’ frqm (12a) and (12b)
?m+m2
- i 6+ 4l2 { 1+ OC1)

where

EA EA, T!
= .3 ( + 131) G.S‘d } W

- EA EA,
oule + Bile "|“ 4l2 { oay® (1 +oy) G——th + 8.2 (1 + B Gsd, }]P

+
fl‘ (g + By) Iy — 5115 — oylg

- 4l2 1ﬁ1 {( "i"‘xl) (];jfo ( "I"ﬁl) (]j;‘i} Jl]P

(14)

(15)

(16)
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For the warping ¢, at section 1, by considering rotations of sections of the front and top walls,

& ey _ _ 2| O@? wd [ x|
z(dl“dl)“ £ (5 Ad+FfAd2+F Adw |
I

_ (4 — 4 F Wo — Wy

ey T =0 T (18)
and
e e\ _ _ 2| - xdx , [ wdx !
2<w1 w0>w ELP [Aw+FJAdw+F Aw? |
1
. (wo ! ) F' _ fio ‘"_Adl
e R R T 2

The terms in (6, — 6,) arise from the inclination of the walls to the tube axis.
Eliminating e¢,* by multiplying (18a) by 4, and (18b) by w, and subtracting

EA
Vezu( _ﬂl) ““““““““ w[alﬂl(l’il_*.Isd_I“I )
w | — EA ¥ EA, F' V.
40lz° Lﬂl( ?) Glw, d, a (1 — 19 Ggpﬁ wo}
4 — ’ EA
- %gﬁo (0 — 0g) %48y (2 — o — By) 'l_o]
where

L= T D (- ) e - (L F)

““; (g + :61)2-EA0 = [&1“1&13,1,_; { (@ + 8 (Ig — Ig) — (2 — oy — By) (I, — Iy }

wdy | o EA, EAy| | TL
o (A0t g e (U4 B G ]

9 g —
+ oy [: j: iy (Ig + Bily) — ”‘af.g_l:_ﬁ‘[il (Iy — Byls)
EA EA, | |
“’4‘2?{(1—{' 1) Gto + (1 + 8) ng;;]Po

— (2= — By (& + B L — Bl — oyly) }

EA EA
+'Z!20Zz {/31( 1)(79 + o (1 +/31> J]Pl" (19)

o BV ehmmatmg e; a further relation between eoi 61 6 P T and ¥/ may apparently be obtained ; but, usmg
equations (15) and (17), this relation proves to be an 1dcnt1ty Thls is demonstrated in §I11. 5.
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By the reciprocal theorem, the coefficient of T/wed, in (17), of Tjwed, in (19) and of Pyl in (19)
must be identical with the coefficients of P/l in (15), Py// in (15) and P,/l in (17) respectively.
These identities are proved in §I11.5 and the evaluation of the coefficients is discussed in §1I1.6.

Here it is necessary to conclude only that equations (15) (17) and (19) may beé generalized for the
rth bay in the forms

l wl‘—ld — Trlr
EAZ 4[2 (Br_6r~1) - Bl‘ erld . +CrPr—]+DrPr .. . .. ... (20)
_ e 1 T,
.EA ; _Crw_ld_l—kHP*l—}—Jr ce .. .. (21)
ey Tyl .
EAT_Drwr_ld_l+Jrrl+KP - . . (22

A-and ] are convenient standard values of A, and /,, e.g., in the example worked in §II1.7, A, is
used for A and [ is taken as 80 inches. The forms of the coefficients B,, C,, D,, H,, J, and K
are given in §I11.6, section (6) ' ~

(8) Deformation over a Cut-out.—If s be zero, F' = 0 and

. T :
Po— Py = oo o (@)

This is consistent with equations (15), (17) and (19) ; but regarded as formulae for 6; — 0, ¢,
and ¢, these equations become indeterminate in the form 0/0 Since F'/s may assume any value,
equations (13b) and (18b) disappear, and the values of 6, — 6, and ¢, are defined in terms of
Py, Py, T and ¢, by equations (13a) and (18a) respectively. Taking into account equation (23),
we again have two equations relating ¢;, ¢y, Py, P, and T with a third relation defining 6, — é,.

Using the notation of §II1.6, namely, : '

Wty EA,

o __ -0 __
4z T Ry (1 +oy) Giw, = A
. A
o= o+ (1 —au, p=p8+ (11— pluy= A,
1
Budu o — BRyA
6:1—“90:[{ a2y+(_1 all)ll}Po
u (1 — u Ry ) T €y '
{ j i EAO] JREA, .. (24
1 (e}
b9 _ %4 60 — [ {Oil pPdu (g — By)* R )»P
l b ¢ B4 " oy + oc]ﬁ] it ) °
p (L —u) =g, 2T
| { j PR | o JEA . (25)
Generalization by alteration of the sufﬁxes follows as in §I11.4 (a).
Ty,
P4 —oP = —T— .. ce e ee .. (23a
ﬁl‘ r1 o r wr.—l dr—l ( )
b - - Ty, Crq
EA 7 R, (0, — 9r—1) = L, —*— + M,P,_, + N,EA .. .. .. (24a)
Wy_4dr_4 l
‘X-r Or3\ T.l, .
EA( 5T “err_ldr_]+WrPf—1 ce e (253)
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The forms of L,, M;, Ny, V, and W, are given in §III.6

(c) Continuity from Bay to Bay.—From (21) and (22) we have

_‘_ -1 - Tl
EA = Cy N + H,Pp gy + J: P
and
— R
EA erl1 = Dr——l w Hzld L + Jr—l r—2 1 K, 1P r—1-
Hence
JeeaProp + (Hr + Ko y) Py + P + Di oy Ty + G =0 ce e (26)
Where T,' is written for ——Efzr—
r—1
If the root frame (frame 0) has no bulkhead stiffness
(Ky + Hy) P, + J.P, + DT, + C T, =0 o .. .. .. (273)
1f the root frame is a rigid bulkhead ¢, = 0 and
HP, + J,P, +CT,/ =0 .. .. ce e . . .. (27b)
If the root frame has a bulkhead stiffness S, so that Py = ¢,S
(1, + SZ>P LR CT =0 .. .. (270

Similarly at the tip; but if the tip at the end of the nth bay is free, P, = 0 and the last equation
of the system (26) is

JoaPos+ (Ho + Ko ) Poy + DTy + CT/=0 .. .. (28)

Equations (26), (27) and (28) define all the P’s in terms of the specified T’s, when the §’s can be
computed from (20).

(@) Continuity over a. Cut-out.—If s; = 0, the condltmns over the 7t4 bay are expressed by

B.Pey — 0P = T, .. @
and .
EA (fl- ;' %) = VT + WiPrg
r
From (22) )

EA %51 = D, T, + JoaPes + KeiPry
and from (21)

€ '
- EA‘Tr‘:CrHTr +1 + I_:[1'+1Pr + Jr+1Pr+1'
Eliminating e,_, and e;,

%‘Z Jr—]Pr—z + ( ;‘Z‘ Kr~1 + Wr) Pr-l "l‘ Hr+1P1‘ + Jr+1Pr+1 + ;: Dr~1Tr’—1

+ V. T,  + C Ty =0 . .. . .. (30)
The two equations (29) and (30) replace the two equations of type (27) which would contain the

coefficients B, C, etc., with suffix ,. If the bay next to the root is cut away, and if the root is

held by a rigid bulkhead, eg = 0; equation (29)-is unaltered and equation (30) also applies
provided Jq (i.e., J;—y), Kg and Dy are taken as zero.
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111.5. Compatibility of Wm;bing Distortions and Reciprocal Relations.—Eliminating e, between
equations (18a) and (18b) leads to the relation

e EA du udu
To(ml_ﬁl)—rg_ f( y+dJ( oy
udn = w d EA, F
f (2-5)% + % {0 -G g
EA, F' EA,
| - B 2 B 000 )
Substituting for ¢, and (8, — 0,) from (16) and (14) respectively
d T dud
[%‘l‘ﬁﬂj( )yu (g — By) JJ(%—F%)*{%E
‘dudu | P
”‘(051‘*“!91—2“1!91[!(”‘“‘“ T]Tl
- ) d d
[t o0 [ (22— B)2 4y ——ﬂIH(“w— g
1
— (o + By — Z0yBy) JJ - _)ududu]jF_ |
’ dud
et a [ (2B —-mH(“‘Jr -
1
ududu | F
“(“1+51—2“151JJ( ‘3 By ]170
d EA, F
-+ "%gl?o {(“1 + B1) (1—ar®) + ( By) oy (1 + o) — (og+B—2046) (14 OC1)} Gth A
Wy EA, F'
Yol (ot 8) (1 ) — (o — ) By (18 — (oart- =2 180} God e

should be identically zero. .
The last two terms (the shear terms) obviously disappear. Each of the other three (the bending
terms) may be put in the form )

dudu}&]

e [[[(2-0)% - T2 =525

’

with similar terms in B and i with £ and — for — respectively.
dy Wy ay - By Y
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Since & = oy + (1 — o) #wand g = B, + (1 — B,)u, all the coefficients take the common form

(2 — B13) ( J ufdu + f fau du> where f stands for — ;3 . 21/;37/ or 07;2; and may be re-
garded as an arbitrary functlon.

Integrating the first term by parts J u fdu e [ u j fdu ] — J [ f dudu, and the first term is

1 : 1 1 11

zero because # = 0 at the upper limit and f S du = 0 at the lower limit. Accordingly,
) 1

1

f f fdudu = ju Jf du and the identity is satisfied whatever the form of f.

Using the same .relation to transform all the double integrals I, to I, of §III. 4(a) to single
integrals and then combining them in the forms occurring in equatlons (15) (17) and (19) of
§111.4 (a), we have :

1
12_13:]<1_l‘1§ 2@2111

04

[o]

1

aly + ply, =1, — I, = (ocl+ )( 'l_ﬁ) udu

o]

o (L — Ig) + 6 (I, — L) : M {(“1 + £ (Is — L)

o — ﬁ
— @ ) (I — 13>}—a1ﬁlj(a2— g )=y
wls + fily = j(“l + B ) W _q,,
o (L= o) + by (L — 1) = 28 (@ + ) (ol + L)
— 2= ) la + AL)
—an (548 (Lr Dy L,

og%ﬁl,rl [ + Bi){oy (I; — TIg) + By (I, — L)},
(2——-051——()’1 {og (I — L) + By (I, — L)}

l—uzdu

= o?f,® J( + ﬁ — e = I,
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111.6. Computation of the Geometrical Constants of Deformation.—From §II1.4(a), using the
results of §II1.5, the coefficients in equations (20), (21), (22) and subsequently, are

B, = {Iy + R (A + )}/l + B2)° AX’.ZZ;
Co= (Lo + R (ah — i)/l + 02 B2
Dy = {Iy + R (o — 81}/ (o + ﬂr)2—%izi-
Ho = (T + R (0 + 8%l + 220500 [
Je = (s = Raf (1 + /e + g2 [
Ay |

CKe = {Iyy R (e + B0} /(ox + 62 =5

where a suffix outside a bracket applies to all the terms within the bracket and where
R, = w, 4, /41,2
= (1 + )EA, /Gty 3 (o = difd:y)
pe = (1 + Br) EA;_1/GSidry (B: = wr[wr_y)

and I, etc., have the forms given at the end of §IIL.S.

From §I11.4(b), using the same notation

F oy, [ A !

L= (I + O) | i -

s ooy A

M, = (I, +02)r/.' Al.z-—‘
1
N’:ﬁr

14 ’ A— l

Vo= (I + O)): [ =5t

Aeq 1

Wr = (14’ + 03,)1‘/ A lr
where a suffix outside a bracket applies to both the terms within the bracket and where

O]r":‘— err/“rﬂrs 021" = (OCr — lgr) Olr’: O3r, = (O(-r - ﬁr) Ozrl

1 1
, 1 u(l — u)du , 1 [ Budu
. Ill' - ﬁfoj azy 4 121‘ - ﬁr OJ 0(29’
B (1—w)d g
b % (P U—wau r % u
I = ,Broj poc ,and I, 'ﬁro o2y

(@ = oy + (1 — ag)u, etc., as before).
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Given the numerical values of I, etc., the evaluation of the coefficients B, C, etc., is straight-
forward ; but the evaluation of I,;, etc., presents some practical difficulties. All the integrals
are derived from the three integrals

1 1 1
dn udu wldu
[ [l g [
afy ') apy afy
© 0 o o ) .
and their special forms when « = g ; but these forms are cumbersome* and tedious to evaluate.
A more serious objection to evaluation of Iy, etc., by this means is that, when o, is nearly equal
to B, (or either o or f; nearly equal to y,), the sum of the two terms in logex, and log,g, is much
smaller than either term separately, so that the accuracy attainable by the use of tables is
insufficient, and approximation by expansion in series becomes necessary. In these circumstances
it is often preferable to avoid the log forms entirely, by expansion of the basic function in series.

1 (— I)n doF 1 —oy 1 —8,1—9
It F= \ T Dt 1 1 1
By ...., then Wi i FQH( B ,)

where Q. () stands for the sum of all possible products

(! —ay( L%__El )....

under the condition #» + s 4 .... = #. This lemma may be proved by induction.
Assuming that (A + Bu + Cu®)japy = ay + a; u + a, u® + . ..., by successful differentiation

and substitution of # = 0 in each differential,

oy Pyt = A , where p = 1=o

%
1 — 8
w bty = B — AQy(p, ¢,.7) q = B
a fyyiay = C — BOQ, (p, ¢, ) + AQ, (15: q,7) ¥ = ! y_ el
1
apas = — CO, (P, g, 7) + BQy (P, 9, 7) — AQ; (P, ¢, %)
etc.
Then
. ,
A+ By +Cu?, 1 1 14
j o du~a1ﬂ1y1{A(Qo—2Q1—{—3Q2 ...... )
1 1 1
+B(3Q -5+ — e )
1 1 1 )
+c(§g{,—zgl+592—~ ...... )
* For instance :
J-1 wrdw o, * log, o o B,* log, B, + 7 loge v
afy (1 — o) (1 — &) (% — By (T — B) (& — By (8, — %) (I —9) (B — ) (h — =)

o -
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It may be shown that

Q n+2 - + ' qn—l- 2 + pot2

T - —n @—ng—p —-Pr—9
Substitution for the Q’s in this form and summation of the resulting series leads to the ordinary
log forms for the integral ; but this form for Q. reintroduces the computational difficulty when
two of the set p, g, 7 are nearly equal. In deriving the Q’s therefore, it is preferable to use the
recurrence formula :

Quis (047 =P Q0 (B ¢7) + 9% lg?) +
The computation is readily carried out in tabular form (see example below). This method of
computation has the additional advantage that it is still applicable when p = g, so that all the
integrals required can be computed by the same method.

If any of o, B, or 7, is less than } the corresponding ratio p, g or » is greater than unity. In
this case the Q’s themselves form a divergent series, and the recurrence formula above is useless.
If oy B, and y, are all greater than £, the Q series are absolutely convergent ; but the convergence
may be very slow. In general, if a; 8, and y, are all greater than 0-7, the Q series are usable,
whilst for lower values the log forms are preferable. One difficult case remains, that when two
of o, ; and y, are small and nearly equal.

The computation of I, etc., has been discussed at some length, because the practical value
of the method proposed is greatly reduced, if the evaluation of these integrals is too laborious.
If the method proposed were to be adopted for general use, the logical course would be to prepare
tables of I, etc., in terms of «y, #; and y,.

Example.
m=0778 =083 »=0750 \, _
=0-2857,9 =0-2000,7 —0-3333 S Q=1
| PQualbgN)] Qaler) | 7 (@) | Qulpg) | 10000 | 0-5000 | 0-3333
1 | 2857 2000 3333 5333 8190 —0-4095 | —0-2730 | —0-2047
2 2340 1067 1111 2178 4518 +0-1506 | -+0-1129 | +0-0904
3 1291 436 370 806 | 2007 .| —0-0524 | —0-0420 | —0-0349
4 599 161 123 - 284 883 4+0-0177 | -40-0147 | +0-0126
5 252 57 a1 | . 98 350 —0-0058 | —0-0050 | —0-0044
6 100 20 14 3¢ | 134 4+0-0019 | +0-0017 | +0-0015
7 38 7 5 12 50 —0-0006 | —0-0006 | —0-0005
8 14 2 2 4 18 4+0-0002 | +0-0002 | +0-0002
9 5 1 1 2 7. | —0.0001 | —0-0001 | —0-0001
1 . . .
f AhBut it 0-7020A| +0-3088B| +0-1934C
/ «py 0778 X 0-833  x 0-750
— 1-4441A + 0-6352B + 0-3979C
n | 5Qua(pp7) | Py (P, 7) 7 Qu(p?) | IQu(pp7) | 1-0000 0-5000 0-3333
1 2857 2857 3333 6190 9047 —0-4523 | —0-3016 | —0-2262
2 2585 | 1769 1111 2880 5465 4+0-1822 | +0-1366 | +0-1093
3 1561 823 370 1193 | 2754 —0-0688 | —0-0551 | —0-0459
4 787 341 123 564 1351 +0-0270 | +40-0225 | +0-0193
5 386 175 41 216 602 —0-0100 | —0-0086 | —0-0075
6 172 62 14 76 248 4+0-0035 | +-0-0031 | +0-0028
7 71 22 5 27 o8 | —0-0012 | —0-0011 | —0-0010
8 28 8 2 10 38 +0-0004 | +0-0004 | "+0-0003
9 11 3 1 o4 15 —0-0001 | —0-0001 | —0-0001
0-6807A| --0-2061B| -0-1843C

1-5008A + 0-6526B + 0-4062C = .
(0-778)2 X 0-750
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71 qQu—1(9.9.7)] 9Qu—1(g.7) | " Qafg.7) On (9.9.7) 1-0000 0-5000 0-3333
1 2000 2000 3333 5333 7333 —0-3667 | —0-2444 | —0-1833
2 1467 1067 1111 2178 3644 0-1215 | +0-0911 | -0-0729
3 729 436 370 806 1535 —0:0384 | —0-0307 | —0-0256
4 307 161 123 284 591 ©40-0118 | +0-0098 | --0-0082
5 118 57 41 -98 216 —0-0036 | —0-0031 | —0-0027
6 43 20 14 34 77 +0-0011 | +0-0010 | --0-0009
7 15 7 5 12 27 —0-0003 | —0-0003 | —0-0003
8 5 2 2 4 9 |+ 40-0001 | -0-0001 | 40-0001
' 0-7255A | 40-3235B| --0-2035C
1-3930A + 0-6211B -+ 0-3907C =
(0-833)2 x 0-750
I,, = 0-4062 + 03907 — 2 x 0-3979 = 0-0011
T,, = 0-4062 X 0-778 — 0-3907 x 0-833 -+ 0-3979 (0-833 — 0-788) = 0-0125
1,; = 0-778 ¥ 0-833 {(0-6526 — 0-4062) — (0-6211 — 0-3907)} = 0-0104
I, = 0-4062 X (0-778)% 4- 0-3907 X (0-833)% + 2 x 0-3979 X 0-778 X 0-833 — 10327
I,; = 0-778 X 0-833 {(0-6526 — 0-4062) X 0-778 + (0-6211 — 0-3907) X 0-833
+ (0-6352 — 0-3979) x (0-833 4+ 0-778)} . — 0-4965
I s = (0-778 X 0-833)2 {1-5003 — 2 X 0-6526 -+ 0-4062 + 1-3930 — 2 x.0-6211 + 0-3907
4+ 2(1-4441 — 2 x 0-6352 + 0-3979)} — 0-9603
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II1.7. Summary and Examples.—This section summarizes the conclusions of §§111.4-6 and
presents them in the form and order in which they must be used in numerical computation.

The application is illustrated by a worked example.

Whilst the present section contains all the information necessary for use of the method, for
explanation of the formulae reference should be made to §III. 4, 5 and 6.

Frame 0 Frame | Frame Z‘ Frame 3 F 4
-
N / / . / - / / ame
\_ Frame 5
N A D d
N
Bay ! |Bay 2
N Y 42| By3 lppya |gays
\ Fic. 7.
B E
P-l
<—d,—..,, —_— IA""‘ - W,-.., ’I
fle Al w b 1A
£
Esl‘:wbiva g §
ear 6
U- | Thickmess | 2 € EFfective Shear Thickness s,
b,— N
3115
wlln
i
e 5 | o F
LLdr-=d',..-¢7‘,..,_.,’ A,_ :_)”.A’__!< Wr= ﬁr' Wr- | ;,
P '

A = actual area of section of boom + 1/6 (dt + ws).

T, = total torque transmitted over bay. . _
= warping movement of point D away from A parallel to axis of tube.*

"% No distinction need be made between the direction of the axis of the tube and the direction of its edges (see §IIT 4).



()

Tube with Cut-out.

Specification (dimensions in inches — torques in 1,000 1b.-inches).
Frame or Bay No. 0 1 2 3 4 5 Notes
ar — 18 18 18 14 10 6
wr — 60 60 60 50 40 30
Ay — 60 6-0 6-0 4-5 30 2-0 A=86-0
— b —_— 80 50 80 80 80 I =80
— iy — 0-30 0-30 0-30 0-20 0-15
Top or bottom sur-
— Sr — 0-030 0 0-030 0-020 0-020 face cut away over
L Bay2. '
— : T — 135 92 61 35 7
Primary Ratios Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Notes
o = defdey .. 1 1 0-778 0-714 0-600
Br = wrfwr—, 1 1 0-833 - 0-800 0-750
yr = Ap/Ar 1 1 0-750 0-667 0-667
Wr—fr—;
Ry = — .0-0422 0-1080 0-0422 0-0273 0-0156
45,2
. (1 —I— O(r)EAr—l
by = ——m—————— 1-733 1-733 1-541 2-006 2-080
Gty wp—y , E
— = 92.6
(1 + g)EAr o G
pr = ———— 57-78 infinity 52-96 75-21 68-25 ]
Gsrdr—;
befwpdr—, 0-0741 0-0463 0-0741 . 0-1143 0-2000

(44



(£0299)

Secondary Ratios Bay 1 Bay 2 Bay 3 Bay 4 - Bay § Notes
Oy = Ry(dp-t+pr) 2-511 See Notes 2-300 2-108 1-097 Over cut-out
0y, = Re(ophy— Buir) —2-365 0,/=0-1872 —1-812 —1-604 —0-779 0, = Ryyfusfs
0,5 = Relogur— felr) 2-365 0,'=0 1-684 1-423 0-614 0, = (ag— )0y
O, = Re(ow?hpt frlur) . 2-511 0,/=0 1-591 1-342 0-611 0 =(ctg— f)O,’
Os5 = — Rog fe(dg+uar) . —2-511 — —1-491 —1-205 —0-493
045 = Ru(arlur+ Bu2hr) .. 2-511 — 1-397 1-083 0-401
1 .
1 1N\2u%d
Iy = f(k - _> v 0 — 0-001 0-001 0-004 N ¢ = ep+(1—ap)u
® B v ,
0
‘ 1 \ 2ud
- 1 /
T, — f(ﬂ + ﬁ—rX— __> e 0 _ 0-012 0-017 0-030 B = Brt(l— fu)u
o g/Noe B/ ¥
: I 1 1 d
w(1—u)du
I, = arﬁrK&; - 172> % 0 — 0-010 0-018 0-029 y=op+(l-yp)u
. o \ Values computed as
24,20 k in §IIL.6.
I, — J(ir T A 1-333 _ 1033 0-965 0-809
x B8 Y
( (1-w)e ‘ ‘
o B 1 IN w{l-u)du
I = oc1'131'J = 4 _r><‘ + ‘)— 0-667 — 0-496 0-463 0-363
g\ B/ \e = B Y
1
I anafl (1 1N\ 2% (1—u)du
B = o 5rf< . T 7}) , 1-333 See Notes 0-960 + 0-893 0-675 |}
’1
L' — 1 u(l—u)du ,
e ﬁJ 2y - —0-167 - - - Over cut-out
1
1 r Budu
L= —| —— — 0-500 — — — 1, etc., replace I,
PrJ oty etc.

£e



i Bay 2

Wr_ydr_4

Secondary Ratios Bay 1 Bay 3 Bay 4 Bay § Notes
p1—1)d
, or [ B(1—u)du )
I = ——Af):rf—oczy_ — —0-500 — — — —
0
1 2d
ar [ BPdu
I, = —|— — 1-000 — — — —
! BrJ o
0
© (o + Br)? 4 — 2596 2-293 1-822 —
Ar_,JA 1 1 1 0-75 0-5 —
Ll . 1 1-6 1 1 1 —
Ar_, I A,
(or + B> = - 4 1-6* 2-596 1-720 0-911 A g only
r b .
|
Coefficients Bay 1 : Bay 2 Bay 3 Bay 4 Bay 5
I, + O I Y
r = 62 i =0-012 . - 99 . g = —Et
B G - Oulr 0628 ' L,=0-012 0-886 1-226 1208 | L= OE)
g i b X (/AL
(or 4 Pr) A J
T
Iy + O, oy
Cp = (s +A1-)1” ; —0-591 M,=0-312 —0-693 —0-923 —0-822 M, = (—%ﬂ—l“’)
9771 ¥ d/AL
(°‘r + 5r) A . 7
£ iy
I; + O |
Dy = (s +A 19)r 0-591 N,=1-000 | 0-653 0-838 0-701 N, = 1/8,
g 2TT1 Y | ; :
(“r -+ ﬁr) A I, ‘
|
I, + Oy, : ey
Hy = ,,,,,J,,,ui,‘_,z-)r_ﬁf 0-961 | V,=0-312 1-011 1-341 1-560 V, = (%Z/E”
(o + B2 7 - | | /Al
r (I r+OA) ) | (05 +1,)
Jo = ——mlmit_ —0:461 - 'W,=0-625 . —0-383 ~0-431 —0-143 | W, = 8 ohs
(u'hL PALIEE : | (/AL
O |
K = (133+A )t 0-961 — | 0-908 1-149 1-181 —
Tr—
(o +Br)? A . lT- |
Ty = i 10 | 4-26 4-52 4-00 1-40
r — | ‘ J—

¥e
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Equations of Equilibrium P, P, P, P, P, Torques | pog 1\{?%5 1114

H B — — — cT/ Equation (27b)
_ B, — — — —T, Equation (29)
Forms of Equations : o

l &, 2 ’ ’ ’
Each row of terms added and 5 1 "Z K+ W, Hy Js . Bo Dol Vo Ty +G T
equated to zero. Equation (30)

— — Js H,+K, Js D,T,’+C, T, Equation (26)
_ — — — Ia H,+K, D, T/+CT; Equation (28)
Equations of Equilibrium \ P, }‘r P, P, P, P, Torques Notes
C ) 0-961 —0-461 — — — —5-91 —5-9100
@) — 1 -1 = — —4-26 —4-2600
Fquations for Numerical ) g | _g.461 1.586 1-011 —0-383 — 145 1-4500
4) - — — —0-383 2-249 —0-431 —0-74 —0-7398
L (5) — — — —0-431 2-709 2-20 o 2-1999
From (3) and (1) .. (8) — 1-36486 1-011 —0-383 — —1-38507
Check back
From (6) and (2) ... @ — — 2-37586 —0-383 — 4-42923 above shows
: - ' accuracy
From (7) and (4) .. (8 — — - 2-18726 —0-431 —0-02599 maintained.
From (8) and (5) o9 — _ — — — 262407 2-19488
Boom Loads (P,) .. . 7-2873 2-3711 —1-8889 —0-1530 —0-8364 — % 1,000 Ib.
Twists .. .. .. .. Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Total
BT, .. .. .. .. | 6280 0-051% 4-005 4-904 1-691 — #L, T, ‘L
° in
CPry.. .. .. .. | —4-307 0-740% 1-309 0-141 0-687 — *M,P, \ Bay
: : &
DR, .. ... 1-401 4-829% —0-100 —0-701 — — *NzEAzJ
Sum=EA %‘” R (6= 6,,) .. 3-374 } 5-620 5-214 4-344 2-378 — =N,(J,P,+K,P,
1 +D1T1/)
EA—ZI'Rr .. e 2-532 4-050 2-532 1-638 0-936 — x 108 Ib.
Oy — 0, .. .. .. 1-332 1-388 2-059 2-652 2-541 9-972 % 10-3 radians
S Twist per inch .. .. 1-665 2-776 2-572 3-315 3-178 2-695 x 10-% radians

Ge



Shear Stresses Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Total
FJl
(ap -+ By) ﬁ =
r1
T, + oy Ppry— AP, 14-916 8-520 3-178 4-560 0-898 — % 1,000 1b.
(o +Bc) Lte . 48 30 38-67 24-23 16-20 - in.?
Shear Stress in Sides (Fy/dp—t;) 310 280 80 190 55 — ib./in.2
F,'l '
(o + Br) wr ' =
r1 -
— T, + 8Py —o Py — 5-084 0 — 5-975 — 3-525 — 2-027 — % 1,000 1b.
(2 + Brlrse 4-8 0 3-867 2-423 2-160 — in.2
Shear Stress in Top or Bottom o
(F,' fwp—y8y) .. .. 1060 — 1550 1400 940 —_ Ib./in.2
8 . .
Boom Stresses (Pr._;/Ar) 1220 400 —310 —30 —280 — Ib./in.? tension,

Note.—The boom stress quoted is that in the top front boom of the sketch, the applied torques being anticlockwise.

(b) Tube as in previous case, but without cut-out, lyfw,d; = 0-0463 (a5 f5)* Ay/A Il = 6-4
wy = n = 6-427 n=0 B, = 1:004 )
g = 1 0O, = —6-053 I, =0 =—0-948
For Bay 2 yy = 1 0,3 = 6-053 I;,=0 = (-948 | Other coefficients as before
in this case R, = 0-1080 Oy =  6-427 90 = 1-333 = 1:212
g = 1-733 0y, = —6-427 I,; = 0-667 =—0-900
Luz = 57-78 s = 6427 I, = 1-333 = 1-212

9¢



. T ‘ Notes
Equations of Equilibrium P, P, P, P, P, Torques Refs. to §IT1.4
H, Ja — —_ — C.T/ Equation (27b)
Forms of Equations : Ji H,+K, Ja — — DT, +C,Ty
Each row of terms added and — J. s+ K, Js — D, T, +C,;T, Equation (26)
equated to zero. — — Js H,+ K, Ja D,T,+C, T,
— — — Ja =+ K, DT,/ +C, T, Equation (28)
1 0-961 —0-461 — — — —5-910
Equation for Numerical (g) —0-461 gé’g)g _gggg 0-383 - (1)8(7)(25
case in form above (3) — - e o " )
’ 4) — —, | —0-383 2-249 —0-431 —0-740
: L (5) — — —_ —0-431 2-709 2-200
From (1) and (2) .. 8) — 1-95185 | —0-900 — — —0-96309
From (6) and (3) .. (7) — — 1-80800 | —0-383 —_ 0-46192
From (7) and (4) .. . (8 _— — — 2-16787 | —0-431 —0-64215
From (8) and (5) . 9 — —_ — — 262331 2-07233
Boom Loads 63366 0-3892 —0-2260 0-1391 | —0-7900 | — < 1,000 Ib.
Twists Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Total
B, T/ 6-280 4-262 4-005 4-904 1-691 —
C;Pry —3-745 —0-368 0-156 —0-128 0-650 — ¢
D.P, .. 0-230 —0-214 0-091 —0-661 — —
Sum EA R, (er ) 2-765 3680 4-252 4-115 2-341 — E=10x 10°lb. /in.?
EAZ—; R, 2-532 4-050 2-532 1-638 0-936 — X 1081b.
Or—0p— .. .. . .. 1-092 0-909 1-680 2-512 2-501 8-694 x 10— radians
Twist per inch .. .. ‘e 1-365 1-818 2-100 3-140 3-126 2-350 % 10-% radians
Shear Stresses Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Total
Fyl
(oc,-—}— ﬁl') dr_r =
T —l—ochr_l— ﬂrPr 15-978 4-875 4-228 4-731 0-926 x 1,000 Ib.
(op o)ty .. 48 30 38-67 24-23 16-20 in.2
Shear Stress (sides) 330 160 110 190 60 1b:/in.2
N
(°ﬂr ﬂr) wi‘— =
—Tr + ﬁrPr_l—ochr — 4-022 — 3-645 — 4-818 — 3-325 — 1-993 x 1,000 Ib.
(op+ BrYlety .. 4-8 3-0 3-867 2-423 2-160 in.?
Shear Stress (top or bottom) 840 1210 1240 1370 920 Ib./in.2
Boom Stresses . . 1060 60 —40 30 —260 1b./in.2 tension

Lg
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(¢) Tube with Two Additional Frames.—As a further example, the same tube with two
additional frames, one midway between frames 0 and 1 and the other midway between frames 2

and 3, has been analysed. The effect of the added frames is summarized in the following
comparisons.

With no Cut-out

Bay No. 1 12 2 23 3 4 5 Notes
Boom 7 frames 6-37 2-79 0-45 —0-24 0-14 0-15 —0-79 | Atinner ends
loads 5 frames 6-37 ! — 0-39 -0-23 — 0-14 —0-79 [| of bays.
Twis 7 frames 1-:01 | 173 1-79 1-88 2-30 3-13 3-12 Mean 2-344

wist per 5 N -,
inch v . M
5 frames 1-36 1-82 2-10 3-14 3-13 Mean 2-350
With Cut-out over Bay 2
Bay No. 1 12 2 23 3 4 5 Notes
Boom  [7frames| 7-31 3-95 2-34 ~1-92 —0-74 —0-27 —0-86 1 | At inner ends
loads \Sframes| 7-29 | — 2-37 —1-89 — —0-15 —0-84 f| of bays.
. 7 frames 1-14 ‘ 2-16 2-67 1-64 2-65 3-38 3-20 Mcan 2-584
Twist per - = v,
inch v P .
5 frames 1-68 2:78 2-57 3-31 3-18 Mean 2-695

In the absence of a cut-out the effect of the added frames is quite negligible. When the cover
over bay 2 is cut away, the intermediate frame inboard towards the root still has practically
no effect, but the intermediate frame outboard of the cut-out slightly stiffens the tube.

PART IV
Torsion of Tapered Tubes of Trapezoidal Section with Rigid Frames

IV.1. Introduction.—In this part the method of Part III is extended to the case of a tube of
trapezoidal section. In this case also the twist over a bay between two rigid frames and the
warping at each frame are related to the torque and boom loads transmitted over the bay by
linear relations like equations (8), (9) and (10). The conceptions of boom load and warping again
- need not be closely defined ; the boom load P is merely a quantitative measure of the stress
- system tending to cause warping and ¢, the warping at the boom, is the corresponding measure
of the warping distortion. In the present part, the analysis is carried only to expression of the

constants B, C, etc., in equations (8), (9) and (10); thereafter analysis would follow exactly
the same lines as in Part III.

IV.2. Distribution of Stresses in the General Four-Sided Tube in Pure Torsion.—In Fig. 8,
ABCD is a section of a tube formed by four planes, OADR, OBCR, PBAS and PCDS, which
intersect in opposite pairs in OR and PS; the “ridge lines” OR and PS are not necessarily
co-planar. At the section ABCD of the tube, the sides AB, BC, etc., are subjected to shears
along the sides and to direct stresses acting radially through the ridge lines OR and PS. Since
all the radial loads pass through the ridge line PS, they may be represénted by a single force
through any point on this line and a moment in a plane containing the line, e.g. by a force through
P and a couple about an axis normal to PS; and if the section ABCD is free from end load,
the force through P must lie in the plane ABCD. If there is no moment on the plane ABCD,
the couple in any plane containing PS must be zero, so that all the direct loads must reduce to a
single force through P in the plane ABCD. Similarly they must reduce also to a single force

through O, so the resultant of all the direct loads is a single force directed along OP ; let the
magnitude of this force be X. :



If there is no shear across the
section ABCD, the torque in this plane
is F,.P] — F;.PE, where PJ and PE
are perpendicular to OAD and OBC
respectively, or it is F,.0G — F,.OH
where OG and OH are perpendicular to
PCD and PBA respectively. Therefore,
we may assume that F; = uDA -+ APE,
F; = uBC + AP],F, = pAB 4 vOGand
F, = uCD + vOH, when torque = 2u X
area ABCD. Since OJP and OEP are
right angles OJEP is concyclic and
the angle EOP = the angle EJP; but
the triangle PJE is similar to the
triangle ONM where ON represents the
component APJ of F; and OM the
component APE of F;. Therefore MN
is parallel to OP, and the resultant of
the i-components of I, and F; is a
force AJE directed along OP. Similarly
the resultant of v-components of F,
and F, is a force vGH in the same
line. Hence for equilibrium
AJE4+VWGH +X =0 (31)

x is the Batho torsion system, 4 or v
is the frame load system (cf. §I1.2).
The one remaining parameter 4 or v is
determined by variation of the end
loads along the length of the tube.

The distribution of direct (radial)
stresses is most easily discussed on the
basis of boom loads; as explained in
Part I this is merely a convenient
convention, which does not vitiate the
generality of the argument.

In any triangle ABD (Fig. 9), forces

AB.CD along BA* and AD.BC along

DA are in equilibrium with a force

AC.BD along AC, where C is any point

in BD between B and D.
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Using this lemma, a force OP.VW along OP
(Fig. 8) may be replaced by OV.WP along VO
and OW.VP along OW; and a force OV.AD
along VO may be replaced by DV.AO along

DV and AV.DO along VA.

Similarly for

OW.BC along OW, so that a force OP.VW.
BC.AD along OP may be replaced by the

system.

AB.cD

AD.BC
AC.BD

B8 C D
Fic. 9

DV.WP.AQ.BC along DV
AV.WP.DO.BC along VA
CW.VP.BO.AD along WC
BW.VP.CO.AD along BW

*Here AB.CD represents only the magnitude of the force and its direction and sense are denoted by’ “along BA ™.
same convention is used throughout this section.

The
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Since VP and WP are proportional to the lengths p, and p, of the perpendiculars from V

and W respectively on the plane ABCD, a force opr - ~1— BC.AD along OP may be replaced
P s g y P

by forces along VD VA, WC and WB having components Pp, P,, etc., normal to the plane

ABCD equal to — OA.BC, OD.BC, OB. AD — OC.AD respectively. This result may be put
in the alternative form

P, Py P —Pp | | 32)
ABCD ~ ACDA ~ ADAB AABC =

in which form the result is otherwise obvious by taking moments about AC and BD. The

resultant X of these boom loads is then 1OP ( pl ]71 (Pr — Py — Pc 4 Pp) along OP;
2 1

there is of course an alternative form for X in terms of the perpendicular distances from the
plane ABCD of the intersections of the line OR with the tube walls PBAS and PCDS, but no
specially simple form seems to result from combination of the two.

Finally the shear forces Fl, etc., are related to the variations of the boom loads along the

length of the tube. If the boom joads at a section A B'C'D’ parallel to ABCD and distant /
from it are P,’, PB, etc.,

T = b~ k=i - ) than - vgx - 688)
BB @)
?3,“}‘136 cFﬁ' - DFC’ “(c'B' = > AL ’B' =V ’1%)% e (389
89;7_1’221%_1%: <DC'* A’D)+ V3T — A 2T - (834

Since the ratios P, /Py, PA’'/Py’, etc., are determined by the geometry of the tube and by the
condition of pure torsion, these four relations must of course reduce to one only. One of the
inherent indentities, that corresponding to the condition P4 + Py + Pc + Pp = O at both
sections is obvious ; the other two corresponding to the conditions for no bending moment on
the planes ABCD and A’B’C'D’ are not easy to demonstrate. However, since Py — Py — Pc +
Pp = 2Xp$,/OP (p, — p,) the four equations may be summarized in the form

X (Dbt D Xppy BAY 4 (O €

P’ (p, — pa)i OP (p; — p)l DC'"‘

o (34

and this relation together with the relations torqlie = 2n X area ABCD and ADE vGH +
X = O enable 1, 4 and v to be expressed in terms of torque, X and X’.

* As before there is an alternative form involving x# and 4.
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1V.3. Shear and Direct Loads in a Tube of Trapezoidal Section.—In this case

AD = d,, BC = d/ AB = CD = w,, JE = u;, PJ] = dwldld .
1 4
AD’ = d,, B/C/ = d,, AB’ = C'D’ = w,, GH :jl_;w—_dl_ oG
1
Pr_ b &
l do—dy 1 dy — dy
P, —Pg Pc —Pp P . ’
71, = 71— = d—l =7 =@ (Definition of Py}
1 1\ Py fdf—dy  dy—dy\ _ Py Y
X - Pldl <§_2— - }51_ - T dll - dl > - l 1, (dld() dﬂdl)
Py —Py P/ _ —Pp Py »
AT A, A 4y & (Deﬁmtmn of Py)
_ a;'wy, _ ' }“dlwl_ _ _ :
F, = pd, + 2 i—d” Fy = ud)" = I—d" F, = F, = pw; + K%
Then -
‘dy—d

SR N
S K o s — dody) = O,

1

AJE +9GH + X = 1wy, +

(this condition may of course be found otherwise by resolving all forces on the plane ABCD
parallel to AD).

T
= 35
O ET n G &)
where T is the torque.
Py — Pa Py’ — Pg _ Po do Pl dl — cﬁ _— {Zlv/
T T —7(1—3;,)—7(1—0? =#\4, d0’>
Awy  (dy .
+ —d ( 2 Ty from equations (33a) and (330)
Writing _
' dy Cw, dy' d% , Tl
= 3 = = = _ T and T = =,
%y d, B1 w, Mo d, M ‘ A W,
these relations may be expressed in the forms
T/
] — ‘ 35
# Broy (1 + m) (852)

Cawl (T (B — &) _ PyBae ~
%—%"—Wmﬂ+wﬂ+P°_@m}/wr+wm” o 89

* By resolving boom loads parallel to OP i.e. AD.
t K represents »OG because OG is infinite, but »OG remains finite.

1 ay, By, 1o and n, are interrelated in the form e, (1 — n7) = 8, (1 — 7y) but it is inconvenient to discard any one of these
parameters. In the derivations of the forms for !, etc., and subsequently frequent use is made of the identity in the

. s . 4 o
form o, + By 1 = % m + 1. Occasionally also it is convenient to use o’ = 1 =M%

dy’ Mo
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and
Ki (T —
1_0—1:106((1; fjlg 8Py + o P 1)/‘31 (B + oymy) e (37)
whence the shear forces are given by
¥l o,
(ﬁl + Ot’l"/l) ;i(] — T _*" OCl'V]IPO —_ ﬂl,']UPl . . .o . .. o (38a)
— T Ay
(ﬂl+w,l) — T (no ( )P ... ... (38h)
le , _
(By 4 oqmy) w, T — Py + 4P, .. (and F, = F,) .. .. .. .. (38¢)

IV.4. Deformation of Walls, Warping and Twist.

. ,, BC upwards § deflections at frame 1 relative to original plane

Deflection of AD downwards 3 all relative to original plane of A’'B’C'D’, ie.,
. ,» ABor CD sidewards ¢ | of frame O.

o o o' 4 dy'o . .
Then twist over the bay 01 = (6 + ¢')jw, = — 2.9/( 5L 6' - ) the centre of rotatlon‘ being
determined by the value of the ratio 6’/6. The relation between 6, 8’ and & is more conveniently
stated in the form d,'6 + 4,0’ + 2w,e = 0.

From §111.4 (a), equations (13a) and (13b), using the results of §I11.5,

5 — Eil”:d. : PIJ"”Z“ n I;Z widu F,l [ :gf} n 2;2 L 24&11) T

g e B ALY

¢ = EAlzwo B[ e ”;‘ly“ + [y 0;}?1 [ S TGREA R
CH W;, 0,60) _(Q ;G sﬁ/l) %f (39¢)

where o = oy -+ (1 — o)), § = By + (1 — Byu and similarly for y, o’ and y’, y,6 = Aj/A,,
v, = A/Ay and ¢ = A,'/A,, A and A’ being the effective boom areas of section, assumed equal
at top and bottom. All the integrals are between the limits 0 and 1. ¢, and — ¢, are the
longitudinal movements at frame 0 of the booms at A and B respectively. G is the effective
shear modulus of the walls and ¢, ¢ and s are the thicknesses of the walls.*

Terms in e, and ¢, in the expression d,'6 + 4,6’ + 2w,e ave proportional to

e d , , e '
oo + (22 ) e + By oo -+ &) = G + ) (eo+ %)
Smularly in the expression (6 + 8")jw, for the twist, ¢, and el, appear only in the combination

ey 1+ €y’ /ny, and this expression represents the effective warping corresponding to P.7

© * The tube being symmctncal about the mld-planc between AB and CD, Ae and s are all equal top and bottom.

. . L . P
1 The encrgy associated with warping is proportional to Py, + 717—9 ey -
0 -
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By substitution for the F’s in terms of T’, Py and P, from equatiors (38) in equations (39)
and then by substitution for 6, 6" and e in the relation d,'8 + 4,6’ + 2w, ¢ = 0, it may be shown
that
EA : ey’

0 (045

Lis + ol + Ry (gmdy + why — 28yu9)] T
’ _f 2 2 a 2 ! 2 ]
+ [122 + 9122 + R1 | o *m 2y + < > A+ 2p:%u | Po

e O
Mo

/ A

‘ -+ [123 + ely — R1“151<77077111 + % + 2:“1)] P, * < . (40)
Using this result the twist 6, — 6, = (6 -+ 8')/w, is given by 2EAR; (o, -+ B1)% (6; — 09 =

[111 + oly’ + Rl (4 + nody’ + 2/“1)] T

-+ [112 + eI’ + Ry (mhy + oudy’ — 2131#1)] P,

’ " 11’

+ [113 + ol — Ry (/31’7031 + Bio 1, - 2051#1)] P, . . (41)
Also from §II1.4 (a) using equation (18a)

EA, - du  Fl (uduw Fyl (udu

Sl =) = (B o+ e = [
EAdy Fid | wdy
iGE T d, T 4P

— (1 —%?

EAgey (1 — By) (8, — 6y)
and similarly —E;?_o {6/ — ay'ey)) = ]—E%ﬂ (el' — 77_1%1& ) — a similar function so that
0
;|4 + =y <eo + eiL)} may be expressed in terms of T, Py and P,.
1 o

Using the expressions’for ey + %9— and (6; — 6,), it may be shown that
0
EA e’ .
—Z—” (e F By)2 (el -+ 7—71; = [113 A4, etc.] T + [123 4o etc.] P,

. 2
+ [133 + oLy + R, [ Br 2oy + (_ﬁ;_lg_o) ' 20 }:l P.. .. .. (42

All these results are summarized below, where the forms of I,;, etc., are given.
IV.5. Summary of Conclusions.—For the trapezoidal section therefore

]
EATR, (6, — 6,y) = BT/ + CPey + DB oo o . . (49
EA e ,
— (e o+ 17_1) = CT, 4+ HPy + LPe oo e (44)
EA '
= +%) — DT, + Py + K.Pr o .. ... (4B)

These relations replace equations (20), (21) and (22) at the end of §IIL.6 (4) from which the only
. changes are the substitution of 1 (er -| ﬁi——) for ¢, and similarly for e,_;. As before A and /are
Hix

convenient standard values of A; and /.

* 2, and g, used in. this and subsequent expressions are mere geometrical constants ; they are not related to 4 and in
§§IV.2 and 3.
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In these equations for the trapezoidal section

A, 1
B, = {<u+elnn+R (b + moiha’ + 2 | [ 2, + )2 r
’ ey L
Coo = {(lis + oh)e + Re Gy + ks’ — 2) | /2y + g2 50 0 .
Y A,_ l
D, = [ (I3 + 9113) — R, (,Brnr 1A -+ Bene—y ;7’; — 2oty > }/2 O‘rnr + Be)? 4 4 L
H, = 1 (122 + 9122’)1' + R, (arzﬁrzlr + O(r2 _r"_ _I‘ 2_:61*2/‘1' ) J' /2(0(1*771' + ﬂr)zﬁr'il 7
~ | L,) — R Moo 2 f 1t
Jr = l (Ios + 0 23 )r v Br { 77 177r'1 ‘I‘ + oy J °‘r77r + Br)? = A
/ I’ .l
K, = I (Iss + elss)e + R, (ﬁrz"/lg“l;lr + P ’l;~2 + 20(r2,ur> J /2‘0(1‘171’ T A !,
where ) -
_ dy ' dy’ Uy 4 _ er; Wy
T T T = e = g Re= T
_ EA, ' n EA, _ EA, 4
Ar = (1 + O‘r) Gtr W, | , A = (1 + O(r) Gtr’wr_;’ My (1 + ﬂr)‘szrdr—l.
A A Ar 4
Yr — K-_], Yr = A_—r—lijl, Or = Ar’-—l
and
1 1 2du 1 1N\2 u2du -
A ik

(G ><1 ,9)
(o) = et [("2 4 2 ) (5~ ﬁ)_l —wdu

el DD e

(L), = J'(fo i ﬁf; : %i@, %= | (__, + B: u?
(oo = aepe [ (%07 4 x (z;:l + E)J_—V;_MM_ |
= G ) 2
(e = aetpee [ (P2 4 L) =

(Iss)r = 2B, 2 <77r 10( /3> 1~i~%~2—€%

all the integrals being between the hmlts 0 and 1.

SPlESHE

In all other respects the analysis of the trapezoidal section follows ekactly the same lines as
that for the rectangular section.
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PART V
Comcally Tapered Tube of Rectangular Section

In a conically tapered tube w,_/w, = d;_y/dy = 77, Where 7 is the distance from the apex
of the tube. Assume also that A, yA, =77 if no actual booms are fitted A, ; = 1/6
(tdey + swr_q) and the condition is satisfied prov1ded that £ and s are constant. If now Ly
is made also proportional to 7(l, = 7z say where z is a constant), all the coefficients B,, e
become invariant with . From §III.4, we have

o = dpfdey =¥ —r2)fr =1 —2 =4, =yt
similarly from §I11.6 |
R; = wydy[4r%% Iy = Ly = I3 =0

Ay =(2 — 2) EA([Gtw,, Ty, = 4(1 — 2)* (E + %EZ + 3__;22 )
+ .

"

R 2
— (2 — 2) EAGedg Ty — 4 (1 — 22 (ohn + o250 + 2o

53734745

4
Iy =81 -2 (13 23*234+345 o)
’
b
Then, dropping suffixes, which are no longer necessary,

and taking Zas7yzand A as A, (& + )% 5— _1 =4 (1 — 2)%

; 2 1 7 1 EA, '
Ht K= (0t goitaptt ) +gal@— ) G d+s) T
J—(G z—l———22+....)—halftermabove.. .. .. .. (47)
1 2—2EA,(w 4,
, —C=D=163 T2 Gr2 \'s %) (48)
and :
T = ) == 1_/0_z T (T, being the torque transmitted at sectionz) .. (49)
\ wr——l
From §I11.4 (c) (equatlon 26)
But JPusy + H + K)Py + JPuyy = D (T — Tw) .. .. .. .. . (50)
u
aP N -~ a*p
Pow =P Tz (%) 4 2 (%5 (51)
“and :
aTy . :
TnH:Tn—?z(a—;)n. PO )
From (49) and (52) ‘
R (% Tosr Tay _ 7522 { ary |
o= T =g (7(1 i )= wdg(1T =7 | a7 (W),l = Ta(l = 2)
. 79222 T 4T :
= wd, I=\7 " @ .. .. .. .. .. .. (53)

* Negative signs because direction of # increasing is that of » decreasing.
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Then using (46), (47), (48), (51) and (53) in (50) and dropping terms in 22 and higher powers

B3 2t B (%0 B)) (e g s

FROD) A ()

822 Gr,? t
_ 12—z EA rw, 4, n#t (T _dT
“wﬁl_z@@<s—79@%u_@(7“a; - (34)
or
£ 2—z EAy (wy | dy\ ,d%P
P(145)~ 16 Gw(s‘*7>’%i
_ 2—z  EAyfw, dy\/T 4T
“te o G (o= P) (F=%) )

In the limit when 250
EAyrw, | dy\ ,d%P EAy fwy, dy\ /dT T ) -
Gro2< D LA G@E(T DG —3)=0 - .
When 7 and 7, tend to infinity, putting #, — 7 = x, this reduces to _
EAy rw  dN d°P EAy rw dN dT
-E“" <—S_ “}‘ t‘) %?— 8P "I" 1 (—5 —_— ZT ZZ;C- = 0 .. .. .o (553)
agreeing with equation (7) of §I1.9.
When %?-Q = ; ,P is independent of T, and torsion produces no warping of the tube cross sections.
0

Also when T varies in proportion to 7, the shear force in each wall is independent of » and there
are no boom loads.*

* This special case perhaps needs further explanation. The
diagram, Fig. 10, represents one short bay of the tube from just
inboard one frame (r,) to just inboard the next frame (7o)
If F is the shear load on one tube wall just inboard of the frame
at 7;, by moments about the apex of the tube, the shear force

_just outboard of the frame at 7y must be Fr,/r,, because the
only other forces on the wall betwgen these two sections are
those along the top and bottom edges, and these forces pass

~ o through the apex of the wall. Therefore the frame at ¥, must
@

apply a force
f(1-2)
7o

to bring the total shear just inboard of the frame back to F.

7
.j
|

I

b Th lving f tically, the f long the slopi
' P ' en, resolving forces vertically, the forces along the sloping

F YAF(! "'r_“' F 4 edges of this wall must be
! ° F(,_n
| o ro /'
W F’ =~ where « is the apical angle of the wall (« small). Then change
E - — of bending moment in the wall between 7, and 7y is
r
o F 4§
F1c. 10 - ( T )7’00‘ —F (ry —7)

and is zero. Of course F/o must equal E'/p, that is T and F’ must result from equal loads per unit length of
edge—the Batho system. It is interesting to note that the forces on the frame are such that the frame itself is
not sheared ; this implies, of course, that the sections of the tube do not tend to distort. Provided that the forces

F<l —ﬁ>
7o

are properly applied, the frames may be omitted without altering the conditions. Naturally, the reaction torque,
wherever it be applied, still gives rise to boom loads.
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In the general tapered tube, held at the root and subjected to a torque T, at the tip

Y

P=x—3

%+V@+mkf R (1<)
where |

n=4+vX+}
X:S&fﬁﬂo(%—k%>

v (-8 (24 4)

and V and W are constants to be determined from the end conditions. From §IIL.4 (¢) (equation

ap
P]:Po—‘yz(?j;>0+ ......
and
Tlfzfgf.z_:[_l
wody ¥
@b
. 1 . 12 s t: T T %
terms in S giver — = ody W, iq—;—Y at 7 =7,
s U
Hence
Y T, N T T,
—X_27(;+nVro+(1—n)Wro ——}—Ya

and, since P =0 at 7 = 7,
Y TO n 1-n
mz""‘ V?’l —]-W?’l n—-—O.
In many cases, X is large and #» is much greater than unity. In that case #Vry» and Wy, 1

are comparable in magnitude to Ty/#,, and V#rand (1 — #)Wr, ™" are negligible in comparison.
Therefore approximately

@

N Y xX — 1 7 n+1 7y n-—2)¥
Pf’—m’ro {1 —I“ 7 (Z) — (7> ) . . . (57)
Over the greateY part of the length of the tube
Y
Pr=x—aT
and is constant ; at the free end P, falls abruptly to zero and at the fixed end it rises abruptly to
X—1
14 —

times its general level. Referring to equation (54a) it will be seen that the variation of the
equation of equilibrium with z is only slight. Accordingly, variation of the boom loads as the

*Sign corresponds with that in §I1.9 because 7 here is measured in opposite direction to x in that section.
< ¥/[r? corresponds to g/xl? in that part.



48

average frame spacing is varied, is only slight. This is illustrated in Fig. 11 which shows the
variation of boom load along the length of the most highly tapered tube treated by Williams in
R. & M. 1761, §4, p. 20, ef seq. The full continuous line shows the distribution calculated from
equation (57) for this case, whilst the two broken lines show the distribution computed with
four and six frames respectively ; the detailed computation for the latter two cases is shown
in the attached sheets. It will be scen that the differences of boom load resulting from
variation of the number of frames are quite minor.

On Fig. 11, the distribution of boom load computed by Williams in R. & M. 1761 is also shown.
This distribution is similar in form to that found here but indicates considerably greater values
of the boom loads, particularly near the tip of the tube. These differences are to be expected,
in view of the different method of computation used in R. & M. 1761. Detailed comparison of
the two analyses is difficult ; but the following points are worth noting. Equation (100) of
R. & M. 1761 corresponds to the relation

Pl

T = Fw, — Fd, + (dgw; — dyw) T

in §I11.4(a), but since djw is constant, the term in P; disappears. In accordance with this
" correspondence

dM M,

F in the present paper = 2akS — dxl - 7
and ‘ Notation of R. & M. 1761.
F’ in the present paper = — 24S + M, + M, '
P paper = dx !l —x

In R. & M. 1761 the shear force across the tube wall is taken as

D 2.4kS (equation (98)), that is F +
whereas in the present paper it is taken as F in accordance with the conclusions of the Appendix.
This difference is associated with the treatment in R. & M. 1761 of the bending moment as
resulting from a system of parallel forces, whereas in the present paper a radial system is assumed.
Moreover in R. & M. 1761 the rotation of sections of the tube walls as a result of shear distortion
is disregarded. These separate differences should be at least partially self-compensating ; but
Fig. 11 shows that their combined effect may still leave considerable discrepancies.

I—x
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Conically Tapered Tube with Four Frames.

Specification (dimensions in inches :

135 inches.

unit torque applied at tip)

Frame or Bay No.

0 1 2 3 4
dy 6 5 4 3 2 — —
Wy 20 20§ 20 % 10 20 % — —
A, 1-631 | sameX £ same X 2 sameX% | samex$ | A = 1-631 —
[}
Iy — | 225 22-5 225 22-5 I =225 —
tr — | 15 1-5 1-5 1-5 — —
Sp — | 0-0394 00394 0-0394 0 0394 — —
Ty — 1 1 1 — Torque applied
‘ at tip.
O = fp =y = dr/dr—l - & 4 zi“ % - —
Ry = wp—ydy_ [4ly? — | 0:05926 0-04116 | 0-02634 | 0-01481, — —
A = (1+ocr)EAr_1/Gtrwr_l — | 0-2592 0-2545 | 0-2475 0-2357 - 12 o
iy :(I—J-f}r)EAr._l/GS dr | — | 31-304 30-735 | 29-881 28458 — Je =
Loy —dp—, — | 0-1875 0-2700 | 0-4219 0-7500 — _
Oy = Relledum) . — | 1-8704 1-2762 | 0-7982 0-4327 — —
—Oyp =Op3=Rrar(ppr—4y) .. — | 1-5330 1:0032 | 0-5854 0-2787 — _
1092-—— -‘023—033—-Rr0(r (}»r”—ﬂr) — 1'2989 0'8168 0‘4490 0'1923 - —_—
22 — | 1-0594 1-0058 | 0-9261 07954 — Iy =1,
I..=
To — | 0-5006 0-4753 | 0-4305 | 0-3586 — v
Ty — | 0-9672 0-8996 | 0-8022 0-6498 — —
Br=(Iy+Ou)/(x+ )2 Ary I | — | +0-6783 | +0-5982 | +0-5321 | --0-4868 — A =1-631
AL
Cp = (Lp+Ou)r [Aor?Ar_, — | —0-5519 | —0-4702 | —0-3903 | —0-3135 — —
A .
Dy = (I;3+-Opy)r/4ou® Ar — | +0-5519 | 10.4702 | +0-3903 | +-0-3135 — _
A e
Hy = (Ipy+Os)r/4don® Ar_; — | +0-8490 | +0-8542 | +0-9167 | +1-1112 — _
A
Jr = (Ipg+ Ogg)r/don® Ary — | —0-2874 | —0-1601 | —0-0123 | +0-1871 — —
A
Ki'= (Iss+Ogy)r/4or® Ar_, — | +0-8158 | -+0-8045 | 1-0-8341 | -0-9474 - —
A
= Toly/wr_ dp_, — 0-1875 0-2700 | 0-4219 | 0-7500 — —
— | +0-8490 | —0-2874 — — —0-10348 —
— | —0-2874 | +1-6700 | —0-1601 | — —0-02347 —
— — —0-1601 | 4+1-7212 | —0-0123 | —0-03773 —
— — — —0-0123 | +1-9453 | —0-07044 —
— — +1-572710, —0-1601 — —0-058500 —
— — - +1-704900| —0-0123 | —0-043686 —
— — — S +1-945211 —0-070755
Boom Loads. . — | 4018537 | +0-03984 | +0-02588,| --0-03637 — Ib./lb.-in.

torque

(66203)
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Same Tube as in previous Example.

tr = 1‘5, Sp = 0'0394, Tr =1

‘Conically Tapered Tube with Six Frames.

Frame or Bay No. 0 1 2 3 4 5 6 Notes
dy = 03w, 6 5 4 32, 2-8 2-4 2.0  |A= 1-g31dr
I — 1 225 22-5 18 9 9 9 —
a = =y = dp/dr~ — & 5 & & % & —
Ry = w0y ydp/d® .. — | 0-05926] 0-04116] 0-04116] 0-10535 0-08066| 0-05926 —
i = (1 + ar)EA—/Gliwr 4 — | 0-2592 | 0-2545| 0-2545| 0-2651 | 0-2626 | 0-2592 —
me = (1 + or)EAy—[Gsrdy | 31-304 |30-735 |30-735 |32:016 | 31-710 | 31-304 —
Oy = Relhr + ) - — | 1-8704 | 1-2762 | 1-2762 | 3-4008 | 25789 | 1-8704 —
—0y, = Oy = Rear( fr—) ~~ 1 1-5330 | 1-0032 | 1-0032 | 2-9269 |. 2-1742 | 1-5330 —
Op = —Oyy = Ogg = Ryay2(e l-ser)| — | 1-2989 | 0-8168 | 0-8168 | 2-6037 | 1-8947 | 1-2989 —
L, — | 1-0594 | 1-0058 | 1-0058 | 1-1273 | 1-0082 | 1-0594 |I,,=1I,=1I,
I, — | 0-5006 | 0-4753 | 0-4753 | 0-5458 | 0-5280 | 0-5006 —
1, — | 0-9672 | 0:8996 | 0-8996 | 1-0547 | 1-0204 | 0-9672 —
T By = (I, 4 Op)fdo? Apy - |4+0-6733 | 4+0-5082 | 1-0-5082 |-0-8328 |+0-7522 |+0-6733 |1 =22°5,
AL A =1-631
Cr = (Iyg + Opg)/don? Ary ! — |—0-5519 |—0-4702 |—0-4702 |—0-7168 | —0-6341 |—0-5519 e
A L
Dy = (L | Ogg)fAar® Apy ! — |+40-5519 |+0:4702 |0-4702 |4-0-7168 |+-0-6341 |+0-5519 —
A b
Hy = (Ly, - Ogo)f4er® Apy ! — |40-8490 |+0-8542 |--0-8542 |40-9137 |-+0-8729 |-+0-8490 —
AL
Jr = (Lyg -+ Ogg)fden® Apy 1 — |—0-2874 |—0-1601 |—0-1601 |—0-5040 |—0-3986 |—0-2874 —
A
Kr = (lgg + Og)fdor? Apy 1 — |+0-8158 |4-0-8045 |+-0-8045 |-+-0-8959 |-0-8502 |-+0-8158 —
Ak
Ty = Tolyfwrydry — 1 0-1875| 0-2700 | 0-3375 | 0-2637 | 0-3444 | 0-4687 —
— |40-8490 | —0-2874 — — — — —0-10348
— |—~0-2874 |4-1-6700 |—0-1601 — — — —0-02347
— ~—  |—0-1601 |41-6587 |—0-1601 — — —0-03174
- - — | —0-1601 {+1-7182 [—0-5040 |  — —0-03033
- — —  |—0-5040 |+1-7688 |—0-3986 | —0-02936
— — — — | —0-3986 |1-6992 | —0-04032
+1-57271|—0-1601 — — — —0-058500
— — — 4164240/ —0-1601 — — —0-037695
— - — —  |4+1:70259(—0-5040 — —0-034004
—| - — — —  |41-61961|—0-3986 | —0-039426
— — — — — —  141-60110{ —0-050023
Boom Loads — |40 13537|4-0-03983 4-0- 02584 1-0-02943| +-0- 03202/ --0-03124| 1b./Ib.-in.
torque
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APPENDIX
The Simple Theory of Bending and Shear for Tapered Beams

A1, Introduction.—The ordinary simple theory of bending as commonly used by engineers
is exact only in certain special cases ; but its use in other cases, to which it is not strictly applicable,
is common practice and the practice is justified by experience. In stressing parallel tubes
treatment of the warping distortions by the simple theory of bending for a parallel beam yields
results in good agreement with experimental results. For stressing tapered tubes, therefore
it is deemed sufficient to establish for tapered beams a comparable simple theory of bending.

A2. Basic Analysis—The analysis here presented has been previously developed in more
detail by Atkin® in ““ Aircraft Engineering ”’, November and December, 1938. It is repeated
here in order to demonstrate the basis of the simple rules for stressing slightly tapered beams,
of which use is made in Parts IIT and IV of the paper.

Using cylindrical co-ordinates, with pole at the apex of the beam, the stress distribution in
a beam of uniform (unit) width has to satisfy the equations of equilibrium.

8 (ryr) | ov0 B 5 (r270) 800
s +'g(;“ 00 = 0 and ~ 57 + 7 5 =0 .. .. .. .. (58)

Solutions of these equations are

_ " (8 @’ (0 — — 0 “
VVZ-f*';(f-z+~;(i,00:Oandyezfy(z).. . . . . (59)
where f(0) and ¢ (0) are arbitrary functions of 6.
The relations between stress and strain
re = (77 — 000)JE, cog = (00 — or7)[E and exg = 72 (60
and the conditions for compatibility of strains
b2
err = =, On %76-5 + % and o = 766 ( ) . .. (81)
lead to the formulae
! 0 o , .
Eu:—vjié—l + ¢'(0) log 7 + v’ (0) . .. . . .. (62a)
0
Evz(l-a)ﬂ?)-u— (6 4 log ) o (9) — ¢ (6) + F () L. .. (62b)

and the condition
—[rolza—arglrm ]l o) + e o) togr
T (0) 4y (0) = (L—a) g (0) + rF' () — F() =0.. .. .. (63)
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Assuming that E/G = 2 (1 + o), this condition is satisfied by

f(®) =A 4+ Bcos20 4 Csin 20 D

@ (#) = Lcos 8 + Msin ¢ where A, B, C, L,

v (0)'= Pcos 6 + Qsin 6 + 1%30 (L sin §4+M cos 6) : i\;[é fén%a%ﬁg.K
and F(r) = Kr —%’é ' )

When the stresses become

N (— 2B sin 2072+ 2C cos 26) i (— L sin 6:— M cos 8) (64a)
8 =0 .. .. C e (84
5 A + B cos 2726 -+ C sin 26 (64c)
and the displacements U and V parallel and perpendicular to the line 6 = 0 are given by
EU==3;“@ﬂw—meykktﬁBMSB—mm%+4Amm
—JQMB+Q+Mbm+ﬂ%i@mm6~Mwwm~l%%M
+ 15 %10 L 5
and ‘
EV =:3;?(cha-chnm_"l%QJBc%3e+csm3e+2Aamw
+ Krcos6 — P — Llogr — 1% (L cos 2 6 -+ M sin 2 6) —|—1 M;SJL
+1;“Ma ... ... .. (65D)
and the rotation & of the plane section through (7, j—_ o) is given by
Eé ==32 B+-1+“{B¢L—4gﬁa)+2A} KﬁmmibLé%a
l—o¢ A
T 2 L sina (66)

From equations (65) and (66) it will be seen that P and Q represent body translations of the
whole beam and that K represents rotation of the whole beam about its pole. The C and M terms
represent the effects of loads along the axis of the beam and these terms will not be further
considered.

Then for the deflection V of the centre line (# = 0) of the beam

EV, ==—7——y—(A—l—B)—l—Kerlog;'—l—const. . .. . (67)
5V 2B | 1 L

ESt=— 2+ L2 A+B +K— . (6
52V, 4B L 201 .

gl L HED agw. L L L @)
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The difference ¢, — e, between the radial strains at (7, & o) divided by the distance (d==2r sin )
between these points is

Gty Ty — 7P 1 /4Bcosa | L ‘
*1"([*4' = "“—Ed*"*a = — E‘ —773—* + ;é' . .. .« . (70)
and the shear stress ¢, (at 6 = 0) = (A + B)/r2. .. . .. .. .. .. (71)

If « be so small that o2 is negligible in comparison with unity, equation (66) reduces to
pe 2B L (4o +B)

2 7 T2 (72)
equatibn (67) to
EV,= 253— — Llogr + Ky — (}j-(_’)*%ffl_:i—iB) + const. .. .. (73)
and equation (70) to
e, — ¢ 1 /4B L
ag-- B+ 5 74)
Then choosing the constants in equations (72) and (78) so that ¢ = 0 and Vo=0atr =7,
(4B L T dy
Ef = — j S ) —2(1 4 o) (A + B)jro )
and
T /2B L r /2B L
EV, = — L)(T’? + y> dr + J%(?;z" 7ﬂ‘> ar
todr
+2(1 40 (A +B)r [ 2
or '
T f/4B | L T d
L [ St ) drdr - 2(1 +0) (A + B) 7 j . ... (78
Hence, using equations (71) and (74)
—[azl g4 9 &
£ _jro S s m)
and '
_ r T el__ez q07,3 ~r—6§—7‘
v, “_Jrojro_““dﬁdmdkﬁ_kora' R )
Equations (77) and (78) are strictly true only if ¢, — e, is of the form ;é + —ﬁ; where 4 and u

are constants and if gy?is constant (cf. equation (64)); but in practice it appears reasonable

to use them more generally. This extension may be justified by analogy with the case of
the parallel beam.

A.3. The Simple Theory of Bending for a Parallel Beam as a Special Case.—For a parallel
beam, when 7, is very large in comparison with 7, — 7, writing 7, — r = x, equations (77) and (78)
become '

—_ [T az=e go¥
e P (2
and ..

o oe—e X
Vo_z—jofof’l—j—&dxdx-—%. .. (789

The second term in equation (77a) is negligible : the other terms correspond to the ordinary
simple theory of bending, including the deflection due to shear.
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A4, Nature of the Simple Solution for the Tapered Beam.—The nature of the simple solution
. expressed in equations (64) to (66) is best understood by reference to the values of the bending
moment M and total shear force F at the plane section through #’ perpendicular to 6 = 0. The
direct stress p and the shear stress g on this plane are given by

p = 77 cos? 0 — 78 sin 26 .. . .. . T (79
g = 7rsin 6 cos § -+ 76 cos 20. .. .. . .. .. - .. (80)

iThen using (64), but ignoring the C and M terms which contribute nothing to the shear or

bending moment, and writing v =7’ sec §, y =7 tan 0 dy =7 sec20 d9 where y is the
perpendicular distance from the line § =0,

P :——;,A? sin26—-—%(sin 26 +-sin40)—% sin 6 cos?f .. .. .. (81)
q = %cos%—}—%cosw—%sinze cos 6 .. .. . . (82)

and
0 o
M:J pr’ tan 0 1"sec20d0=J pr? tan 6 do
—oL —ol

— — {A (2 — sin %) + B (sin 2x — } sin do) + L#' (o0 —  sin 2a)} (83)

(A 4+ B cos 2a) sin 2
7,1

[»4
F = qu’seczede =
—0
Finally, suppressing the primes which are no longer necessary,

(A + B cos 2x) sin 2«
” :

—L{a—3sin2) .. .. (84)

F = — L{x — % sin 20) .. . .. .. (85)

and :
Fr — M = (A + B cos 2¢) tan 2¢ + A (20 — tan 201) .. .. .. ... (86)

Then, writing A + B cos 2x = ¢,7%, so that g, is the shear stress (v0) at L+« and since
A + B = g2 B (1 — cos 20) = (gp — gu)*>and A (1 — cos 2a) = (¢u— 9o €OS o) 72,
Hence ‘

200 — tan 2o
Fr — M = g,® tan 2 + —i{m (ga — g0 COS 720()1'2
2o — sin 2o e sin 2o — 2« cos 2x /2
= T _—cos2x % 1 — cos 2u 0
Do 2 9y 42 403 0
=§(qocr + gor)—l—zg(qa—qo)r 4o . . (87)

If « is small, all terms after the first are negligible and writing 27« = 4, where 4 is the depth
of the beam at section 7, equation (87) may be put in the form

3 F— (M)

= . 87a
©Z 2 (gt d (872)
If # be large, this reduces to

3 F

= 25 @lay) @
the usual form for a parallel beam when g varies over the depth.
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In any case whatever the values of 7 and «, equation (87) shows that the shear stress 76 is
proportional to the moment F» — M about the apex of the beam : this conclusion is otherwise
obvious because a load at the apex of the beam produces only direct (radial) stresses. This
second conclusion is confirmed by equations (64) and (85) which shows that the part of the stress

rv, which is proportional to 1/#, is also proportional to the shear load F.

If ¢, = g, when B = 0, the tapered beam loaded only at its tip exhibits the peculiar inversion
that shear load causes only direct (radial) stresses, whilst bending moment causes only shear
stresses ; of course in the latter case the necessary radial loads are carried by the heavy booms:
implied by the assumption ¢, = ¢,.

From equation (83) it may be shown that

— M = (4B cosa + L7) (« — }sin 2 )
72 . . .
+ 1 = cos % {(20 — 2sin 2o + } sin 4o + 4o cos a— 4 sin « cos?a)g,
+ (sin 200 — 20 cos 2x — 4o cos o + 4 sin « cos®x) g, >
or approximately

2M 3M  /4Bcosa , L x? 3 74, . a®\
Or neglecting «? in comparison with unity* and substituting ﬂa—«;;sﬁq + 1{;: —E fl—iijg
. __ Ea? 1 - 7q.\ 43
from equation (70) M = =5 (¢ — &) — o5 (g0 + ’?)7 L (88a)

The first term is the usual bending formula, just as for a parallel beam ; the second term

represents a small correction, which is usually negligible. Using equation (87a), this term may
be written in the alternative form

3 1 + (79.34,) Mya® Mydz .
20 2+ (9a/90) (F VA (F oy > 67 g = qo.

Even in the extreme case d = 7 (o = tan™! } = 27°) this term represents a correction to the
bending moment equal to the shear load carried by the web acting at a radius of only one sixth
the depth of the web.

A5, Summary of Results—It is concluded that the simple theory of bending for tapered
beams is described in the following rules :—

(¢} The distribution of radial stress may be computed from the value of the bending
moment M and the modulus of section of the beam at each section just as for a parallel
beam:.

() The distribution of shear stress 76 (apart from the effect of buckling) may be computed
from the shape and dimensions of the section as for a parallel beam, except that in

place of the total shear load F the effective shear load F — 3—/[, where 7 is the distance

of the section from the apex of the beam, must be used.

(Note—In the body of the paper this reduction of the total shear load is made
ab initio by the use of the conception of “ equivalent booms ” ; the term M/r is then
represented by the components of the boom loads resolved parallel to the section.)

2
*The correction factor 1 — ocs represents the appropriate mean between 1 and cos «; if actual booms are

present their contribution to the bending moment is of course reduced in the ratio cos a.
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(c) The bending deflection may be computed from the radial strains exactly as for a parallel
beam, the inclination of the booms or edges being disregarded.

(d) The shear deflection may be computed from the shear strains by dividing these strains
by the distance from the apex of the beam, integrating and multiplying the integrals
by the distance from the apex of the beam. (Note.—This procedure is necessary
because pure shear of a tapered beam consists in relative rotation round the apex of
the beam.)

These rules are approximate in that the square of half the angle between the
edges of the beam has been assumed negligible in comparison with unity. Provided
that the angle subtended at the apex of the beam is less than 207, the error thus
introduced is unlikely to exceed 5 per cent. and will normally be very much less.

A.8. Comments on the Extension of the Simple Theory to Cases Strictly Beyond its Scope.—
The rules (a) to (d) stated in §A.5 represent a considerable extension of the actual results of
§A.2-4 in that the restrictions on the type of loading have been entirely ignored. This extension
corresponds exactly to the similar extension of the simple theory of bending in application to
parallel beams, which is common practice and justified by general experience. Appeal by
analogy to justify the similar extension for tapered beams is perhaps sufficient ; but in view of
certain unfamiliar characteristics of the tapered beam, some further discussion, based on the
simplest illustrative case may be desirable.

If a tapered beam held as a cantilever at section 7, be subjected to a shear force F at section 7y,
M—TF (r—r) and F — L = %

4

If the beam is of uniform thickness, the shear stress

is proportional to —%, which conforms to equation (64c). The radial direct stresses are pro-

portional to M/r2, that is to—-I-;;— F::zl, which conforms to equation (64a). The bending

stresses and strains are then calculable by the rules stated and the bending deflection follows.

Over the portion of the beam 7, to #, the shear deflection is proportional to;% — —117 (equation
(78)). So far as the bending deflection is concerned, the “ slope ’ of the bent beam defined by ¢
is identical with — 6;; 9, the rate gf change of bending deflection ; but the shear strain also
causes a change of slope, which is proportional to the shear deflection divided by the radius 7.
If 7,> 7 this change of slope is exactly opposite to the rate of change of shear deflection ; in fact

2
the shear deflection always represents rotation through angles proportional to 1 — 1"2— about
7

the apex of the beam. In computing the deflection at sections beyond the applied load F, the
bending deflection is found in the normal way as for a parallel beam, but the shear deflection
instead of being constant, now varies in proportion to 7.

The effect of the local distortion of the section #, under the load F is disregarded just as in
the parallel beam case, and the principle of superposition enables this simple case to be extended
to cover all loading cases. In short, deep beams the effect of local distortion under the loads may
not be negligible, but this source of error is no more serious for tapered than for parallel beams.

If the section of the beam varies otherwise than by pure taper, the complete beam may be
regarded as a composite one built up from a number of beams of uniform thickness loaded in
parallel and sharing the load so that their deflections are everywhere the same. The problem
is thus reduced to a number in each of which the anomaly concerns only the loading conditions
and this is covered by the principle of superposition.

The variation of shear deflection (alone) along the length of a tapered cantilever is illustrated
~in"Fig. 12, where the contrast between the two cases 7¢> 7, and 7y < #{ is shown.

\
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SYSTEM OF AXES

Symbol X y p
Axes D%;%ﬂ?f,?n longitudinal lateral normal
direction forward starboard downward
Force Symbol X Y Z
Symbol L M N
Moment Designation - rolling pitching yawing
Angle of .
Rotation Symbol ¢ 6 ¥
Velocit Linear u v w
y Angular P q 7
Moment of Inertia A B C

Components of linear velocity and force are positive in the positive direction
of the corresponding axis. ‘~

Components of angular velocity and moment are positive in the cyclic order
¥ to z about the axis of %, z to # about the axis of y, and # to y about the axis of z.

The angular movement of a control surface (elevator or rudder) is governed ‘
by the same convention, the elevator angle being positive downwards and the rudder
angle positive to port. The aileron angle is positive when the starboard aileron is
down and the port aileron is up. A positive control angle normally gives rise to a

negative moment about the corresponding axis.

The symbols for the control angles are :—
& aileron angle
n elevator angle
ny tail setting angle
¢ rudder angle
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