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Time 
Resultant linear velocity 

"Resultant angular velocity 
Density, a relative density 
Kinematic coefficient of viscosity 
Reynolds number, R ----- lV/v  (where l is a suitable linear dimension) 

Normal temperature and pressure for aeronautical work are 15 ° C 
and 760 ram. 
For air under t h e s e f  p = 0.002378 slug/cu, ft. 

conditions I v = 1.56 × 10 -4 ft.2/seco 
The slug is taken to be 32.2 lb.-mass. 

Angle of incidence 
Angle of downwash 
Area 
Span 
Chord 
Aspect ratio, A = b2/b 
Lift, with coefficient C~ = L/½pV2S 
Drag, with coefficient CD = D/½9V~S 
Gliding angle, tan y ---- D/L 
Rolling moment, with coefficient C1 = L/}oV2bS 
Pitching moment, with coefficient Cm = M/½pV2cS 
Yawing moment, with coefficient C~ = N/½pV2bS 

Revolutions per second 
Diameter 
V/nD 
Power 
Thrust, with coefficient kT = T / gn~D 4 
Torque, with coefficient kQ = Q/pn2D 5 
Efficiency, ~ = TV/P = JkT/2~kQ 
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Introductiou and Summary.--A general method for stressing polygonal tubes is described and 
applied to the torsion of parallel and tapered tubes of rectangular and trapezoidal section. I t  is 
assumed that- the shape of the tube is maintained lay a limited number of frames. In treating 
parallel tubes deformation of these frames in their own planes is taken into account ; the effect 
Of this deformation is shown to be small, and in treatin'g tapered tubes the frameg are assumed 
to be rigid in their own planes. The method of stressing tapered tubes in torsion is applicable 
to any tube of trapezoidal section with one plane of symmetry,  no /ha t t e r  how tile dimensions 
may vary along the length of the tube ;  in particular the method is directly applicable to 
tubes having portions of their wails cut away. T h e  successive stages in the computation are 
set out in tabular form and illustrated by worked examples, including cases with " cut-outs " 

The final stage in the computation involves the solution of a set of simultaneous equations 
equal in number to the number of frames, but  these equations are of a special type, readily 
soluble by  a straightforward process without danger of any serious loss of accuracy. The length 
of the computation is directly proportional to the number of frames, but it is demonstrated by 
examp.les tha t  the stress distribution is affected only slightly by the addition of extra frames, 
so that  in practice it should normally be permissible to ignore all but  a few of the frames. In 
tile special case of a conically tapered tube in which the wall thicknesses are uniform along the 
length of the tube, the results can be generalized to include the case of a tube with an infinite 
number of rigid frames. In this case the results obtained by the present method become identical 
with those obtained by Williams in R. & M. 17611 and by others using Williams's method. 

. The author wishes gratefully to acknowledge the help he has received in the preparation of 
this paper from Messrs. H. E. Smith and A. E. Johnson of the National Physical Laboratory, 
Mr. W. S. Hemp of theBr i s to l  Aeroplane Co., Ltd., and M r . E . H .  Atkin of Messrs. A. V. Roe 
and Co., Ltd. 
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PART I 

Slress Analysis of the General Polygonal Tube 

1.1. [Jdroduclion, Terminology and Basic Assumptions.--This part describes a general method 
for stressing thin-walled polygonal tubes built up from a number of planar elements, which 
resist dislortion in their own planes but which offer no resistance to zvarpi~zg out of their planes. 
A planar element transverse to the axis of the tube (that is, intersecting all the walls of the 
tube but not necessarily normal to any particular axis of the tube) is termed a frame ; a pla~lar 
element bounded between adiacent frames is termed a (tube) wall. A frame of which the warping 
is prevented or restricted by external constraint is termed a bulkhead. A longitudinal member 
along the line of intersection of adjacent tube walls between adjacent frames is ternled a boom ; 
a boom as a separate component is assumed to resist extension or cgmpression, but  to offer no 
resistance to flexure or torsion. 

The general method is applicable to all loading cases, including both flexure and torsion; 
but the applications made in succeeding parts of the paper all concern cases of torsion, to which 
at tention is therefore chiefly devoted. The method is directly applicable to cases in which 
portions of the tube walls are cut away. 

1.2. Pri~ciples of Method.--(a) Distribution qf Stresses in the Tube Walls.---Since a tube wall 
offers no resistance to warping, at its edges it can be subiected only to stresses in its own plane. 
Further, at the intersection of adjacent tube walls along a boom, any direct stresses normal to 
the edges of the walls would have a resultant, which could be resisted only by flexural stiffness 
of tile boom itself. Since the flexural stiffness of the boom is assumed to be negligible, the direct 
stresses normal to the edges of the walls~at the booms may also be neglected, so that  at these 
edges the walls are subjected only to shear and to direct stress parallel to the edge. 
Following the ordinary simple theory of bending it is then permissible to assume* that  at any 
part of the wall the stress system consists only of shear and direct stress in the radial direction 
through the apex of the wall (i.e., the point of intersection of the booms bounding the ~all). 

.(b) Separation of Shear and Be~zding • Equivalent Boom Areas.---The s y s t e m s  of radial stress 
in tile walls co-operate with the stresses in the booms in resisting bending of the tube as a whole 
and local bending associated with warping of the cross section. "file analysis ma-y therefore he 
considerably simplified by representing the resistance of the tube walls to direct (radial) loads 
and bending by appropriate additions to the areas of section of the booms themselves. Tile 
validity of this approximation is discussed below. By its adoption the general problem is 
reduced to that  of a tube, in which the booms alone carry all the direct loads whilst the walls 
ioining the booms carry all the shear !oads ;~ at the frames shear loads are applied to the walls, 
at a bulkhead end loads are applied to the b6oms. 

(c) Shear and Bending Strains.--The load in each Loom due to the shear loads applied to the 
two adjacent walls can then be written down by inspection and the true boom stresses are found 
t)y dividing these boom loads by the equivalent boom areas of section. The bending deflections 
follow by the ordinary simple theory of bending (see Appendix). The effective shear loads in 
the walls, and the corresponding shear stresses and strains may also be computed by the rules 
state([ in the Appendix. 

(d) Co~ditio~zs for Continuity of the Tube Sections • Warpi~g of the Tube Walls.--The displace- 
ments of each pair of adjacent walls in their own planes must be reconciled at their common 
boom t)y warpipg each wall out of its own plane ; by this means the distortion of any frame.k 

• "this assumption is exactly equivalent to the use of the simple theory of bending, and in this respect the taper of the 
wail, pro~:ided that it be not very great, has no signiticance. The simple theory of bending for a tapered beam is given 
in the Appendix, where the conditions which govern its validity are also discussed. 

t Or strictly, the shear loads carried as shear stresses, because owing to the taper of the walls the boom loads themselves 
may have shear and even torsion components. 

++ For brevity " frame " is used here in place of "section.of the tube at a frame " " in the context the two terms are 
synonymous. 
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is completely described in terms of the distortion and warping of an adjacent frame and of the 
distortion of the tube walls between the two frames. Moreover, the rotations of sections of the 
walls, in the planes of the walls due to distortion and out of these planes due to warping, both 
res'olved in planes normal to the frames, relate the warping of the two frames. The rotation, 
distortion, and warping of the section of the tube at any frame may then be expressed in '~terms 
of the rotation, distortion and warping of an adjacent frame and of the shear and boom loads 
transmitted by tile tube between the frames. 

(e) Elimination of the Shear Loads . - -The  differences of the, boom loads at the two ends of the 
bay between adjacent frames are linear functions of the shear loads in pairs of adjacent walls, 
and the torque transmitted is also a linear function of the shear and boom* loads. This system 
of relations is sufficient to enable all the shear loads to be expressed in terms of torque and boom 
loads, so that only the latter need be retained as dependent variables. 

(f) Conditions for Compatibility of Distortion at the Frames . - -The  difference between the shear 
loads transmitted by a wall immediately on either side of a frame is the load transmitted between 
frame and wall. At arty frame the difference between this system of " shear load differences " 
and the system of shears externally applied at that frame represents a distribution of internal 
load in tile frame itself; this " frame load system " must of course be self-equilibrated~ and 
the distortion of the frame under this system of load. nmst be consistent with the distortion of 
the section of the tube at that  frame. In any N-sided tube each frame has N-3 degrees of 
freedom, and there are therefore N-3 conditions for compatibility of distortion of frame and tube. 

(g) Determination of the Boom Loads . - -Each frame introduces N dependent variables (the 
boom loads at the frame) but the complete system must be in equilibrium with tile system of 
applied loads. The conditions for equilibrium with the applied torque and shear loads in the 
plane of the frame are already fulfilled, so that  there are three further conditions establishing 
equilibrium with the resultant direct load normal to the frame and with two bending moments 
in planes normal to the frame. Thus N-3 dependent variables remain and the values of these 
are determined by the N-3 conditions for compatibility of frame distortioqs. 

At whichever frame of the tube is regarded as the reference frame the total  number of unknowns 
is 2N-3, namely N displacements of tile walls in their own planes and N movements of the booms 
in the directions of their own lengths less 3 average values which represent merely rigid body 
displacements; these unknowns are determined by N-3 " frame conditions " as previously 
and N " bulkhead conditions ", relating the movement of the end of each bqpm to the load in 
the boom. ' 

1.3. Effect of Cut-Outs.--A cut-out in a wall of the tube may be regarded as a portion over 
which the thickness of the shear web tends to zero. The shear load over this portion must also 
be zero, but the " shear stress ", being tile ratio of the shear load to the area of section of tile 
web, may tend to a finite limit. Accordingly the shear strain over the cut-out may also be 
finite and it represents a new unknown which replaces the shear load over the cut-out. 

Variation of the area of cross section of the booms past cut-outs introduces no special problem ; 
but if any boom be cut right away, the case may be treated in the same way. The bending 
moment and the moment  of resistance, in both walls, adjacent to the missing boom, both tend 
to zero, whilst the " curvatures " may remain finite ; tile unknown " strain of the missing boom " 
replaces the boom load at one end of the cut-away, which is now of course zero. The boom 
load at the other end of the cut-away is also zero because the shears in the adjacent.walls are zero. 

* The boom loads contribute directly to the torque only in tubes tapered unequally in different longituditlal sections : 
in a conicMly tapered tube all the boom loads pass through the apex of the tube and reduce to a single resultant force. 

The system of load applied at the frame has of course three ~esultant components, two s]~ears and a torque. 
(66203) A2 
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1.4. Validity of the Approximate A llowance for the Resistance of the Tube Walls to Direct Loads.-  
By representi-ng the resistance of the tube walls to direct loads by the addition of equivalent 
areas of section to the booms, the detail of the distribution of shear stress in the wall is mis- 
ropresented ; but this fault may readily be corrected in the final results and is therefore no 
disadvantage. A more serious objection is that  the area of section to be added to the boom may 
have any value between one-sixth and one-half the area of section of the wall, the lower value 
being appropriate if the wail is simply bent and the upper if it is simply extended or compressed. 
A close estimate of the appropriate ratio may always be made by reference to the nature of the 
loading condition ; for.instance, in cases of torsion, in which the tube walls are usually mainly 
bent, the value one-sixth is nearly always appropriate, whereas in cases of flexure of a rectangular " 
section the appropriate value is one-half* for the flanges and one-sixth for ttie webs. In any 
case the error of the first estimate may always be judged by comparison with the final solution, 
and, when the areas of section of the actual booms are fairly big, the effect of errors in the 
estimates of the equivalent boom areas to represent the walls may be quite trifling. 

1.5. Applicability of General Method.--The ease with which the general method may be applied 
depends mainly upon the number of sides in the tube and the disposition and stiffness of the 
frames ; slight taper, in the sense that  all the booms should be inclined at angles not greater 
than about 5°-10 ° to a common axis,~ complicates the coefficients but does not otherwise affect 
the analysis ; variation of the section along the length of the tube, including the extreme case 
of cut-outs, is also quite unimportant.  

The examples treated in the succeeding parts of the paper a.re all cases of torsion of four-sided 
tubes, for which, corresponding to the single degree of freedom at each frame, there is only one 
unknown boom load at each frame. In Part  II the method is applied to a symmetrical parallel 
tube of rectangular section with deformable frames ; in Part  I I I  it is applied to a symmetrical 
tapered tube of rectangular section with rigid frames and Part  IV extends the results of Part  I I I  
to the case of a trapezoidal section with one plane of symmetry. The special case of a conically 
tapered tube having walls of uniform thickness along the span and with an infinitely close spacing 
of rigid frames is treated in Part  V. 

When the frames are deformable, each of the conditions for compatibility of frame distortions 
involves either thr~e, four or five of the unknown boom loads. Solution of the final set of 
simultaneous equations for a large number of frames may therefore be a little laborious. When 
the frames are rigid each of the final equations involves at most three + of the boom loads and 
at the ends of the tube only two. In solving the final set of simultaneous equations therefore, 
each equation is used in turn to eliminate one boom load, and the complete solution is obtained 
bv a series of steps equal in number to the number of the equations. The examples worked in 
P~arts II  and I I I  illustrate this difference ; in practice in cases of rigid frames the solution of the 
simultaneous equations should take only a few minutes. 

The application of the general method to problems of flexure is worth while ol)ly in cases in 
which cut-outs or other concentrations of load render simpler treatment impossible. Unfortu- 
na te ly  from this field the four-sided tube nmst be excluded, because with only four booms the 
method cannot represent " shear lag ". The method should be useful ha relation to tubes with 
six or more sides, hut the complexity of the analysis is greatly increased by the additional 
unknown boom loads. This complexity is less serious if the frames may be regarded as rigid ; 
but in practical examples, representative presumably of fuselages, it would be unwise to assume 
ab i~.dtio that  the distortions of the frames could be disregarded. 

1.6. Illustrative Example of Stressing Procedure.--An interesting example for the application 
of the method described is afforded by the case of a box of rectangular section with rigid end 
frames, each side being a symmetrical trapezium but adjacent sides being tapered in opposite 
directions. 

* Unless the flange buckles or issubject  to marked shear lag effect, when values less than one-half would be appropriate. 
t There is another sense in which the taper need not be slight : this is explained and illustrated by  the example in 

§ 1.6 below. 

+ Except  at a cut-out where two adjacent equations involve respectively two and four of the boom loads. 
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' A  sketch of the box is shown in Fig. 1, and the dimensions of each wall and the shear loads 
applied at the  end frames are shown in Fig. 2. Taking  moments  about  the  point of intersection 

F F '  
of the  longi tudinal  edges of a wall (see Appendix),  we have d - -  a -- d + a -- 2, and by  sym- 

metry ,  the  torque T = F (d --  a) + F '  (d + a) = 22 (d 2 + a2). 

' Fx  F 'x  
The direct load P in 'each corner is d~ 2d -- d~ and 

o r  

Subst i tu t ing  for F, F '  and d~. 

- -  4da -7- 1 -- 
P 

d2 _ a~ i 1 _  ~_)2 

3 2 l  

dt 1 -  ( d ) ~  ( 1 - - 4 u )  

X 
(d + a)7 

a ( 1  2X.) 

a --4xu 

2 (d + a)* 
( d -  a ) t '  so tha t  the 

t~.p f 
w h e r e  u ~ - @ ( 1  - -  @ )  • T h e  d i r e c t  l o a d  i s  z e r o  a t  b o t h  e n d s j  a n d  a m a x i m l l ] ) ~ l  a t  x ~ ~)Z 

p b \  h i -  

where P = -- 2 l -~ .  

If the  t u b e  has no booms, the effective area carrying the load P is dt/3 where t is the wall 
thickness.  The direct stress f is then  

a 4~-u 
The m a x i m u m  shear stress qm is about 

rat io of the m a x i m u m  direct stress fm to qm is fm 3t ad (\1 -- ~d "~/ -- This is a maxi lnum 
qm d a 1+-~ 

" l 1 
when a/d ----. (d'-- a)/(d + a) ~ / 2 -  1, and is then fm/qm = 3(3 --  2V'2} ) / -= 0"515 ~-. In  the 

tube having walls of the shape shown in Fig. 3, the  direct stress at A is about  tt~ree t imes the 
shear stress at  B. 

* No allowance is made  for the  var ia t ion  of shear stress down the  web, because at  this section the wider walls act  as 
heavy  flanges. (See Appendix.)  
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This example illn.atrates the two senses in which taper can be slight or marked. In the tube 
shown in Fig. 3, the taper, in the sense of inclination of booms to the axis of the tube, is certainly 
slight ; but the effect of the taper in setting up direct stress is marked and actually grows more 
marked as the length of the tube is increased, although the inclination of the booms is thereby 
still further reduced. In the sense that ( d -  a)/(d-~ a) differs considerably from unity, the 
taper is marked, apd it is in this sense that the degree of taper should be iudged. The addition 
of a rigid frame at the centre (.~qnare) section of the tube reduces the boom load to one-quarter 
of its value when no frame is fitted. 

PART I I "  

The Torsio~z of Symmetrical Parallel Tetbes of Rectangular Cross Section with 
Deformable Frames 

1I. 1. [nlrod¢tctioll.mThe effect on the torsion of rectangular tubes of axial constraint due to 
bulkheads has been treated by Williams in R. & M. 16192, R. & M. 17611 and succeeding papers 
on the assumption that  all sections of the tube remain rectangular. Here the same problem is 
treated on the assumption that the shape of the tube is maintained only by a limited number of 
frames, not necessarily rigid. As would be expected, the latter method leads to lower estimates 
of the torsional rigidity ; but the difference from the estimate by the method of R. & M. 1761 is 
rapidly reduced as the number of frames is increased, and in the limit when the nmnber of frames 
is very large the present method becomes identical with tha~t of R. & M. 1761. 

The method is closely related to that developed by Ebner and described in N.A.C.A. Tech. 
Memo. No. 744; but it is here presented in a tabular form designed to simplify computation. 
By the use of a table of coefficients (Table 1) the set of simultaneous equations relating the 
boom loads along the span to the torques transmitted can be written down from the dimensions 
of the tube, no matter  how the dimensions vary along the span. By the solution of these equations 
the boom loads are computed and the shear stresses and twist follow from simple relations. 
Complete solution of any specific numerical example sh9uld seldom take longer than one hour. 

II.2. Effect of Frame Load Systems iI.~ Causi~Tg Be~zdi~zg of the Tube Wails and Distortio~z of 
the Cross Sectio~zs.--Any pair of couples applied as pairs of shear loads to the sides and to the top 

. . . . . . . . . .  

, F I G .  4.  

and bottom walls of the tube at a cross section "perpendicular to the axis of the tube may be 
regarded as composed'of a Bathe torsion system and a frame load system. The Bathe torsion 
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system is represented by a coefficient Ex, the load per unit length of edge ; this system, of course, 
causes only shear stresses and shear distortion. The frame load system is represented by a 
coefficient 2*, which again is the load per unit length of edge ; but in this system the two couples 

~are equal and opposite and represent the self-equilibrated reactions from a frame or series of 
frames in pure shear. The frame load system causes both shear and direct stresses. 

The resistance to direct load parallel to the axis of the tube being concentrated in booms at 
the corners, §I.4, it is clear that  the two components of the frame load system make equal 
contributions to the boom load (the contributions of the two components of the Batho system 
are, of course, equal and opposite). Thus the boom loads P due to the complete Z-system are 
twice those due to either component separately. 

In a tube of length L, width w, and depth d, supported at one end section from a rigid wall 
(frame bulkhead), let the shear force per unit length of edge in the rth bay due to frame load 
systems l:e ~r and let the booln load at the outer end of this bay be Pr. Then, if the length of 
the bay is 0~L, Pr-1  - -  Pr ----- 2~rL2r • 

2P 
If the area of section of the booms in the rth bay is At, the curvature of the side walls is EArd 

x ) x where x is measured outwards along the span from the and P = Pr-1 1 °r g @ Pr e rL '  

d2Y where y is the downward deflection of the side wall" r - l t h  frame. This curvature is ~ 

but 0, the rotation of the side wall about the centre line of the tube, is 2y Therefore 
722 

d20 '2 d~y 4P  From symmetry it is clear that  the rotation of the top and bottom 
dx 2" w dx2. EArdw 

walls is the same but in the opposite sense. Therefore, if ¢ is t h a t  part  of the shear distortion 
of the section of the tube due to bending of the tube walls, { x} 

8 P  _ 8 P r - 1  q- (Pr - -  P r -  , )  ~ r ] ]  ' • 
EArdw E A j w  

d2¢ 
dx~ 

Integrating over the bay 
de 
dx 

and ~ r  - - r ~ r - 1  __ 

0rL 

/ de \ 8 ( 
~ "-- IPr-~X -t- {(Pr -- Pr-l) 

---- ~-/r i EArdw 

'(-~--~x-)r- de 4OrE 
( ~ ) r - l : - -  (Pr-~- vr-1)  EA~dw 

de 
4OrL (Pr -t- 2Pr-1) @ ( d x ) r - l "  3EArdw . 

~LJ' 

Writing AOr Ar = Qr', where A is some convenient standard value of Ar ; 

~'-'1 r -~-  EAdw Or -r(Pr-1 + Pr-,o) 

'( ~--~-6X )r-,~--~ (~$X)r23-- EAdw4L Or'-~ (Pr-~ + Pr-a) 

EAdw 02' 

* The ~t-system is, of course, closely related to the F-system described by Williams in R. & M. 1619 ; but it has not 
tile property of the p-system that its effect is zero at infinity. 
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Adding . 

(~-)r-1- 
Hence, finally 

4r - -  4r-1 __ 
OrE 

} EAdw e ~ ' P o + ( e a  + U )  P~+ (e2' + O a ' ) P 2 + . . .  +Or ' - aPr -1  " 

4L{ 
3E-A-dw 3z~'Po q- 3 (~1' q- e2') P~ q- ... + 3 (~r'-2 + er ' -J  P~-2 

-1- (30r'-1 -{- 2~r') Pr-1 -1- Or' Pr ] .  

11.3. Shear Strain of Tube Walls.--The deflection due to shear of a side wall of the tube over 
the rth bay is OrL(2~ +/,r)/Gtr,  where tr is the effective shear thickness of the side wall ; /*r is the 
shear force per unit length of edge due to the Batho load system. But 2r = (Pr-a -- P~)/20~L 
and ,at =-- Tfl2wd, where T~ is the torque transmitted over the rth bay. The shear deflection 
of the side walls over the rth bay is therefore 

{(P~_~ -- P J  + T~o~L/wd}/2Gt~, and the rotation due to shear is { ( P ~ - I -  P J  + T~o~.L/wd}/Gwt~. 

Similarly the rotation of the top and bot tom walls is { P ~ - I -  P r ) -  TrO~L/wd}/Gdsr in the 
opposite sense where s~ is the effective shear thickness of the top or bottom wall. Therefore, if 
is that  part of the shear distortion of the cross section due to shear of the tube walls, 

Y~r - -  !Pr-I __ 1 f ( P r - 1  ~ P r '~.8 ( 1 - [ -  dsr"~ TrL  s (1 - -  - - ) l 'dsr  
Or L GLds ! \  ~r / s r Wtr / w d  s r Wtr 

where s is any convenient standard value of st, 

or L ( O~r Tr f 

( = s 1 + wt,/ L" and fir = 1 where ~Zr s~ srr wg d 

11.4. Shear Distortdon at Frames.--If h~ is the effective shear thickness of the rth frame, the 
shear strain of the rth frame is 

(~ r , l - -  ~r) __ 1 I ( P c _ ~ V r , ! )  _. ( P r - 1 -  Pr )} ,*  
G h /  . . . .  -2GLh; t.--- Qr+l Or 

and the difference in shear distortion between the (r-1)th and rth frames divided by the distance 
between them is 

1 Pr ~1 1 1 1 ~ 1 

1 1 1 Pr-2 ] 

11.5. Relations between Boom Loads and Torques in lhe Bays.--The sum of the distortions of 
the tube section due to bending and shear of the tube walls must at each frame be identical 
with the shear strain of that  frame, and the shear strain of the root frame being zero, this 

* Note tile close correspondence to the second difference of the P's. 
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condition applies equally to the differences determined in §§11.2, 11.3 and 11.4. 
then lead to the system of equations. 

0~r (Pr-1 -- Pr)-~- '1" P r + l -  { ~)'r( 1 + l ) +  ~r-1}pr 
~r 0r+l 0r+l Or ~r 

{~'r ( 1  + 1 ) } P r _ l  , r - 1  pr_2 
+ 0 - - -  

+ 

0r-1 0r-1 

K{30~'P0 + 3(o1' + ~2')P~ + ... + 3(e/-~ + 0r'-~) Pr-~ 

@ (30 / -1  @ 2~o/)P~-i + 0r 'Pr} 

Tr " 
--~r T 

These identities 
a 

4Gws 
s ( ~ _ h  a d a n d K  = 3EA where 7r --  2h:. \ - L  / w 

This sys te~  of equations* is set out in tabular form in Table 1, where their structure is more 
easily seen. If any s~ or tr be zero, the equation.in which it occurs reduces to 

L 2 T r . 

P ~ - I - - P r  = i Or wd  L ' }, 

the remaining equations are not affected. 

II.6. 

or  

Twist of the Tube.--The true twist of the tube over the rth bay is 

dsr ~} Pr-1 --  Pr (1 TrOrL 1 (1 + --  • - - - -  
2Gwd ds~ wt~ / 2Gdsr 

dsr ) 
dSr)} 
ZVtr 

TL s ( orTr ( dsr ~ (Vr -1 -  Pr) L wd ( 
, 2Gwsd ~ sr ~ - T -  1 + w t r / - -  T L2 1 

where T is some convenient s tandard value of Tr. The total twist can be found by summation. 

The rotation of the upper and lower surfaces differs from the true twist by half the shear 
strains of the flames ; this difference is usually quite negligible. 

If s~ is zero, the twist due to shear of the top or bottom surface over the cut-out can of course 
assume any valde, so that  in this bay the top and bottom walls cannot affect the distortion of 
the sides. .Accordingly the twist in this bay, determined b y  the side walls along, is 

{(P~-I --  Pr) +T~orL/w~/Gwtr plus half the expression for C r -  ¢r-1 at the end of §11.2. 

2Tr0rL which is the rotation due L 2 Tr the first term reduces to Gw2dfr Since Pr-1 - -  P r  = 0 r  wd L ' 

to shear and the complete expression for the twist becomes 

Gwsd 2 2o~ @ T + 4 - T  { 3ol'Po + 3(~1' 4 02')P1 - ~  " "  

-t- 3(0r ' -2  + 0r ' - l )  Pr -2  -[- (3~°r'-1 @ 20r ')  Pr-I + ° r ' P r } ~ "  

* Table 1 would be considerably simplified by differencing in rows ; but at the expense of the loss of tile easy treatment 
of cas~s in which parts of the tube walls are cut away. Moreover although the difference Tr -- Tr-1 is the torque applied 
at the rth flame, this difference results only if ~r = fir-l, and in any case the transmitted torques Tr are needed for 
computation of twist and shear stress. See §II.8 and cf. Part IV. 

g 
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I1.7. Applicatio~z of Method.--The computation is conveniently carried out in tabular'form, of 
which four examples are given. Example 2 includes literally all the working necessary apart 
from additions or multiplications done mentally or by slide rule. 

These examples are intended primarily to demonstrate the method;  but they have in fact 
been chosen fcom the series of tubes previously investigated by Alhvright using \Villiams's 
method of R. & M. 1761, and it is of some interest to compare the results. Referring first to 
the tube without cut-out, we have the following comparative values of the twist under unit 
torque : 

P 

Allwright's investigation (infinite nmnber of rigid frames) . . . . . .  0.3905 

Present 
Paper 

Frames at 0.1, 0.3, 0.75 and 1"0 of the span . . . . . .  0.3989 
Frames at 0.75 and 1.0 of the span . . . . . . . . . .  0.4077 
Rigid frames at 0"75 and 1 "0 of the span . . . . . . . .  0.4076 
Frame at 0.75 only of the span . . . . . . . . . .  0.4294 

For the tube with cut-out 0"2 span long with its centre line at 0.2 of the span (Example 2), 
Allwright gives 0.896 and the present paper 1.099. With the same cut-out now with centre 
line at 0.4 (Example 3), Allwright gives 0.924 and the present paper 1-153. For a cut-out 
0. I long with its centre line 0.15 from the root, Allwright gives 0.465 and the present paper 
0. 567. 

In the case bf the tube without cut-out the comparison is quite satisfactory ; but in the other 
cases the differences are rather larger thal~ had been expected. However, all tile differences 
are in the right direction, and the fourth example with eight frames more than halves the 
difference between the two twists for tile 0.2 cut-out at 0"2 span. 



11.8. Examples~ 
Table 1.--Equations for the 

Determination of the Boom Loads from the 
Values of the Torques in the Bays. 

...,'{¢-e, L4~-~.L - . -4 .~ ,L-4-- -e , , .L ---,-I~,;'-~,_ 

.,>v'A,'./A; / . / .Aa 
..._! 

0 

FIG. 5 

P~ 

(~1+71) 
2K¢1' + - -  

01 

3K¢~' -- 7__!I 
01 

3K ¢,' 

3KQ( 

3Ko~' 

K ¢1' 

P1 

• % + 7 1  71 

¢1 " ¢2 

, 71 ~.+Yl+T2 
K ( a o , ' + 2 q ~ ) + - -  q -  

¢I ¢2 

~2 
3K(¢1'+ qe') --  - -  

¢2 

3K(ql'q- ¢2') 

3K(01'q- ¢2') 

P2 

}'1 

¢2 

K o2' 
C(2 -I- 71-}- Y2 Y2 

02 03 

K(3o(+2Oa')-t- 7~ +%q-y2+ya 
02 03 

73 ' 
3K(0(q-qa') -- - -  

03 

72 

0a 

P~ P 4  

K0a' 
o~a-~- Y2-]- J"3 Y3 

03 04 

Ya =~_q-Yaq-Y4 
K(aoa'+2o4')+ +- 

0a 04 

3K(q2'+ 0a') 

T~ 

3K(oa'+0a' ) --  _ _  
Y4 

= A  L 

T2 
L 

7a Ta 
= fla qa . L  

%+Yaq-Y4 74 T4 
KO4' - -  = /~4 

0~ 05 I. 
I 

I K(304'+2O5') + 74 q = //5 
~5 -Jr- ~4-]- 75 T5 

0~ 05 L 04 

s( s 

Notes.--er' = er -~-r' K = - 3 E A ' ~ r  = --Sr 1 + ~ 7 ~ r j T  T ,  ~r = --Sr 1 - - ~ r  ,'Jr = ~ r \ - - ~ - )  - ~ "  

A and s are any convenient means of the values of Ar and Sr respectively. Tr is the torque transmitted over the rth bay, and Pr-1 is the boom load at 
the inboard end of that  bay. 

• 1 Wr ~ ( P r - l - - P r )  L wd ) in top and bottom. Tr ~1 (pr_l--Pr)L wd in the sides and 2w~sr 1 -- The shear stresses in the rth bay are 2wdtr ( + Tr 0rL 2 Tr 0rL "~ ) 

TrL s I ( d s r )  ( P r - l - - P r ) L  wd ( d s r ' ~ )  
The twist over the rth bay is 2Gwsd 2 Sr Or 1 q- W~r -- Tr L~ 1 -- wlr'J ! 

l =o K L 3e~'P o + 3(~1'-+-~2')P1 -{- ... q- 3(~r-2 q- 0r-l) r-2 q- (3~r-1 q- 2¢r )Pr-lq-0r Pr if Sr 
4 Tr 
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Example 1.--Plain Tube without Cut-out--No Added Booms. 

w/L= 0-2, d/w = 0-25, A = 1/6 (ws "+ td) = ws/6 (1 + td/ws).= ws/4 in all bays. 
Torque T applied at frame 3. 

Bay 1 Bay 2 Bay 3 Bay 4 Average Value Notes 

er' = .°r 0" 1 0" 2 0" 45 0" 25 Specified 

Ar/ws ¼ ¼ ~} ¼ ¼ K ----- 2 (G/E --= 3/8) 

Sr/S 1 1 1 1 1 Specified 

tr/s 2 2 2 2 Specified 

hr/S 1 1 1 1 Specified 

~r O" 045 O" 045 O" 045 O" 045 

fir 3 '5  3"5 3"5 3"5 

Yr 0'001 0"001 0"001 0.001 

1 1 1 0 Tr/T 

Table 1 Po P1 P~ P3 

1st eqn. 0.860 --0-265 0"005 - -  

2nd eqn. 0 '590 1.645 0'163 0.002 

3rd'eqn. 0.600 1.795 3.109 0.792 

T/L 

4th eqn. 

3.5 (3.500) 
, . - ]  

3.5 (3.50o) 

3.5 (3-5oo) 

0' 600 l '  800 3- 898 3' 890 0 (0" 000) 

0 6  . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1st × 0.86 0.600 • --0.1849 0.0035 - -  2.442 

1- 6729 

.0.005 

1.9849 

1.8578 

0"60 
2nd × 0"59 0-600 0"1658 

0"789 
157.8 

3.8945 
1.9621 

0'1623 
0.0874 

155-8 
1 

1"8747 
1 

0-0022 

3,098 
619-6 

3"890 
1.9598 

0"0022 
0.0012 

617"6 
3.9640 

1"9586. 
1.0448 

2.9192 
1 

3.559 

- - 3 - 5  
--700.0 

--2.442 
--1"2303 

1.117 
0'6013 

--698-7 
--4"4846 

--1.8316 
--0"9770 

--3.5076 
--1.2016 

Boom Loads 4.2465 0,5784 

Pr-~--Pr 3" 6681 0- 3000 

] Side O" 6834 O. 5075 Shear l 

J 

stresses [ Top 0"6332 0'9850 

Twists 0- 0402 0" 1112 

0.2784 

1.4800 

0,5164 

--1.2016 

--1.2016 

--0-0240 

0.9671 0.0481 

0.2466 "0.0053 

× T/L 

× T/L 

}-x × T/2wds 

TL/Gwds 2 

Specified 

Check back 
shows 
accuracy 
maintained 

Twist at load 

0,3980 

'1, . ' 
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Example 2. Plain Tube with Cut-out--No Added Booms. 

(As Example 1, but with top surface of Bay 2 removed.) 
wfL = 0.2, d/w = 0.25, A = wsl4. Torque T applied at Frame 3. 

Bay 1 Bay 2 Bay 3 Bay 4 Average Value Notes 

Or 0" 1 0" 2 0" 45 0" 25 . Specified 

ArlWS -~ 1/12 ~ ¼ -1-~ K = 2 (G/E = 3f8) 

Or' 0.1 0.6 0"45 0.25 

Specified with cut- 
~rls 1 0 1 i 1 "out  

Cr/S 2 2 2 2 Specified 

1 1 1 1 Specified hr/s 

0-045 0- 045 0.045 ~r 

fir 3"5 3"5 3"5 

7r O" 001 O" 001 O" 001 O" 001 

Tr/T 1 0 

Table 1 Po ! P1 P~ Pa T/L 

1st eqn. 0.860 --0.265 0.005 3.5 (3.513) 

2nd eqn. 1 - -  1 20 (20) 

3rd eqn. 0.600 4.195 5.510 0-792 3.5 (3.506) 

4th eqn. 0. 600 4.200 6. 298 3.890 0 (0.008) 

o'-6 
lst" × - -  

0.86 
0.600 --0-1849 

0-005 

4.3849 

0.0035 

0.788 

6.2945 

O- 793 

10.6794 

0.9960 

9"6834 

3.098 

3"890 

3"098 

3"890 

3-890 

2.442 

- -3 .5  

--2.442 

--3.6 

--90.140 

--4.520 

--85"62 

Boom Loads 7.574 11.158 --8.842 1.102 × T/L 

Pr_l - -Pr  --3-584 20 --9"944 1"102 × T/L 

Shear f Side 
stresses ~ T~p-- 

0-321 f '000  0.389 0.022 

t × T /2wds 

Specified 

Check back values 
in brackets show 
torque represented 
to ½%. 

Diff. 4th--3rd.  

0.6 
Diff. 4 t h - - l s t  × 0"86 

Eliminating 
P2 from 2nd 

1-358 0 1" 221 --0" 044 Twist at load 

Twists 0- 0674 0. 7352 0.2966 --0" 0048 × TL/Gwsd2 1- 099 
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Example  3 . - - P l a i n  Tube with C u t - o u t - - N o  Added Booms. 

w/L = O. 2, d/w = 0.25, A = ws/4. Torque T applied at Frame 3. 

Or 

Ar/ws 

Sr/S 

tr/s 

hr/s 

Cr' 

~r 

~r 

Tr/T 

Table 1 

Bay 1 

0.3 

0.3 

0.045 

3.5 

0.001 

1 

0"2 

1/12 

0.6 

0.001 

Bay 2 Bay 3 

0"25 

2 

O" 25 

0" 045 

3 '5  

0.001 

Bay 4 Average Value 

1 1 

0"25 

1 

1 1 

2 

1 

0.25 

0.045 

3.5 

0.001 

0 

Po P1 P2 Pa T/L 

1 st Bay 1.3533 0. 4417 0" 005 3'  5 (3" 500) 

2nd Bay - -  1 --  1 20 (20) 

3rd Bay 1. 800 5" 395 4" 793 0" 308 3" 5 (3" 499) 

4th Bay 1" 800 5' 400 5' 096 2.692 0 (--0- 001) 

1.800 
1st × 

1- 353 
1. 800 

Boom Loads --0" 596 

'r l - - P r  --10 '460 

O. 326 

O. 5875 

0.005 

0"0066 

O" 303 2"384 

4.6563 

- - 3 ' 5  

4.8125 5-0894 2.692 --4.6563 

0.308 2.384 --3"6 
1 7-7403 --11.6883 

9.9019 2.692 --100.906 
1 0.2719 --10-1906 

7.4684 --1-4977 

- -  10- 136 

--9- 935 

0.301 

1.397 

O. 1841 

1.349 

+9 .  864 

0" 7548 

20 

--0.201 

--0 '201 

--0.004 

0" 008 

0' 0009 

×, T/L 

x T/L 

× T/2wds 

× TL/Gwsd ~ 0'2145 

,hear f S i d e  
stresses ~ G  

'wist 

Notes 

K ---- 2 (G/E := 3/8) 

Twist at Load 

1. 153 
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Example 4.--Plain Tube With Cut-out--No Added Booms. 
(As Example 2, but with more and rigid frames.) 

w/L = O. 2, d/w = 0.25, A : ws/4. Torque T applied at Frame 6. 

Qr 

Ar/ws 

sds 

tr/s 

hr/s 

~r' 

% 

& 

T~/T 

Table 1 

P r  -1 

Pr- J--Pr  

Twist 

Bay 2 Bay 3 Bay 4 Bay 5 

O" 05 O' 20 O" 1.5 O" 15 

1 ! 
19. 4, 

0 1 

0"05 

i 

1 1 

2 

cO 

0.05 

2 2 2 

co co 6o 

0.05 0"60 " O. 15 

1 

1 

2 

oo 

0.15 

0"15 

1 

1 

2 

oo 

0.15 

Bay 7 

0"15 

1 ;[ 

1 

2 

O9 

0.15 

O" 045 

3-5 

Bay 8 

0 '10 

1 

1 

2 

co 

0.10 

K = 2  

0.045 

3"5 

0 

0.300 

0.300 

0.300 

0 . 3 0 0  

0-300 

0-300 

II 8" 1104 
.I 
"1"3335 

0"045 0.045 

3-5 3.5 

0 0 0 

1 1 1 

--0.800 

1-400 --0-800 

1 --1 

0"600 3.900 4.500 

0.600 3.900 4.500 

0.600 3.900 4-500 

0-600 3.900 4.500 

0-600 3.900 4.500 

1.78 - -0 .88 

4"70 4"50 --0 .80 

6-7769 10-3719 --9.6281 0 

20 --3" 5950 

0'  0439 

--9.6281 

0.045 

3"5 

0 

1 

0 

1-800 

1.800 

1.800 

1.800 

1. 800 

O. 045 

3-5 

0 

1 

0 

1.800 

1.800 

1.800 

1.800 

1.9444 

0 

0 

0 

1- 800 

1.800 

1.800 

- -  1.9444 r 
-- 1"9444 

0"045 

3"5 

1 "75 

1 "75 

0 

0 

3.5 

3.5 

20 

3 '5  

3.5 

3.5 

0 

2"80 

0 

0 

0 

- -3 .5  

0 

× T/L 

0-6237 0-1265 0'0844 0.0085 × TL/Gwsd 2 

Shear load 
in 

per unit length 
of edge 

Frame 

- - 9 8 . 6  

t Frame 
2 

171 "9 

Twist at Load = 0.977 TL 

Frame 
3 

--164.2 

Frame Fram, 
4 5 

64.2 13.0 

Gwsd ~ 

.' Frame 
6 

- -25.9  

Frame Frame 
7 8 

13.0 0 × T/2L 



11.9. Uni form Tube with In f in i te  Number  o f  Rig id  F r a m e s . - - I t  is useful to demonstra te  the 
re la t ion  of the t r ea tment  in this par t  to the, t r ea tment  by  Will iams (R. & M. 1761), by  considering 
the case of a u~iform tube with an infinite number  of .rigid frames. In  this case ?'r is zero, 

( ( Or = Or = O, 0~r = C~ = 1 + ~) i.2 and G = fi = 1 - - ~ )  d " The first differences of 

Table 1 (first row, second row minus the first, th i rd  minus  the second, etc.) then reduce to 

(2K0 + c~)~ Po + (Ko --~)°~ Pl ~---fl T1/2 . . . . . . . . .  " . .  (1) 

( . ~Z) ( 2~Z) ( ~Z) Zr - -  Zr- -1  
K0 ~, P r - - 2 @  4Ko + P r - - l @  K o - ~  Pr = fl L ' (2) 

and (K0 -- 

We may.wr i t e  

Pr ~1 

and drop the suffixes, and 

,Tr - -  1 = Tr - -  O L ~ , 

x being measured outwards  from the root. 

To-- 
~) Pn--1 @ (4Ke + P~ = f i  ---L--- "" "" 

- -  d ~ ) r  ~ - - ~ - ( o L ) 2  ( d x 2  r @ ' ' ,  . 

(3) 

Subst i tu t ing  in (2) we have 

d2P dT 
6 K o P - - 0 e L  ~ d x  ~-=  0fl d x '  "" 

in (1) 

3 K e P  -- eL --dP-- ½ec~L 2 d~P T, 
dx dx ~ - -  i~- i2 '  

and in (3) 

( 5 K 0  + -~ ) P + ~ L  
dP d2p 

~, -dx - - ~ o ~ L 2  dx 2 

to terms in e2. 

Proceeding to the limit e -+0 ,  we have 

(4) 

. . . . . . . . . . . .  ( s )  

d T  
d x  . . . . . . . .  (6)  

d2P 6K fl dT 
dx °" ~L 2 P - ~ - ~ L  ~' dx -- 0 . . . . . . . . . . . . . .  (7) 

over the whole length of the tube wi th  d iscont inui ty  -{- f iT /~L 2. in dP/dx  at any  section where a 
concentrated torque T is applied. In  addit ion,  at the free end equation (6) reqdires P =- 0. 

The solution is of the form P : H cosh #x -t- J sinh/~x, wi th  ad jus tment  of the constants  to 
the end conditions, where 

2 _ 6K _ 8Gst 
c~L 2 EA (wt + ds) " 

* The torque T, in equation (5) is really the reaction torque and should be regarded as a torque -- T 1 at this section. 



Converting to Williams's notation 
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A _ 2b ~11 + 2a  2 _ 2a2b 2 1  (a211 + b2I~), w = 2a,  d = 2b,  
t ,  

1 1 
t -- and s -- 

2 G b r  1 2 G a r  2" 

Making these substitutions, 

4 a % 2 / E  
~,2 __ (a211 + b2I~) (b2rl + a2r2) , as given by Williams. 

This comparison demonstrates that  the use of the conception of " effective boom area " is 
fully consistent with the treatment of R. & M. 1761. 

An interesting special case arises out of equations (1) to (3) and is partially illustrated in 
Example 4. In a uniform tube if e be chosen so that  e2 = co/K, boom loads occur only in the 
two bays on either sides of frames at which torques are applied, and the value of the boom load 

at the frame at which a torque T is applied is /~T , except at the root where the boom load is 
6v/K~ 

x T . .  The doubling of the boom load at the toot ' is  in a sense due to reflection ; the bulkhead 
3~/K~ 
effect of the root fixing could be reproduced by reflecting the tube in the root plane and twisting 
both ends in the same sense against the (double) reaction applied at the centre. 

(66203) B 
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PART I I I  

The Torsion of Tapered Tubes af Rectangular Section with Rigid Frames 

III.1. Introduction.--In this part the general method of Part  I is applie d to t h e  torsion of 
tapered tubes of rectangular section, using the rules for the bending of tapered beams derived 
in the Appendix. The tube is assumed to be symmetrical about two perpendicular planes through 
its axis, but the taper and the variation of section spanwise is entirely arbi t rary .  

111.2. General Scheme of Present Method.--The general scheme of the method is to establish 
systems of equations relating values of the boom loads directly to the values of the applied 
torques, and by solution of these equations under the conditions determined by the nature of the 
end fixings directly to compute the values of the boom loads. Associated with the torques (T's) 
are the twists (O's), and similarly with the boom loads (P's) are associated the warpings (e's). 
At this stage it is not necessary specifically to define the conceptions of boom load and warping ; 
it is sufficient to regard e as a numerical measure of the warping of the tube cross section in some 
prescribed form and P as a numerical measure of the corresponding system of axial loads. I t  
is later assumed that  plane sections of the tube walls remain plane but this is not necessary to 
the general argument,* and any other prescribed form of warping might be used. Similarly, 
the precise definition of the boom load P must be varied in sympathy with the prescription of 
the form of warping. The definition of P later adopted is consistent With the assumption that  
plane sections remain plane and is thus completely in accord wi th- the  general method of 
R. & M. 1761 ; in comparison with M s and M s of that  paper, P here represents no more than a 
change of notation. 

Considering any section of a tube between two cross sections 0 and 1, and using suffixes to 
distinguish between the two ends, it must be possible to establish relations in the forms : - -  

0 1 -  9 o-~ BxT 1 + C1P o + D1P 1 . . . . . . . . . .  (S) 

- -  eo = C1T~ + H I P o  + J~P1 . . . . . . . . . .  (9) 

e~ = D1T 1 + JtP0 + K ~ P 1  . . . . . . . . . .  (10) 

The warping e being measured in the same sense at each section, e 1 and e 0 are in effect of opposite 
sign, so that,  if P0 = 1 produces e 1 = J1, P1 =- 1 must produce e o -- Jp The other correspond- 
ences (C and D) also follow by the reciprocal theorem, but, of course, it is assumed that  boom 
load and warping are so defined that  multiplying constants are avoided. In consequence the 
forms of equations (8), (9) and (10) have to be modified by the introduction of geometrical 
constants multiplying (01 -- 00), %, e 1 and T 1 (see §III.6 below). 

If consideration is confined to a section of the tube between two rigid~ frames, the values of 
the coefficients B~ C~, etc., may be computed direct ly;  this computation is carried out for a 
doubly symmetrical but arbitrarily tapered tube of rectangular section in §III.4 below, and the 
forms of the coefficients are shown in §III.6 where their numerical evaluation is discussed. 

By consideration of the next bay (1 to 2) (9) above gives -- e 1 = C2T~ + H2P x + J2P2. 
Eliminating e 1, and thus satisfying the condition of continuity from bay to bay, leads to the 
relation ' 

J1P0 + (H~ + K2) Pl + J~P~ 4 2 D~Ta + C2T ~ = 0 . . . . . . . .  (11) 

* Cf. The comparison between R. & M. 1619 and R. & M. 1761 ; where the conditions, under which the ordinary 
assumption that plane sections remain plane may lead to serious error, are explored. 

t If the frames are not rigid, the forms for 01 -- 0 d, e o and e I will include terms in the frame distortions. These can 
afterwards be eliminated by correlation with the flame loads, which are functions of the P's and T's ; but the process 
is complicated and should seldom be necessary. The smM1 effect of frame stiffness is demonstrated in Part I I  and by 
the example in §III 7. 
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This relation is one of a system equal in number to the number of bays, the forms of the first 
and last relations of the system being slightly modified by the end conditions, e.g., P z 0 at a 
free end, or e ---- 0 at a bulkhead. The values of the coefficients Br, etc., having been computed, 
this system of simul-taneous equations in the P's ihay at once be written down, and by their 
solution the values of the P's are determined. In general no difficulty or abnormal loss ~ of accuracy 
is encountered in solving these equations. 

The values of the P ' s  having been determined, the twists follow from the expressions for 
01 -- 00, etc., and the shears in the tube walls and the frame loads may also be computed from 
simple relations to the P's and T's. 

Neither variation of the thickness of the tube walls from bay to bay nor variation of the 
effective area of the booms causes any difficulty ; they merely affect the values of the coefficients 
Br, etc. In particular, if any tube wall be completely cut away over any bay, the same general 
method is still applicable. The shear force over the absent bay must be zero, but the shear 
strain takes the form 0/0 and is, of course, arbitrary. As a result,, in place of the two relations 
of type (11) above, which include both the P's at either end of the absent wall, two other relations 
are found, one involving these two P's and these two only, and the other these two P's and the 
pair next on either side. Again the setting up and solution of the simultaneous equations in 
the P's is straightforward. 

111.3. Special Assumption and Range of Applicability of Present Treatment.--The general 
method so far described could be developed for use for any four-sided tube, no matter  how 
steeply tapered ; but, since in practice the rate of taper is seldom likely to be great, it is worth 
while to make use of this restriction in order to simplify the derivation of the coefficients Br, etc. 
The detailed development is therefore based on the assumption that  the angles of inclination 
of the tube walls and tube  edges to the tube axis are all so small that  their cosines may be taken 
as uni ty  ; but  sines of these angles cannot be disregarded. In order to simplify the presentation 
of the analysis it is here assumed that  the tube is doubly symmetrical about its axis. The 
coefficients for a tube of trapezoidal section with one plane of symmetry  are derived in Part  1V. 
Apart from these two assumptions there is no restriction on the type of taper ;  the taper in 
adjacent walls need not be the same, nor need the taper be uniform from bay to bay. In cases 
of non-uniform taper from bay to bay the reactions at the frames necessary to maintain equi- 
librium of the booms are imposed on the frames ; in exceptional cases the frames may as a result 
be liable to buckle in compression. 

§111.4 below describes the derivation of the forms of the constants Br, etc., and the establish- 
ment of the relations of type (11) in §Ill.2 above. The compatibility of the computed 
deformations is demonstrated in §Ill.5, and the forms of the constants Br, etc., are summarized 
in §111.6, where the computation of these constants is discussed. The application of the method 
is illustrated by a worked example in §111.7. In this application the values of certain rather 
awkward integrals are required; a fairly satisfactory method for the computation of these 
integrals is described in §111.6. Apart from these integrals (tables of values of which might 
easily be prepared) §111.7 contains all the information necessary for the application of the method; 
and all the computation involved is straightforward arithmetic, involving no other reference to 
tables. 

The case of uniform conical taper, which represents a special case of the general problem, 
is treated in Par t  V, where the results obtained are compared with results obtained by Williams 
in R. & M. 1761. 

111.4. Derivation of Coefficients.--(a) Deformation in a Bay.--In this section, by consideration 
of the deformation of a single bay of a tapered tube between two rigid frames, formulae are 
obtained for the twist between the two ends of the bay and for the warping of each end section 
in terms of the boom loads at the two ends and the torque transmitted. 

(66203) B 2 
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Notation as in Fig. 6 

dl w 1 
d o  = % = th WO 

~ ~ ¢ ~  (P9 - -  P1)/; - F v t  
~o  ~ d o .+ w o 

c~ e 
X ~ ~ ~  ,~w s Torque t ransmi t ted  

A -  ------- Pl Po ~e.~ 2 - - - -  - -  "~ ~ ~ T = F 7 2 / 1 -  F ' d  I -@ (d0w I - - d l W 0  ) T "  

FIG. 6. 

F T Po P1 
Hence ~ -- ( + 6(1 fll - 1  ) / ( ~ 1  + fl~) (12a) 

- -Wodo  ; . . . . . .  

F'  T P0 ' 1°1 
~0 - ( + fll ¢Xl ) /  (~1-~- fil) (12b) wod o 1 - l -  . . . . . . .  

Boom load P at distance x from section 1 = P1 + Fx/d  + F'x/w, where d ( ---- c~d0) and w ( =  flwo) 
are the depth  and width  at section x. Effective area of section of booms A ( =  yA0) may  vary  
over the length of the bay. The length 1 is presumed to be so large in comparison with the  
differences d o -- d 1 and w 0 -- w~ tha t  squares and higher powers of the  ratios (d o -- dl)/l and 
(w o -- Wl)/l are negligible. As a result dist inct ion between the directions of the tube edges and 
of the tube axis is unnecessary, in so far as only cosines of the wall angles are involved ; on the  
other hand sines of the wall angles are not negligible (see below and §III.5). 

Deflection of front wall downwards ~ -- a0 ") at section x, relative to original section 
Deflection of top surface backwards e -- c 0 ~- at  frame 0, with appropriate  suffixes at 
Rota t ion of section 0 --  0 0 J ends of bay. 

01 --  0 o = 2(61 - -  ~o)/y_)l = 

0 X 0 X 0 X 

l l 1 l  l i  

2eol (do + dl)Fl'] 
do + - 2Gtdo ~- a (laa) 

• - -  2 (~1 - ~ o ) l d l  = 

0 X 0 X 0 X 

9, [ 2  i f f dxdx f f xdxd~ ~,ffxaxdx~ 2~o; ~ (~O+~l)r";] . (13b) 
dl ~ , P1 -Aw- + F A d ~  + ~ 7  t + -w o 2Gswo ~. • 

" l 1 l 1 l l 

where t and s are the effective shear thicknesses of the sides and top and bo t tom respectively. 

Elimirmting e o by mult iplying (13a) by w]do/l 2, (13b) by wodl/l e and adding 
o u 

wod o 41 1 ion-Oo)/   + - I 'ff(  
1 1 

0 U 0 U 

F 1 1 ) ududu F' 
+~off(o~ ,~ ~, + ~ o f f (  

1 1 1 1 

1 1 )  ududu  

1 ) dudu 
fl r 

E I x 
+ (1 + C~l) F (1 + ill) where u ------ 

Gtl ~ ' 1. 



21 

or 

where 

F t  4;2 1 (o~- 06)(~ + t~) ; - wodo { + Is d---d -~o 

+ (1 + cq) EA° F (1 + ill) EA° F' 
Gtw o d o Gsdo Wo . . . . . .  

O U o U 

i x _ _  - ff(1 1)dudu L _ _ f f ( 1  1)ududu 
1 1 1 1 

(14) 

and 13 --- 

Substituting for F and F' from (12a) and (12b) 

wodo (02 _ 0o ) (~ + ill)s EA ° 41 s 
wodo EAo 

--- [ I s - - I 3 +  4l s I (1 +oq) Gtwo 
w°d° [~1( 1 + ~l) EA° 

-~- [~ZlI s + fllI3 + 412 Gtw o 

+ [ (~  + l~) 11 - t112 - ~113 

wodo EAo 
4l s ( tl  (1 + ~1) Gtwo 

Elimiuating (01 -- 0o) by subtracting (13b) from (13a) 
e o EA o i 4 _ ~ +  F + F' 
• b (~1 + ill) b - [ I~ do I 6 ~  

wodo( EA o F EAo F '}]  
+ - ~ -  cq(1 + c~1) Glwode + is(1 + l~) Gsdo~o 

where 

o U 

I ) ududu ff(- -I 
1 1 

EA o Tl 
- - - +  (1-+- tl) G~-~ol] wod o 

EAo 
11 (1 + ill) G~-~-o 1leo 

EA° )]P1 cq(1 +iix) ~ ; 

O U 0 11 

OC 1 
ct 7 oW 

0 U 

andI. = f f . (" l  + t~'~ud~d~ 
c~ l / °  l r  " 

1 1 

Substituting for F and F' from (12a) and (12b) 

(gl + 31) ~' EAo 

+ 

+ 

wod o EA o EA o T1 
" I5 - - I6+  4--~-{0~1(1 +~l) GtWo ill( 1 + fll) G-~o } ]wod o 

~1I~ + l~I 6 + ~ -  ~ -+ t l  2 (1 + 11) Gsdo 

"(CZl "-~ ill) I~ - 1115 - ~ z 1 I ¢  

.. (15) 

. .  (16) 

w°d° EA° EA° [ ] P1 
4~ 2 0~lill ((1 + (Xl)~--~0 + (1 + ~1) G---~o j (17~ 
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For the warping e I at section 1, by considering rotations of sections of the front and top walls, 

and 

O O O ' 

E ,P1 A-d + F Ad 2+ dAdwi 
l l 1 

(do 2 - -  dlZ)F w o - -  w 1 
2Gtdo2dl- + (01 --  00) - 2~/ - 

o o o 

( el~i --W0/e0"~ t~2 [ [ dx ( xdx F, ( xdx, 1 : P , ,  
- X w  J A w  ~ J 

1 1 1 
(w9 ~ -  wl 2) F'  d o -  d 1 

2GswoZWl ( 0 1 -  0°) 2l . . . .  

The terms in (01 -- 0o) arise from the inclination of the walls to the tube axis. 

Eliminating eo* by multiplying (18a) by d o and (18b) by w o and subtracting 

e~ (% - ~ 1 ) ~ A o  = l [ °hflI ( I ~ P 1 - - ~ I S d o o - / l g w o )  
F F '  

wodol EA o F 
@ - ~ -  ( fll (1 -- .12) Gtwo do 

where 
o 

IT=f(' cx 
1 

Hence 

gl ~-/ (~1 + f l l ) 2 E i o  

EA o F'  t ' 
~i (1 - -  312) Gsdo Wo. 

Wodo 4l~, (0 i -  0o)~1/~i(2-- c h -  /~,) E y 0 ]  
A 1  

o 0 

1 ) d u  f ( 1  1)UdUandi = f ( 1  1)udg 
' c~ ~ ~7 9 o~ ~ "y;" 

1 1 

+ ~i~i [ 

= [__ gl_~!___ {(Ct 1 _@ i l l ) ( l s -  I 9 ) -  ( 2 -  ct 1 -- / ~1 ) ( I~ -  Ia)} 
(X1 --  /~I 

w°d° J ~1 (1 -~ gl) EAo EAoI ] Tl 
- -  -4l ~ [ Gtwo gl ( 1 -~ ill) Gs-do J- _ wod 0 

~1 + ~ (o~lls + ~i i9 ) _ 2 - ~ - -  ~1 (o~i2 _ ~113) 

. . . .  0 S a )  

. .  (18b) 

~ 1 ~  i + [ + a,l (% 

wodo EAo EAo 
4l 2 {(1 + cq) + (1°+ /~1) I] Po 6tw o Gsd o 

+ fll 17 -- fllls -- ~J.) 

( 2  - -  g l  - -  ~ i )  (0¢1 + ~1 I1 - -  ~i~ - ~ziI3) } 

w°d° { - 4 l  2- Gtw oEA° ( 1 + 3 ~ )  EAOGsdo!] + ~1 ~(1 + % )  + ~ 2  j pi • i (19) 

*. BV eliminating e, a further relation between e o, 0~ -- % P~, F and F'  may apparently be obtained ; but, using 
equat{ons (15) and (17), this relation proves to be an identity. This is demonstrated in §III. 5. 
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By the reciprocal theorem, the coefficient of T/wod o in (17), of T/wod o in (19) and of Po/l in (19) 
must be identical with the coefficients of Poll in (15), P1/1 in (15) and P1/1 in (17) respectively. 
These identities are proved in §111.5 and the evaluation of the coefficients is discussed in §111.6. 
Here it is necessary to conclude only that  equations (15) (17) and (19) may be generalized for the 
rth bay in the forms 

_ Tr / r  EA lrl wr-ld4lr 2r--1 (0 r __ 0 r _ l  ) : Br wr_ld~_~ + CrPr-, + DrP~ . . . . . . . .  (20) 

- -  EA er-1 __ Cr Tr/r  
1 wr_ldr_~ + H,.Pr-1 + J r P r  . . . . . . . . .  (21) 

Trl~ 
JrPr_i ,  K r P  r . . . .  . . . .  (22) E A  @ = D r w r _ l d r _ l  -t- -~- 

A and l are convenient standard values of Ar and lr, e.g., in the example worked in §III.7, .A o is 
used for A and l is taken as 80 inches. The forms of the coefficients B~, Cr, Dr, Hr, Jr and Kr 
are given in §111.6, section (6) ' 

• (b) Deformation over a Cut -ou t . - - I f  s be zero, F '  = 0 and 

~ l p o  _ o~[p 1 _ T l  ( 2 3 )  
w o d 0  . . . .  ~ . " . . . . . . . . . . .  

This is consistent with equations (15), (17) and (19) ; but regarded as formulae for 01 --  0o, e o 
and e 1 these equations become indeterminate in the form 0/0 Since F'/s may assume any value, 
equations (13b) and (18b) disappear, and the values of 01 --  0 o and e 1 are defined in terms of 
Po, P1, T and e o by equations (13a) and (18a) respectively. Taking into account equation (23), 
we again have two equations relating % e 0, Po, PI and T with a third relation defining 0, --  0 o. 

Using the notation of §111.6, namely, 

w°d° R 1, (1 + cq) EA° 
41 ~ --  Gtwo - -  ~1, 

A 

0] 

c~ ---- ~1 + ('1 --  cq)u, fl = fil + (1 - -  ill)U, • --  A 0  , 

1 

__ O0 : [ [ f flc/~du _{_ (°~1 - -  f l l )Rl~Â } p 0 

o 

1 

0~2y 
O 

el ~1 go 
l ~1 1 

1 

_ [ 0¢2), 
O 

- . .  

( 0 ~ 1 -  fll) 2 R1~1 } Po 
~1 flÂ 

1 

o 

~1 - -  fll  ) Tl 
°¢1 fil R i l l  ~ " " 

Generalization by alteration of the suffixes follows as in §111.4 (a). 

f l rPr=l  __ Ctrp r __ Tr/r  
Wr.- 1 d r -1  . . . . . . . . . .  

EA ~ Rr (0~ -- 0r-l) = Lr Tflr Zor_ldr_ 1 -~- MrPr-1 + NrEA er-, l "" 

E A ( e r  ~ r e  ) Trlr  
L fir ~--1 = Vr Wr_ldr_ l  @ W r P r - 1  . . . . . .  

I • O 

(24) 

( 2 5 )  

(23a) 

(24a) 

(25a) 
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The forms of Lr, Mr, Nr, Vr and W~ are given in § III .  6 

(c) Continuity from Bay to Bay.--From (21) and (22) we have 

- -  E A  er-1 __ Cr Tflr 
l wr_ldr_ 1 + HrPr-1 -~ JrPr 

and 

EA ( er 
1 

From (22) 

EA er-1--  Dr_ 1 Tr-ll~-I 1 wr_#,-2 + L - ,  Pr-  + Kr-'lPr-v 

Hence 

Jr_,P,._ 2 + (H, + Kr_~) P,_~ + JrP, + D;-~ T~'_~ + C,%' = 0 . . . . . .  (26) 

Where T~' is written for Tflr 
Wr -ldr -1" 

If the" root frame (frame 0) has no bulkhead stiffness 

(K s + H2) P~ + J2P2 + D1T ~' + C~T 2' =- 0 . . . . . . . .  (27a) 

If the root frame is a rigid bulkhead e o -~ 0 and 

H~P o + J~P~ + C~T~' -- 0 . . . . . .  . . . . . . . .  (27b) 

If the root frame has a bulkhead stiffness S, so that  Po ----- cos 

( 1 
)Po + J~P~ + C~TI' ----- 0 (27c) I l l  + . . . . . . . . . .  

Similarly a t t h e  tip ; but if the tip at the end of the nth bay is free, P~ = 0 and the last equation 
of the system (26) is 

J. -1  P- -2  + (H~ + K._ , )  P._~ + D._IT. '_ ,  + CnT. '=  0 . . . .  (28) 

Equations (26), (27) and (28) define all the P's in terms of the specified T's, when the O's can be 
computed from (20). 

(d) Continuity over a. Cut-out.--If s~ ---- 0, the conditions over the rth bay are expressed by 

flrPr-1 -- ocrPr = Tr' .  . . . . . . . . . . . . . . .  (29) 
and 

~r e ) 3r ~-1 = V~T~' + WrPr-1 

and from (21) 

EA er-1 1 -- Dr-lTr -1 + Jr--1Pr-~ + Kr-lPr-1 

- -  EA@=Cr+ITr '+ I  + Hr+IPr + J~+lP~+r 

Eliminating er_ 1 and er, 

~r Jr-lPr-~ + ( ~ ) ~r , 

+ VrTr' + C~ +IT~ '+ 1 = 0 . . . . . . . . . .  (30) 

The two equations (29) and (30) replace the two equations of type (27) which would contain the 
coefficients B, C, etc., with suffix r. If the bay next to the root is cut away, and if the root is 
held by a rigid bulkhead, e 0 = 0 ;  equation (29).is unaltered and equation (30) also applies 
provided Jo (i.e., J~-l), K0 and D O are taken as zero. 
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111.5. Compatibility of Warping Distortions and Reciprocal Relations.--Eliminating el between 
equations (18a) and (18b) leads to the relation 

o o 

9 ~ o ! ~ _ ~  _ f ( ~ ,  ~ ~ ~ 7 + ~ o f (  ~' -- . c, # c~y 
1 1 

o r, { _j_ W__~O f ( ~  1 f l l ) U d , ! ~  w o d o  E A  o F 

1 
EA 0 F' 

-- ( 1 - -  B~)Gsdo wo (~1+ B,--2"1B1)-E~(o 1 -  Oo ) }. 

Substituting for e o and (o o --  01) from (16) and (14) respectively 
o 

[ OXl-{ - i l l ) f  ( 0~1 fll ) d-~ + (0~1 - -  ill) 
1 

o u 

1 1 
o 11 

(o~l+&-2"l&) f f (  1 O~ 
1 1 

1 ~'dudu 

o 

[ (0~1"+" ill) f ( ~xl fll ) '/$d'~ o~ fl my 
1 

o u 

+ t . -  f f ( + 9)  
1 1 

("1 + /h - 2~1/h) 

o u F f f ( l~ fll ) ududU ] d 
1 1 

o 

1 

o 11 
~ 1 )  udu --  -}- ~ ) - -  

1 1 

ududu 
~r 

o 11 
(~1+ &--2~l~l) f f (1~ p)l ududu]F'p7 wo 

1 1 

w°d° { + ~ (-1 + /~1) (1--cq ~) + (~1--/~1) el (1 + el) -- (al+/~l--2ex&) (1 + el)} EA° F Gtwo do 
• ~ EA o F' 

W°d°419. {(~1.+/~1) (1 --  312) (% - -  ill) 31 ( l + f l l )  - -  (~x+f11--2%fll) ( l + 3 l ) j  Gsdo Wo 

should be identically zero. 

The last two terms (the shear terms) obviously disappear. 
terms) may be put in the form 

o 
(.1 + &)[{f (ml &)du 7--- 

1' 

F F' 
with similar terms in ~ and --Wo with u_u0~y 

Each of the other three (the bending 

o u 
f f (  1 -0~1  CZ 
1 1 

u 1 and -a- for - respectively. 
Oy 

1-- Pl ) dudu P1 
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Since e -- % -+ (1 -- el) u and E = E 1  q- (1 - -  f l l ) U ,  all the coefficients take the common form 
O 0 U 

(cq2 - f l12)(f  u f d u  + f f f d u d u ) w h e r e f s t a n d s f o  r 1 u u . . ; ? ~ - ,  C~2E ~ or" ~-/))y and m a y  be r e -  

1 1 1 

garded as an arbi t rary  function. 
O 

in tegrat ing the first term by  parts f u f du 
1 

u 0 0 11 

1 1 1 1 
u 

and the first term is 

% (11 -- I3) + E1 (11 -- I2) --  CqE1 {(% + /~1) (is -- I9) 

! 
1 1 (1  u )  du 

- -  ( 2  - -  0( 1 - -  E l ) ( I 2 -  I 3 ) } :  %E1 f (  c~. / 32 ) u - . y 
O 

1 

0hi 5 + ElI6 = °cA + = I~.~ 
7 

o 

(14-  16) + & (14-  

~1 - -  E1 

- -  I13 

% E1 
0 ~ 1 -  E; {((xl + E l ) ( ~ l l s  + ElI9) 

- -  ( 2  - -  % - -  E , )  ( e , I 2  + & I s ) }  

1 1 u ( 1  - -  u )  du 

o 

E1){al ( 1 7 -  19) + E1 ( 1 7 -  Is)}~ 

- -  ( 2  - -  % - -  El) {% ( I1  - -  I3 )  + E1 (I2 - -  1 3 ) } l  
1 

1 1 )2 (1 -- u)2du 
= 0~12E12 f ( ~  -t- ~ / y 133. 

m 

0 

o 

= I23 

zero bec/mse u ---- 0 at the upper l imit  and I f  du ---- 0 at the lower limit. Accordingly, 
1 

o u 1 

f f f dudu = f u f du and the ident i ty  is satisfied whatever  the form of f. 
1 1 o 

Using the same.relat ion to t ransform all the double integrals 11 to 19 of §III. 4(a) to single 
integrals and then combining them in the forms occurring in equations (15) (17) and (19) of 
§III.4 (a), we have"  

1 
" ( 1  1 )2  u2du _ ii1 

12 -- la = J e E ~' 
o 

1 
~l 1 1 u~du 

% I 2 +  Emla= I 5 - -  I,---- f ( ~  @ ~1). ( ~ +  ~ )  -~j-- = I12 
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111.6. Computation of the Geometrical Constants of DeYormation.--From §III.4(a), using the 
results of §111.5, the coefficients in equations (20), (21), (22) and subsequently,  are 

Ar-] l 
g r = { I l l  @ R (4 + #)}r/(~r + /~r) 2 A -lr 

At-1 /, 
Cr = {I12+ R ( c d - -  fl~)}r/(e,. + fir) 2 A /r 

At-1 l 
Dr = {Ila + R (cq~-  fi2)}r/(Ctr + fir) 2 A /r 

At_ 1 l H ,  {I~,. + n (~'~ + a~)},/(~ + at) 2 A lr 

Ar-i  l 
Jr = {123 " Reef (4 + ~)}r/(% + G) 2 A l r  

Ar-1 l_ 
Kr = {133 + . R  (~2~ + ~2a)}r/(~r + &)2 A l r  

where a suffix outside a bracket  applies to all tl~e terms within the bracket  and where 
Rr = Wr._ldr-l[41r 2 

~r = (1 + cq)Eir_l/Gtrwr_ 1 (~ = dr/dr_l) 

sr  = (1 + fir) nAr_dGsflr-~ (f, = Wr/Wr-1) 

and In, etc., have the forms given at the end of §III.5. 

From §III.4(b), using the same notat ion 

. Lr = (I 1' -J- 01t)r / " U  

Mr = (I( + O()r /  A i  -' •/-- 
• l r  . 

1 
N , -  & 

I '  - 4 ~  1 Vr = (3.  + O;)r/  6 ~  

Ar-1 1 
Wr = (I~' + Oa ' ) r /  a ~ 

A 

where a suffix outside a bracket  applies to both the terms within the bracket  and where 

O , r ' =  R r l r / ~ f r ,  0 2 r ' =  (~r -- G) Olr', Oar' = (0q. --  fr) 02r' 
1 1 

I1 r' 

I3r' 

1 u(1 --  u)du 1 fudu 
f r f  ct2y ' I2r' = G f  27 

0 0 

1 1 

c~ , and I4r' -- f f2du fir f f ( 1 - - u ) d u  0c r 
~2y fir ~2y 0 

(~ ----- c~r + (1 --  err)u, etc., as before). 
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Given the numerical  values of I~l, etc., the evaluat ion of the  coefficients B, C, etc., is straight-  
forward ; but  the evaluat ion of I l l  , etc., presents some practical difficulties. All the integrals 
are derived from the three integrals 

1 1 , 1 

f d u  , ( u d u  a n d f U 2 d u  

• 0 0 0 

and their  special forKls when c~ -= fl ; but  these forms are cumbersome* and tedious to evaluate.  
A more serious objection to evaluation of I w etc., by this means  is that ,  when 0 h is nearly equal 
to ~ (or ei ther ~ or fl~ nearly equal to ~'1), the sum of the two terms in log ,~  and log, ill is much  
smaller than either term separately, so that  the accuracy at ta inable  by the use of tables is 
insufficient, and approximation by expansion in series becomes necessary. In these circumstances 
it is often preferable to avoid the log  forms entirely, by expansion of the basic function in series. 

• If F -- 1 . . . .  then ( -  1)- d-F _ FQ,  ( 1 --.cq 1 - -  fll 1 - -  ~1, ) 
o~ [~ y ' n~  d x ~i - -  oc ' ~ ' ~, . . . .  

where Qn ( ) s tands for the sum of all possible products  

- .... ( 1  (1-/1 

under  the condit ion r + s + . . . .  = n. This l emma may  be proved by induction.  

Assuming tha t  (A + . B u  + Cu2)/ct~y = a 0 + a 1 u + a 2 u 2 + . . . .  , by successful differentiation 
and subst i tut ion of u = 0 in each differential, 

Then 

~ l f l l y l a o  = A 

% fi~yla~ = B --  AQi(p , q,.r). 

gifll~21a2 = C - -  BQ1 (p,  q, ~') + AQ~ (p, q, r)" 

~1fl1~11~/3 - -  CQI (p ,  q, .r) + B Q ~  ( p ,  q, r) - -  A Q a  (p, q, r) 

etc. 

where p = 

q _ 

1 - -  ~Xl 

1 - -  fl l  

1 - -  ~1 
Yl 

1 

A + Bu + Cu 2 

c~fly 
d u  -- 1 { A (Q0 1 1 

- 2 + a - " . . . . .  ) 

1 1 1 
+ B ( ~ Q o - ~ Q 1  + ~ Q 2 - .  . . . . .  ) 

1 1 1 

* For  ins tance  : 
1 

f u ~ du _ o~12 logo ~1 
~ .  ( 1  - ~ 1 ) ( ; ' 1  - ( . ~ ) ( ~ 1  - Pl) 

o 

+ /~1 ~ loge fll + 712 loge 71 
(1 - fil) (~, - ~) (81 - 71) (1 - ~1) (~1 - rl) ( n  - ~) 
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I t  may be shown that  ..... 
pn+2 qn+2 rn+2 

Q n =  ( p _ q ) ( p _ r )  + ( q - r )  ( q - p )  + (r - p) (r - q) " 

Substitution for the Q's in this form and summation of the resulting series leads to the ordinary 
log forms for the integral ; but this form for Qn reintroduces the computational difficulty when 
two of the set p, q, r are nearly equal. In deriving the Q s therefore, it is preferable to use the 
recurrence formula 

Qa+l (P, q, r) = p Qn (p, q, r) + q  Qn (q, r) + r ~+1. 
The computation is readily carried out in tabular form (see example below). This method of 
computation has the additional advantage that  it is still applicable when p = q, so that  all the 
integrals required can be computed by  the same method. 

If any of ~1 fll o r  ~'1 is less than ½ the corresponding ratio p, q or r is greater than unity. In 
this case the Q's themselves form a divergent series, and the recurrence formula above is useless. 
If cq 81 and 71 are all greater than ½, the Q series are absolutely convergent ; but the convergence 
may be very slow. In general, if cq /~1 and 71 are all greater than 0.7, the Q. series are usable, 
whilst for lower values the log forms are preferable. One difficult case remains, that  when two 
of (x I 81 and Yl are small and nearly equal. 

The computation of 111, etc., has been discussed at some length, because the practical value 
of the method proposed is greatly reduced, if the evaluation of these integrals is too laborious. 
If the method proposed were to be adopted for general use, the logical course would be to prepare 
tables of I n, etc., in terms of el, /~1 and 7v 

Example. 

n pQ,_l(p,q,r) ! 
1 2857 
2 2340 
3 1291 
4 599 
5 252 
6 100 
7 38 
8 14 
9 5 

qQ.--l(q,r) 
2000 
1067 
436  
161 
57 
20 

7 
2 
1 

~1=0-778 ,  f l1=0"833,  y 1 = 0 " 7 5 0  } 
p = o ' 2 8 5 7 ,  q =0 .20 0 0 ,  r = 0 . 3 3 3 3  _(Q°  

Q, (q, r) Q. (p, q, r) ra 
3333 
1111 
370 
123 
41 
14 
5 
2 
1 

5333 
2178 
806 
284 

98 
34 
12 
4 
2 

8190 
4518 
2097 

883 
350 
134 
50 
18 
7 

1 

f A + Bu + Cu ~ du 

=1). 

1.0000 
--0.4095 
+0.1506 
--0.0524 
+0.0177 
--0.0058 
+0.0019 
--0.0006 
+0.0002 
--0.0001 

0.5000 
--0.2730 
+0.1129 
--0"0420 
+0"0147 
--0"0050 
+0"0017 
--0.0006 
+0.0002 
--0.0001 

0.3333 
--0.2047 
+0.0904 
--0.0349 
+0.0126 
--0.0044 
+0.0015 
--0.0005 
+0.0002 
--0.0001 

0.7020A +0.3088B +0.1934C 

.0.778 × 0.833 × 0.750 

= 1.4441A + 0.6352B + 0.3979C 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

'pQ.--1(P,P, r) PQn-1 (P. r) 
2857 2857 
2585 [ 1769 
1561 I 823 
787 341 
386 175 
172 62 
71 22 
28 8 
11 3 

rn 
3333 
1111 
370 
123 
41 
14 
5 
2 
1 

Qn <p, r) 
6190 
2880 
1193 
564 
216 

76 
27 
10 
4 

[Qn (P, P, r) 
9047 
5465 
2754 
I351 
602 
248 

98 
38 
15 

1.5003A + 0.6526B + 0.4062C = 

1-0000 
--0-4523 
+0.1822 
--0.0688 
+0.0270 
--0.0100 
+0.0035 
--0.0012 
+0"0004 
--0.0001 

0.5000 
--0-3016 
+0.1366 
--0.0551 
+0.0225 
--0.0086 
+0.0031 
--0.0011 
+0.0004 
--0.0001 

0.3333 
--0.2262 
+0.1093 
--0"0459 
+0.0193 
--0.0075 
+0.0028 
--0.0010 
+0.0003 
--0.0001 

0.6807A +0.2961B + 0 .  1843C 

(0.778) 3 >(0.750 



n 

1 
2 
3 
4 
5 
6 
7 
8 

qQ,,--1 (q,q,r) 
2000 
1467 
729 
307 
118 

43 
15 
5 

qQ,-1 (q,r) 
2000 
lO67 
436 
161 
57 
2o 

7 
2 

3333 
1111 
370 
123 
41 
14 

5 
2 

3O 
Q. (~, r) 

5333 
2178 

806 
284 
"98 
34 
12 
4 

Q. (q,q,r) 
7333 
3644 
1535 

591 
216 

77 
27 

9 

1 .3930A + 0 . 6211B  + 0 .3907C = 

1 .0000 
- - 0 . 3 6 6 7  
+ 0 . 1 2 1 5  
- - 0 . 0 3 8 4  
+ 0 . 0 1 1 8  
- - 0 - 0 0 3 6  
+ 0 . 0 0 1 1  
- - 0 . 0 0 0 3  

o + 0 . 0 0 0 1  

0 . 7255A 

0-5000  
~ 0 . 2 4 4 4  
+ 0 . 0 9 1 1  
- - 0 . 0 3 0 7  
+ 0 . 0 0 9 8  
- - 0 . 0 0 3 1  
+ 0 - 0 0 1 0  
- - 0 . 0 0 0 3  
+ 0 . 0 0 0 1  

+ 0 . 3 2 3 5 B  

O' 3333 
- - 0 -  1833 
+ 0 '  0729 
- - 0 '  0256 
+ 0 '  0O82 
- -0"  0027 
+ 0 -  0009 
--0.0003 
+ 0 . 0 0 0 1  

+ 0 . 2 0 3 5 C  

(0"833) 2 X 0" 750 

I u = 0 .4062  + 0-3907 - -  2 x 0 .3979  . . . . . . . . . . . . . . . . . .  

It2 = 0 .4062  x 0 .7 7 8  - -  0 .3907  x 0 .833  + 0 .3979  (0-833"--  0 .788)  . . . . . . . .  

I,a = 0 ' 7 7 8  X 0"833 {(0"6526 - -  0"4062) - -  (0-6211 - -  0"3907)} . . . . . . . . . .  

I22 = 0 " 4 0 6 2  X ( 0 " 7 7 8 ) 2 + 0 " 3 9 0 7  X (0"833)2 + 2 X 0"3979 X 0 . 778  X 0 .833  . . . . . .  

I2a = 0 .778  x 0 .833  { (0 .6526  - -  0 .4062)  x 0 .778  + (0.6211 - -  0 .3907)  x 0 . 833  

+ (0.6352 - -  0 .3979)  x (0.833 + 0 .778)}  . . . . . . . .  

Iaa = (0 .778 X 0"833) 2 (1  "5003 - -  2 X 0 .6526  + 0"4062 + 1"3930 - -  2 X 0 " 6 2 1 1  + 0"3907" 

+ 2 (1.4441 - -  2 X 0"6352 + 0"3979)} . . . . . . . .  

. .  ---- 0 .0011 

. .  = 0 .0125  

. .  = 0 .0104  

. .  = 1.0327 

. .  = 0 .4965  

. .  - -  0 .9603  
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111.7. Summary and Examples.IThis section summarizes the conclusions of §§111.4-6 and 
presents them in the form and order in "~hich they must be used in numerical computation. 
The application is illustrated by a worked example. 

Whilst the present section contains all the information necessary for use of the method, for 
explanation of the formulae reference should be made to §§III. 4, 5 and 6. 

Frame 0 Frcm® I Frame Z Frame 5 

a ~ r - a l ~  E . , . . . .  

7-r [ ~ i ~ r ~ s s  oc E e ~ i v .  S ~ r  Z ~ i r ~ n ~  . s ~  

..... ,,, 1:::) ~ D F 

= A r - -~A _! ~ ~ r  = / ~ r  w r -  I 
, I "  I "  I 

A -- actual area of section of boom + 1/6 (dt + ws). 

Tr ---- total  torque transmitted over rth bay. 

er = warping movement of point D awa3~ from A parallel to axis of tube.* 

* No distinction need be made between the direction of the axis of the tube and the direction of its edges (s~e §III  4). 



(a) Tube with Cut-out. 

Specification (dimensions in inches - -  torques in 1,000 lb.-inches). 

Frame or Ba y  No. 

dr 

Z~r 

Ar 

& 

Sr 

• T r 

Pr imary  Ratios 

0 

~r = d r / d r - i  . .  

fir = W r / W r - 1  . .  

rr  = Ar/Ar-i  . . . . . .  

1 ! 2 

W r - - l d r - i  

R r  ~ - -  o ' o  o o  

4/r ~ 

(1 + ar)EAr-i  

G& Wr-1 

(1 + ,6r) EAr_l 
fir ~ . .  

Gsrdr-i 

lr/Wr-ld~-i . . . .  

18 

60 

6"0 

O 0 

18 

60 

6 .0  

80 

0.30 

0.030 
i 

135 

Bay  1 

1 

1 

, 1 

~0.0422 

1.733 

57.78 

0.0741 

18 

60 

6"0 

50 

0 ' 3 0  

0 

92 

Bay  2 

0"1080 

1.733 

infinity 

0.0463 

14 

50 

4 .5  

80 

0 .30  

o-o3o 

61 

Bay  3 

0-778 

0-833 " 

0"750 

0-0422 

1-541 

52.96 

0 -0741 .  

10 

40 

3"0 

80 

0"20 

0"020 

35 

B a y  4 

0 .714 

0-800 

0 . 6 6 7  

0.0273 

2 .006 

75"21 

0"1143 

6 

30 

2-0  

80 

0"15 

0.020 

7 

Ba y  5 

0"-600 

0"750 

0"667 

0.0156 

2-080 
# 

68.25 

0.2000 

A = 6 . 0  

l = 80 

Notes 

f Top or bot tom sur- 
face. cut away over 

(. Bay  2. 

] 

Notes 

= 2 " 6  

O0 
b0 



g 
Secondary Ratios Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Notes 

0. ,  = Rr(Zr+~r) 

013 = Rr(erL.-- fir#r) 

Oaa = Rr(c~rttr - flr).r) 

032 = R d ~ r 3 ~ + & % )  

O~a = - R~rflr(ar+Sr) 

Oaa = Rr(er2/Zr+flrGtr) 
1 

2.511 

--2-365 

2"365 

2.511 

--2-511 

2.511 

See Notes 

0~'=0.  1872 

02 '=0  

Oa'=0 

2.300 

--1-812 

1.684 

1-591 

--1.491 

1.397 

2.108 

--1"604 

1.423 

1.342 

--1.205 

1.083 

1.097 

--0.779 

0.614 

0.611 

- -  0.493 

0-401 

1 ~2u2du . . . .  

o 

1 

1 1 2 =  + fl / \  ~ 8 / 7  "" 
o 

1 

1 x u(1--u)du 
I,, -- =r rf( 2 ; - -  

o 

1 

i23 = f(~r___ ' f f )  3u3du 
e y 

o 

1 

I2 8 = O~rflrf ( ~  + f l~) ( !  +})--Yl"u(1-u)du 

o 

t 

f ({  5) ' Iaa = ~ r 3 f l r  3 q -  • 

o 1 

I /  . ~ -  c~3y . . . .  
o 

1 

1 f fludu 
I /  -- -fir ° t 3 Y  . . . . . .  

o 

0 

0 

1 "333 

O- 667 

1.333 See Notes 

--0. 167 

O. 500 

0.001 

0.012 

0.010 

1.033 

0.496 

0" 960 

0-001 

0.017 

0"018 

0" 965 

0" 463 

• 0" 893 

0- 004 

0" 030 

0" 029 

0"809 

0" 363 

0-675 

Over cut-out 

O1' = R,,Zd%G 

O / =  ( % -  &)O,.' 

O a ' =  ( ~ 2 -  & ) 0 2 '  

= -r  + (1 - -  "r) U 

P = fir+ (1-- [3r)U 

y=~r+(1-Tr)U 

Values computed as 
in §III.6. 

Over cut-out 

Ii', etc., replace 111, 
etc. 

¢aO 



I 3  t - -  

Secondary Ratios 

1 
,,~ [ f(1--u)du 
fir - a2y 

0 

1 

Ctr ( fl2d*t 
I4' - -  f r  d ~2y 

0 

(~r + &)~ 

Ar-1/A . . 

1/lr . . . .  

(C~r @ fr) 2 A r - 1  . l 

A lr 

Coefficients 

B r = (111 @ Oll)r 
Ar-1 l 

(~r + ~r) ~ 
A lr 

C r = (I12 ~- O12)r 
Ar-1 l (~ + &)~ 

A lr 

Dr = (Ila + O 1 3 ) r  

Ar-i  l 
fir)" A Zr 

(I22 + O22)~ 
. . . .  TAr_ U --(  

(=r +f i r )  X ~-r 

J r  = (Ioa+O2a)r 
Ar-1 l 

A lr 

Kr =- (Iaa+Oaa)r 
Ar-1 l 

(Ur+fr) 2 A 17 

Trlr 
Tr'  = 

W r - f l r - j  

• o 

. o 

Bay 1 

4 

1 

1 

4 

Bay 1 

0.628 

--0.591 

0. 591 

0.961 

--0"461 

Bay 2 

--0.500 

1 "000 

1 

1.6 

1 "6* 

Bay 2 

L2=0"012 

M2=0.312 

N~= 1.000 

Ve=0"312 

\V2~--0.625 

Bay 3 

2"596 

1 

1 

2.596 

Bay 3 

0"886 

--0-693 

0.653 

1.011 

--0-383 

Bay 4 

2.293 

0"75 

1 

1.720 

Bay 4 

1.226 

- -0 .923  

0.838 

1.341 

--0.431 

Bay 5 

1-822 

0.5 

1 

0.911 

Bay 5 

1.208 

--0"822 

0"701 

1"560 

--0" 143 

Notes 

*Ar-1. / only 
A lr 

(Ol '+I i ' )  
L 2 = A l l /A I  2 • 

M~ = (02%1;! 
All /AI2 

N2 = 1/& 

V2 --  (O /+ Ia ' )  
All~A12 

W ~ - -  (03'+14' )  
Al l /A l z  

0.961 

10 

F 

m 
4.26 

0.908 

4.52 

1. 149 

4"00 

1.181 

1 "40 



Equations of Equilibrium ! 

Forms of Equations : 
Each row of terms added ind l 
equated to zero. 

P0 

H 1 

~2 

P: 

J 1  

Cx 2 f/~ K:+W2 

m 

P2 

H3 

J 3  

P3 

J3 

H~+K3 
J ,  

P4 

J~ 
Hs+K~ 

Notes 
Torques Refs. to § III.4 

C:T:' Equation (27b) 
- - T (  Equation (29) 

D1TI' +V2T~-' +C,T 8' 

Equation (30) 
D3T~'+C4T 4' Equation (26) 
D4T4'+CsT 5' Equation (28) 

Equations of Equilibrium 

Equations for Numerical 
Case in form above. 

From (3) and (1) 

From (6) and (2) 

From (7) and (4) 

From (8) and (5) 

(1) 

(2) 

(3) 

(4) 

t (5) 

(6) 

(7) 

(8) 

(9) 

P0 

0"961 

--0-461 

P: 

--0.461 

1 

1.586 

1"36486 

Boom Loads (Pr-1) .. 

Twists . . . . . .  

. ° 

• ° 

BrT r' .. 

CrPr_l  .. 

D r P  r . . . .  

S u m £ E A  ~ Rr(O r- 0r_l) 

EA l; Rr . . . .  

Or -- Or 1 . . . .  

Twist per inch .. 

P~ 

--1 

1.011 

--0.383 

1.011 

2-37586 

P3 

m 

--0-383 

2.249 

--0.431 

--0-383 

--0.383 

2-18726 

P4 

m 

-o.)31 

2-709 

--0.431 

2.62407 

Torques 

--5"91 

--4.26 

1.45 

--0"74 

2.20 

-- 1- 38507 

4.42923 
r 

--0"02599 

2-19488 

Notes 

--5.9100 

--4"2600 

1.4500 

--0"7398 

2.1999 

Check back 
above shows 

accuracy 
maintained. 

7.2873 2-3711 --1.8889 --0-1530 --0"8364 - -  × 1,000 lb. 

Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Total 

0.051" 

0"740* 

4-829* 

1"691 

0.687 

6"280 

-- 4"307 

4.005 

1-309 

--0"100 1-401 

4"904 

0"141 

--0"701 

*L2T( ~ in 

*M~P 1 Bay 

,N2EAeCJ 2 

3.374 

2.532 

1.332 

1.665 

5"620 

4-050 

1.388 

2-776 

5"214 

2"532 

2"059 

2"572 

4"344 

1"638 

2"652 

3-315 

2" 378 

0-936 

2"541 

3" 176 

9.972 

2- 695 

=N2(J1P0+K1P1 
+DITI '  ) 

× 106 lb. 

x 10 -3 radians 

× 10 .5 radians 

Call 



Shear Stresses B a y  1 B a y  2 B a y  3 Bay  4 Bay  5 Total  

Frlr 
(% q- /~r) dr_l - -  

T r'  + *¢rPr-1 - flrPr 

(Car q-fir) lrtr . . . . . .  

Shear Stress in Sides (FdG-ltr) 

(~r + fir) Fr ' /r  - -  

- Tr' + ~rP~- l - -~rPr  

(~r + flr)/rSr . . . . . .  

Shear Stress in Top or Bo t tom 
(Fr'/Wr-lSr) . . . . . .  

0 

Boom Stresses (Pr-,/Ar-1) : .  

14-916 

48 

310 

- -  5.084 

4"8 

1060 

1220 

8 .520 

30 

280 

400 

3.178 

38"67 

80 

- -  5.975 

3"867 

1550 

- -310  

4.560 

24.23 

190 

- -  3.525 

2.423 

1400 

- -30  

940 

-~8o 

O. 898 

16.20 

55 

2.027 
2. 160 

x 1,000 lb. 

i n .  2 

lb./in. 2 

× 1,000 lb. 

i n .  2 

lb./in. ~ 

lb./in. 2 tension. 

N o t e . - - T h e  boom stress quoted is tha t  in the top front boom of the sketch, the applied torques being anticlockwise. 

(b) Tube  as in  prev ious  case, but wi thout  cut-out,  12/wld 1 = 0.0463 (~2+ &)2 A1/A 1/13 = 6"4  
~ : =  ~ 0 1 1 =  6"427 1 ,1=o  B 2 =  1 .004" /  

O13 = - -6 .053  I12 = 0 C 2 = - - 0 . 9 4 8  ] 
For  B a y 2  ~y0- 1. O13 = 6.053 1,3 = 0 D 2 = 0.948 ~Other  coefficients as before 
in this case R2 0 1080 030 - = 6.427 132 = 1.333 H 2 = 1.212 

l~2 = 1.733 0 3 3 = - - 6 . 4 2 7  1 3 3 = 0 . 6 6 7  j0- =-o.9oo j 
~2 = 57"78 038 = 6"427 I3a = 1"333 K S = 1-212 



Equations of Equilibrium 

Forms of Equations:  . n { 
Each row of terms added a d 
equated to zero. . 

P0 P1 

J2 
Hs+K2 

J~ 

(1) 

Equation for Numerical (2) 
in form above. ~ (31 case 

k (5) 
From (1) and (2) . . . .  (6) 
From (6) and (3) . . . .  (7) 
From (7) and (4) . . . .  (8) 
From (8) and t5) . . . .  (9) 

Boom Loads . . . . . .  

Twists 

H 1 
J1 

J1 
I-I2+ K 1 

J~ 

--0-900 
2.223 

--0.383 

--0-900 
1"80800 

J3 
H e  + K s  

J4 

--0.383 
2.249 

--0.431 

--0.383 
2" 16787 

J4 
. H~+K4 

--0.431 
2-709 

--0-431 
2.62331 

Torques 

i QTI' 
I ) ~ T ( + C G ;  
D~T(+C3T 3' 
DsT~'+C4T,' 

D 4 T 4 ' + C s T s '  

0-961 
--0.461 

--0-461 
2-173 

--0.900 

I 

1-95185 

--5.910 
1.872 
0.906 

--0.740 
2.200 

--0.96309 
0-46192 

--0-64215 
2-07233 

6.3366 0.3892 --0.2260 0.1391 --0.7900 °X 1,000 lb. 

Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Total 

4.262 
--0-368 
--0.214 

3"680 

BrT r' . .  . . . . . . . .  ] 6"280 
CrPr_ 1 . . . . . . . .  --3-745 
DrP r . . . . . . . ;  0"230 

S u m = E A  ~ Rr (0 r - -0 r -1 )  . .  2-765 

EA ~ R r .  . . . . . . .  2-532 

0r--0r-1 . . . . . . . .  1-092 
Twist per inch . . . . . .  1-365 

1"691 
0"650 

2.341 

0.936 

2-501 
3-126 

4-050 

0.909 
1.818 

4.005 
0.156 
0.091 

4.252 

8.694 
2-350 

Notes 
Refs. 5o §111.4 

Equation (27b) 
? 
~ Equation (26) 

Equation (28) 

4.904 
--0:128 
--0.661 

4 .115 

1 "638 

2"512 
3" 140 

2.532 

1.680 
2.100 

E = 1 0  × 106lb./in. 2 

I × 106 lb. 

× 10 .3 radians 
× 10 .5 radians 

Shear Stresses 

Frlr 
(~r+ ~r) dr-1 --  

Tr'  + C~rPr-x-- flrPr 
(mr+ ~r)Zrtr . .  . . . .  
Shear Stress (sides) . . . .  
(~r~r) Fr'. lr = 

Wr-1 
--Tr '  + flrPr-x--c~rPr 

(C~r + fir) lrtr 
Shear Stress (top or bottom) i 

Bay 1 

15.978 
48 

330 

-- 4.022 
4-8 

~ 0  

Bay 2 

4.875 
30 

160 

- -  3.645 
3"0 

1210 

Bay 3 

4.228 
38.67 

110 

- -  4.816 
3.867 

1240 

Bay 4 

4.731 
24.23 

190 

- -  3.325 
2.423 

1370 

Bay 5 

0"926 
16"20 
60 

- -  1.993 
2. 160 

920 

Total 

× 1,000 lb. 
i n )  
lb:/in. 2 

× 1,000 lb. 
in. 2 
lb./in. 2 

Boom Stresses . . . . . .  1060 60 --40 30 --260 1.b./in. ~" tension 
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(c) Tube with Two Additional Frames.--As a further example, the same tube with two 
additional frames, One midway between frames 0 and 1 and the other midway between frames 2 
and 3, has been analysed. The effect of the added frames is summarized in the following 
comparisons. 

With no Cut-out 

Bay No. 

Boom f7  frames 
loads \ 5  frames 

Twist per f 7  frames 

inch ) 5  frames 

1 12 

6- 37 2,79 
6- 37 ' - -  
1 -O1 1 "73 
k _ _ ~  ~ _ _ . )  

1 . 3 6  

2 

0"45 
O" 39 
1 "79 

l "82 

With Cut-out over Bay 2 

23 3 

--0.24 O. 14 
- - 0 '  23 

1 • 88 2" 30 
k . . , v , . _ ~ . , _ . )  

2"10 

4 

0-15 
0.14 
3"13 

3"14 

5 Notes 

--0-79 ), Atinnerends 
--0.79 f of bays. 

3.12 Mean 2.344 

3.13 Mean 2.350 

Bay No. 

Boom f 7 frames 
loads \ 5  frames 

Twist per ~'7 frames 

inch "~(5 frames 

7"31 
7"29 
1"14 

k , , , ¢ , - -  

1 "66 

12 2 23 3 / i 5 

3"95 2.34 --1.92 --0"74 / 2 0 ' 2 7  --0"86 ), 
- 2 . 3 7  - 1 . 8 9  - / - 0 . 1 s  - 0 . 8 4  f 

2.16 2.67 1.64 2- 65 3.38 3.20 

2.78 2' 57 3.31 3.18 

Notes 

At inner ends 
of brays. 

Mean 2. 584 

Mean 2. 695 

In the absence of a cut-out the effect of the added frames is quite negligible. When the cover 
over bay 2 is cut away, the intermediate frame inboard towards the root still has practically 
no effect, but the intermediate frame outboard of the cut-out slightly stiffens the tube. 

PART IV 
Torsion of Tapered Tubes of Trapezoidal Section with Rigid Frames 

IV.1. Iutroductiou.--In this part the method of Part  I I I  is extended to the case of a tube of 
trapezoidal section. In this case also the twist over a bay between two rigid frames and the 
warping at each frame are related to the torque and boom loads transmitted over the bay b.y 
linear relations like equations (8), (9) and (10). The conceptions of boom load and warping again 
need not be closely defined; the boom load P is merely a quanti tat ive measure of the stress 
system tending to cause warping and e, tile warping at the boom, is the correspomtitlg measure 
of the warping distortion. In the present part,  the analysis is carried only to expression of the 
constants B, C, etc., in equations (8), (9) and (10); thereafter analysis would follow exactly 
the same lines as in Part  III .  

IV.2. Distribution of Stresses in the General Four-Sided Tube iu Pure Torsiou.--In Fig. 8, 
ABCD is a section of a tube formed by four planes, OADR, OBCR, PBAS and PCDS, which 
intersect in opposite pairs in OR and PS ;  the " ridge lines " OR and PS are not necessarily 
co-planar. At the section ABCD of the tube, the sides AB, BC, etc., are subjected to shears 
along the sides and to direct stresses acting radially through the ridge lines OR and PS. Since 
all the radial loads pass through the ridge line PS, they may be represented by a single force 
through any point on this line and a moment in a plane containing the line, e.g. by a force through 
P and a couple about an axis normal to PS ; and if the section ABCD is free from end load, 
the force through P must lie in the plane ABCD. If there is no moment on the plane ABCD, 
the couple in any plane containing PS must be zero, so that  all the direct loads must reduce to a 
single force through P in the plane ABCD. Similarly they must reduce' also to a single force 
through O, so the resultant of all the direct loads is a single force directed along OP ; let the 
magnitude of this force be X. 
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If there is no shear across the 
section ABCD, the torque in this plane 
is F 1. PJ  - F 8. PE, where PJ  and PE  
are perpendicular to OAD and OBC 
respectively, or it is F4. OG -- F~. OH 
where OG and OH are perpendicular to 
PCD and PBA respectively. Therefore, 
we may assume that  F 1 = p.DA + XPE, 
F 3 = ~.BC + XPJ, F 2 = ~AB + vOG and 
F 4 = ~CD + vOH, when torque = 2tx × 
area ABCD. Since OJP and OEP are 
right angles OJEP is concyclic and 
the angle EOP = the angle E J P ;  but 
the triangle P J E  is similar to the 
triangle ONM Where ON represents the 
component xPJ of F 3 and OM the 
component XPE of F1. Therefore MN 
is parallel to OP, and the resultant of 
the k-components of F 1 and F 3 is a 
force XJE directed along OP. Similarly 
the resultant of v-components of F~ 
and F 4 is a force vGH in the same 
line. Hence for equilibrium 
~JE + vGH + X = 0 . .  (31) 

is the Batho torsion system, ~ or v 
is the frame load system (cf. §II.2). 
The one remaining parameter X or v is 
determined by variation of the end 
loads along the length of the tube. 

The distribution of direct (radial) 
stresses is most easily discussed on the 
basis of boom loads; as explained in 
Part  I this is merely a convenient 
convention, which does not vitiate the 
generality of the argument. 

In any triangle ABD (Fig. 9), forces 
AB.CD along BA* and AD.BC along 
DA are in equilibrium with a force 
AC.BD along AC, where C is any point 
in BD between B and D. 

Using this lemma, a force OP.VW along OP 
(Fig. 8) may be replaced by OV.WP along VO 
and OW.VP along OW;  and a force OV.AD 
along VO may be replaced by DV.AO along 
DV and AV.DO along VA. Similarly for 
OW.BC along OW, so that  a force OP.VW. 
BC.AD OP may be replaced by the 

O 

M 

P 

D ~  I I /  

I D A  o 8 C 

5" 
Fm.~S 

A 

8 G D 
FIG. 9 

DV.WP.AO.BC along DV 
AV.WP.DO.BC along VA 
CW.VP.BO.AD along WC 
BW.VP.CO.AD along BW 

*Here AB.CD represents only the magnitude of the force and its direction and s e n s e  are denoted by' "a long  BA ". The 
same convention is used tkroughout this section. 
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Since VP and WP are proportional to the lengths Pl and P2 of the perpendiculars from V 

i ( 1 1 \ 
) BC.AD along OP may be replaced and W respectively on the plane ABCD, a force OP k 

Pl 
o 

by forces along VD, VA, WC and WB having components PD, PA, etc., normal to the plane 
ABCD equal to -- OA.BC, OD.BC, OB.AD, -- OC.AD respectively. This result may be put 
in the alternative form 

PA --PB Pc --PD " (32) 
A B C D -  A C D A -  A D A B -  AABC . . . . . . . . . .  

in which form the result is otherwise obvious by taking moments about AC and BD. The 

1 
resultant X of these boom loads is then ½0P P2 

1 \ 
) (PA - -  PB - -  P c  @ PD) along OP;  

Pl 

there is of course an alternative form for X in terms of the perpendicular distances from the 
plane ABCD of the intersections of the line OR with the tube wails PBAS and PCDS, but no 
specially simple form seems to result from combination of the two. 

Finally the shear forces F~, etc., are related to the variations of the boom loads along the 
length of the tube. If the boom loads at a section A'B'C'D'  parallel to ABCD and distant l 
from it a re  PA',  PB', etc., 

PA'--PA F1 Fg. (AD B A )  PE OG 
1 A'D'  B'A' = /~  ArD ' t)-~ -~ q- ~ A'D'  v B'A' ..  (33a) 

P~'--P~ F2 C~  BA CB OG PJ 
l B'A ~ -- (aab) C~B ~') + ~ . .  = , i~A, - ~ ~,B, 

l - ' - ' D (P + C ' B '  
. .  (33c) 

PD'--PD F4 F1 " DC AD OH PE 
-- A~D ~) + D'C' ~ (33d) l D'C' A'D'  = ~(D~C~ " v - A'D'  "" 

Since the ratios PA/Pm PA'/PB', etc., are determined l~y the geometry of the tube and by the 
condition of pure torsion, these four relations must of course reduce to one only. One of the 
inherent indentities, that  corresponding to the condition PA + P J3 @ P c  @ PD -- O at both 
sections is obvious ; the other two corresponding to the conditions for no bending moment on 
the planes ABCD and A'B'C'D'  are not easy to demonstrate. However, since PA -- PB -- Pc + 
PD = 2Xplp2/oP (Pl --P~) the four equations may be summarized in the form 

X'  (Pl + l)(])2 + l) X plp,  _ s(DDC, t~,~7)BA + ~-(D-'~OH P, rA'/OG ~* 
O 'P '  (Pl -- p~)l OP (Pl -- p~)l 

(34) 

and this relation together with the relations torque = 2t* × area ABCD and ,~D]?; + ~GH + 
X = O enable 2, t* and ~ to be expressed in terms of torque, X and X ' .  

* As before there is an alternative form involving/~ and ~t. 
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IV.3. Shear and Direct Loads in a Tube of  Trapezoidal Sec t ion . - - In  this case 

72)1 dl  _ 
AD = d I ,  BC = d  I ' A B  = C D  =Wl,  J E = w l ,  PJ = d l _ d l , ,  

A'D' = d o, B'C'  = do', A ' B '  --= C'D' .----- w o, GH - -  dl - -  dl' OG 
w) 1 

Pl _ dl P2 _ dl' 
1 d o - d  1' 1 do'---di'  

PA - - P B  P c  - - P D  P1 (Definition of Pr)" 
d l ' - -  dl  d l ' - -  dl ~ 

1 1 )* Bid1 d O ' -  dx' do-- dl 
X = P l d l  ( ~  P l  --  ' ( dl t dl ) 

PA' --PB' P ' --PD Po _ c _ (Definition of Po) 
do' do do' do do' • 

Pi (dido,__dodi,) 

Then 

dl'wl' F 3 ---~/zd 1' ~-. ~dlWl F~ = F 4 : / z w l  + Kt  
F 1 -= #d 1 + ~ d l_ d i , ,  all--all" 

"dl--dl'  K +/d-~(dldo' -- dodl') = O, ZJE + v G H  + X =  ~w i -t wi 

(this condition may of course be 'found otherwise by resolving all forces on the plane ABCD 
parallel to AD). 

T (35) 
w l (dl + dl') . . . . . . . . . . . . . .  

where T is the torque. 

PA' -- PA 

l + 
PB' -- PB Po(l_ do) _ Bi(l _ d~,) __# (d~ di') 

l -- T do-' do' 

(/1), from equations (33a) and (33b) 
d o ' 

d1'$, andT '  -- T1 
• dl wodo' 

+ di  - -  d i '  \ d o 

Writing 

d 1 ' w 1 d o ' 
~ =do,-- fll Wo,-- ~o--  d o , ~ i - -  

these relations may be expressed in the forms 

T! 
/~l = fllo~ 1 (1 + ~1) . . . . . . . . . . . . . .  

_ I T' - + Po + . . . . . .  d I -- d 1' ~iO~l (1 2V ~71) ~(l#i J 

(35a) 

(36) 

* By  resolving boom loads parallel to OP i.e. AD. 
t K represents vOG because OG is infinite, but  vOG remains finite. 
++ ~1,/~1, ~o and ~1 are interrelated in the form ~1 (1 --  ~1) - /~1 (1 --  ~o) but  it is inconvenient to discard any one of these 

parameters.  In the derivations of the forms for # l, etc., and subsequently frequent use is made of the identi ty in the 
dl~ ~' -- #ic~i 

form ~l + /~l */o = ~1 */1 + /~i. Occasionally also it is convenient to use ~i' = do, */o " 
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and 

K /  ~__ ! T ' ( g  1 - -  ~1) /~lp 0 _[_ (Zlp1)i 
W 1 ((Z 1 (1 + ~h) 

whence the shear forces are given by 

F,1 _ T'  
(fi~'+ cq~h) do -~ equiP 0 --  /~,0P~ .. 

((xl)  ( fll)-P l 
F j _ _  T ' - t -  'io P o - -  .. ( fll + (X1~'/1) do, - - -  '/'] 1 

(ill @ glr/1) F2I --~ T '  - -  /~lPO @ ~IP1 . .  (and F4 = F2) 
Wo 

IV.4. Deformation of Walls, Warp ing  dnd Twist .  

/ ~1 (/~i -}- 0~llll) .... (37) 

. . . . . . . . . .  (38a) 

. . . . . . . .  ( 3 8 b )  

. . . . . . . .  ( 3 S c )  

Deflection of AD downwards ~ 7 all relative to original plane of A'B 'C 'D ' ,  i.e., 
. . . .  BC upwards ~' ~ deflections at frame 1 relative to original plane 
. . . .  AB or CD sidewards , of frame 0. 

n / ( d a 6 '  -}- d l ' 8 )  Theri twist over the bay 01 --- (0 + 8')/wl = -- ~ e / \  8 + ~" , the centre of rotat ion being 

de te rmined  by the  value of the  ia t io  6'/8. The relation between 8, 6' and e is more convenient ly  
s ta ted in the form d(6 + d16' + 2wx, = 0. 

From §III.4 (a), equat ions (13a) and (13b), using the  results of §III.5, 

2l ~ I i~udu Fll u2du Fel ~u2du) 2eol (1 + ~1) Fll (39a) 
8 - Ea;a0 + d0 f I + d o  + 2Gt - do . . . .  
8' --- 2~)12 I pl t" q~d~ ~_ 1~31 [ uldu -- F21 t qA2d". [ _~ 2eotl~0 .~_ (1 -~- (Xl') F3I 

EXodo' , .  "; G " do' 
(39b) 

. . . .  c~'fly' ) d' o . . . .  

+ (e o + eo')l (1 + /~1) F J  . . . . . .  (39c) 
w o -- 2 ( ~ s -  w o . . . .  

where ~ = ~1 + ( 1 -  %)u, fl = fll + ( 1 -  fll)~t and similarly for r, ~' and 7', ~1~ = AriA0, 
Yl' = A(/Ao'  and e : A0'/Ao, A and A' being the effective boom areas of section, assumed equal 
at  top and bot tom.  All the integrals are between the limits 0 and 1. e o and - - % '  are the  
longitudinal  movemen t s  at frame 0 of the booms at A and B respectively. G is the effective 
shear modulus of the walls and t, t' and s are the thicknesses of the walls.* 

Terms in e o and e o' in the expression d~'8 + d~8' + 2w~e are proport ional  to 

~lY/le0-~-('(Xl) eo' ~- ~1 (go-~-e0' ) ~-((Xl?]l-@ /~1) ( eo -~ - ~0~ ) 
~to rio 

Similarly in the expression (8 + ~')/w 1 for the twist, e o and e o' appear only in the  combinat ion 
e o + eo'/~o, and this expression represents the effective warping corresponding to P0.~ 

* The tube being symmetrical about the-mid-plane between AB and CD, A,e and s are all equal top and Do~om. -- 

The energy associated with warping is proportional to Poeo + Po ~0 ~0~" 
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By subst i tu t ion for the F's  in terms of T', Po and  P1 from equat iors  (38) in equations (39) 
and then by  subst i tu t ion  for 6, 6' and e in the relat ion dl'~ + dla' + 2w 1 ~ = 0, it may  be shown 
tha t  

EAo /~1)2 ( e o  --)---_ 
~0 ~' 

[I12 + eI12' + R1 (cqvl~l + ~1,~ ' - 251#1)] T' 

" ~7o 

Using this result the twist 01 --  0 o = (~ + a')/w 1 is given by 2EAoR 1 (~lv~ + /~1) 2 (01 --  0o) ----- 

[ 111 + ell1' + R1 (~ + Voh'+ 2~)1 T' 

+ [I12 + ell~' + R~ (cq,h~ 1 + c@1' -- 2&vl)] Po 

hi 
Also from §111.4 (a) using equation (18a) 

(p, fd. .a. r;r.d. 
EAodo Fll wodo-. (1 &) (ol oo) 

--  (1 -- ~12) 4Gtl 2 do +--4-~-r~Ao~l -- 

EA E A ° ( e  1' ~1c¢1e°')----a similar function so tha t  and similarly _ _ o  ( e l ,  ~l, eo, ) _ l ~o 

EAo( el'  ( eo' "~l l i el +~7-1 - -~1  e o +  ~ o / ) m a y  be expressed in terms of T', Po and P1. 

Using the expressions for e o + e° '  and (01 -- 0o), it may  be shown tha t  
~o 

EA° . . . .  , etc.]  T'  [123 . . . .  , etc. 

+ [I3a + e133' @ R1(/~12~o22l+ (_~1~i~o)21'-~- 2o~1~ffl-],1 . . . . . .  (4!2) ~1 ~ 
All these results are summarized below, where the forms of Ill, etc., are given. 

IV.5. Summary of Comlusions.--For the  trapezoidal  section therefore 

EA ~ Rr (Or --  0r_l) -- B~T( + C~P~_~ + D,.P~ . . . . . . . .  (43) 

2l e~_~ + e r -1  = CrT~' + H~P~-I + J~P,. . . . . . . . .  (44) 
~7r--1 

EA2I ( e~ -[- gr')~]_r = D r T r ,  -Jr- J r P r - 1  -}- Z r P r  . . . .  . . . .  (45) 

These relations replace equations (20), (21) and (22) at the end of §III.6 (a) from which the only 

changes are the subst i tut ion of ½ (e~ -t- er: ) for e~ and similarly for e~_r As before A and l are 
~]r / 

convenient  s tandard  values of A~ and/~.  
* 21 and ~ used in,this and subsequent expressions are mere geometrical constants ; they are not related to 2 and ff in 

§§IV.2 and 3. 
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In these equations for the trapezoidal section 

Br ---- (IH + ~I~1/r + R~ (a,. + ~r-d," + 2e,.) 
lr 

Ar~ l 

{ ' 2~r/tr t } / 2 ( ~ r ' ~ r  + fir) '  a r - 1  l - A - -  Dr --~ (I13 + ~I1, )r - -  Rr (flr~r 1/~r + flr~lr -1 ~rL --  
~]r 

= {( I22-~  ~I22')r ~- R r (~r2r/r2~, r q-~Z,. 2 Hr / At-1 1 
A # 

Jr : { (123 ~-~)I23)r' - -  Rr~rflr ( ' j r-  

where 
dr dr' wr dr' d ' 

CAr --- dr 1' ~r' = d 'r--1' fir : W..l._l, 'Jr = -,dr ~]r--1 : d~21 ~, R r -  

• } Ar-a l 
l~]r~r _~ ~r'~r -~- 2/~r ) /2(~r~r -~- fir)2 A lr 

Wr_~dr "_, 
4lr 2 

EAr--1 EAr -1 EAr-1 
~r = (1 + ~r) Gtrwr._l, ~r' = (1 -~- oct' ) G/r,Wr_l ' /Ur= (1 -~ fir) t~Srar--1 

Ar , At' Ar_i 
z _ _ , r r  - - A '  , e r - - A ,  Yr nr -1 r --1 r --1 

and 

1 a ~ ~du f (Ii~)r 

(I12)r ~--- f (  ~r~r 1 1 )  u2d~t, 1 1 u2du 

f ( ~ r - 1  q_ 1 ~(" 1 1 )  u(X -- u)du (Ila) r ~rflr 

__ 0¢rfl r ( ( ' 1 1 1 u(1 -- u)du (i1;)r 

( (I2a)r = ~ r f l r  3 -~- . _[_ 

(i23,)r ___ ~rfir f (  ~r', _~ ~ ) (  1 _~_ 1 ) u ( 1 - - u ) 2 d u  

(I33)r : ~r2flr 2 f ( \ _ ~ _  _~_~r--1 l )  2 (1 --rU)~'clu, 

(ia3,)r = ~r2flr2 f (  1 1 )2 (1 - -  u)2du, 
fir_l( Z, -[- fl ..... -~ . . . . .  

all the integrals being between the limits 0 and 1. 

In all other respects the analysis of the trapezoidal section follows exactly the same lines as 
that  for the rectangular section. 
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P A R T  V 

Conically Tapered Tube of Rectangular Section 

In  a conically tapered tube Wr_l/Wo = dr_l/do = r/ro where r is the distance from the apex 
of the  tube .  Assume also tha t  At_l/A0 = r/ro: if no actual  booms are fi t ted Ar--1 = 1/6 
(tdr_l + SWr_~) and  the condit ion is satisfied provided tha t  t and s are constant .  If now lr 
is made also proport ional  to r(lr ~= rz say  where z is a constant) ,  all the coefficients Br, etc., 
become invar ian t  wi th  r. F rom §111.4, we have 

----- dr~dr-1 = (r --  rz)/r = 1 --  z =/~r = 7r 

s imilarly from §111.6 
Rr = wodo/4ro2z ~, I~1 = I~,. = I ~  = 0 

1 1~ \ 

) m = ( 2 - - z )  EAo/Gsd o,I2a = 4 ( 1  - - z )  ~ ~ + g ~ . 4  + 4 .5  + . . . .  

( 1  z z 2 ) 
I3a ~- 8 (1 --  z) 2 1 . 2 . 3  + 2.3. .4 + 3 . 4 . 5  + . . . .  

A r - 1  1 _ _ 4 ( 1  - - z )  2 and  taking 1 as roZ and A as A o, (gr + fir)2 A lr 

Then,  dropping suffixes, which are no longer necessary, 

2 1 7 o. 1 ( 2 - - z )  EA° w° 

J = ~ + ~ z  + z ° ' +  . . . .  ) --  half  te rm above 
t 

1 2-  ao( o ao) . . . .  (4s) 
- - C =  D - -  16zO. 1 - - z  Gro ~' s t . " . . . . .  

and  
" . .  (49) T~lr ~ ro2Z Tn 

Tn' 
,, Wr-ld,:~ / - -  - -  w o d  o r 

From §111.4 (c)- (equation 26) 

JP~- I  + (H + K)P~ + JP~+I = D (Tn'+l - -  T~') 
Bu t  

Pn4-1 Pn ~ (aP~ '~- ½ (TZ)2 ( 
d2p'~ * 

= rz a r J ,  

a n d  / dT 
Tn+l Tn--  rz = ~ ) .  

From (49) and (52) 

ro~z ( Tn+ 1 
T n ' + l  T~' 

wod o \ r(1 --  z) 

(Tn being the torque t r ansmi t t ed  at  section r) 

r =wodor(1 - - z )  T , - - r z  ~ ~ - - T ' ( 1 - - z )  i 

r°~z2-- ~dr) = wodo (1 z ) ( T  dT O g g • 

(50) 

(51) 

(52) 

(53) 

* Negative signs because direction of n increasing is tha t  of r decreasing. 
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T h e n  us ing  (46), (47), (48), (51) a n d  (53) in (50) a n d  d r o p p i n g  t e r m s  in z 2 a n d  h ighe r  power s  
(1  z do i 6 (  1 + 2 )  2 - - z  E A  o w o d2p  

16z2- Gro2 ( ~s + - ) I  ( 2P + ~'~Z~ dr~ ) 

( 2  - 2 - - z E A  0 do I 
- s - +  ) P 

,  ao( o 
16z 2 1 - -  z Gro2 s t wod o (1 - -  z) r dr 

z - -  EAo do P ( 1  + 2 )  2 z 16 Gro2 ( w° d2P -s + ) r2 dr 2 

2 - - z  EAo (Wo d o )  ( T  
16(1  - - z )  2 Gwod  ° s t r - -  

o r  

r e d 2P E A  o ( w °  
dr 2 - -  8P --  Gwod ° s 

d T  
d r  ) . . . . . .  (54a) 

d o d T  T ) _. 0 (55) 
t ) ( d r  r . . . .  

I n  the  l imi t  w h e n  z ~ 0  

E A  0 + ° ) 

W h e n  r a n d  r o t e n d  to  inf in i ty ,  p u t t i n g  r o - -  r = x, th i s  r educes  to  

-G- s - t -  i d ~  ~ - 8 P  4 - G w d  s t dx  = 0  
ag ree ing  w i t h  e q u a t i o n  (7) of §II .9.  

. .  ( 5 5 a )  

FIG. 10 

* This special case perhaps needs further explanation. The 
diagram, Fig. 10, represents one short bay of the tube from just 
inboard one frame (rl)" to just inboard the next frame (to). 
If F is the shear load on one tube wall just inboard of the frame 
at r~, by moments about the apex of the tube, the shear force 
just outboard of the frame at r o must be Frl/ro, because the 
only other forces on the wall between these two sections ard 
those along the top and bottom edges, and these forces pass 
through the apex of the wall. Therefore the frame at r 0 must 
apply a force 

F ( 1  -r-1 ) 
gO 

to bring the total shear just inboard of the frame back to F. 
Then, resolving forces vertically, the forces along the sloping 
edges of this wall must be 

F ( '  " )  

g0 

where e is the apical angle of the wall (~ small). Then change 
of bending moment in the wall between r~ a~d r 0 is 

F ( 1  " )  
- - -  - ro~ - -  F (to - - r ~ )  
(x g0 

and is zero. Of course F/e must equal F'//L that is F and F' must result from equal loads per unit length of 
edge--the Batho system. It is interesting to note that the forces on the frame are such that the frame itself is 
not sheared ; this implies, of course, that the sections of the tube do not tend to distort. Provided that tile forces 

;:) 
are properly applied, the frames may be omitted without altering the conditions. Naturally, the reaction torque, 
wherever it be applied, still gives rise to boom loads. 

W h e n  w° - -  s , p is i n d e p e n d e n t  of T,  a n d  to r s ion  p r o d u c e s  no  w a r p i n g  of t he  t u b e  cross sec t ions .  d o t 

Also w h e n  T var ies  in p r o p o r t i o n  to  r, t h e  shea r  force in each  wal l  is i n d e p e n d e n t  of r a n d  t he r e  
are no  b o o m  loads .*  
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In  the  general  t apered  tube,  held at  the  root  and  subjected to a torque T o ~ the t ip 

where  

Y To + Vr" + W r  1-n 
P - - X - - 2  r ,~ 

n = ½ + V x + ,  1- 

(5o) 

X = 8Gro2/EAo ( w° 

Wo 
Y ~ r°2 s d° ) / w°d° ( ~ + ~ 

and  V and W are constants  to be de te rmined  from the  end conditions. 
(27b)), wri t ing 

and  

1 
te rms in - give r 

Z 

Hence  

+ . . . . . .  P1 = P o - - r z  -dr o 

roUZ T 1 
TI' -- wod o r 

Wo do 
dP _ %2 s t 

dr w od o wj + d_o 
s t 

T =y--T a t r = r o *  
f $" 

From §111.4 (c) (equat ion 

and,  s i n c e P  = 0 a t r  = r  1 

Y T o +  
X - - 2  rl 

Y T ° + n V % " +  (1--n)Wro 1-"= +YT-° 
X - - 2  r o r 0 

Vrln + Wrl  1- ,  = 0. 

In  m a n y  cases, X is large and n is much  greater  than  uni ty.  In  tha t  case nVron and W r  1 1-n 
are comparable  in magn i tude  to To/r 0, and  Vrln and (1 --  n )Wr  o 1- .  are negligible in comparison.  
Therefore approx imate ly  

Y T o {1 + X -  l ( r  ~,+1 (r1,~-2! (57) 
P r - -  X ~  n \ 7 o /  --  \ r /  ) . . . . . . .  

Over the greate¢ pa r t  of the  length  of the tube  

Y 
Pr  --  X --  2 To 

and is cons tant  ; at  the free end Pr falls ab rup t ly  to zero and  at the  fixed end it rises abrup t ly  to 

X - - 1  
l + - - - -  

t imes its general  level. Referr ing to equat ion  (54a) it will be seen tha t  the  var ia t ion of the  
equat ion  of equi l ibr ium wi th  z is only slight. Accordingly,  var ia t ion of the  boom loads as the 

*Sign corresponds with that in §11.9 bec.ause r here is measured in opposite direction to x in that section. 
~ ¥/r ~ corresponds to fl/~L 2 in that part. 
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average frame spacing is varied, is only slight. This is illustrated in Fig. 11 which shows the 
variation of boom load along the length of the most highly tapered tube treated by Williams in 
R. & M. 1761, §4, p. 20, et seq. The full continuous line shows the distribution calculated from 
equation (57) for this case, whilst the two broken lines show the distribution computed with 
four and six frames respectively ; the detailed computation for the latter two cases is shown 
in the attached sheets. It  will be seen that  the differences of boom load resulting from 
variation of the number of frames are quite minor. 

On Fig. 11, the distribution of boom load computed by Williams in R. & M. 1761 is also shown. 
This distribution is similar in form to that  found here but indicates considerably greater values 
of the boom loads, particularly near the tip of the tube. These differences are to be expected, 
in view of the different method of computation used in R. & M. 1761. Detailed comparison of 
the two analyses is difficult; but the following points are worth noting. Equation (100) of 
R. & M. 1761 corresponds to the relation 

in §III.4(a), 
correspondence 

F in the present paper = 2akS dM1 M 1  
dx l - -  x 

and 
dM2 M 2 

F ' i n t h e p r e s e n t p a p e r = - - 2 a S +  dx + 1 - -  x 

T = F w  1 - -  F'd 1 + (dow 1 --  dlwo) P1 
l 

but since d/w is constant, the term in P1 disappears. In accordance with this 

Notation of R. & M. 1761. 

In R. & M. 1761 the shear force across the tube wall is taken as 

dM 1 
dx 

M 1 
2 akS (equation (98i), tha t  is F + l -- x ' 

whereas in tile present paper it is taken as F in accordance with the conclusions of the Appendix. 
This difference is associated with the treatment in R. & M. 1761 of the bending moment as 
resulting from a system of parallel forces, whereas in the present paper a radial system is assumed. 
Moreover in R. & M. 1761 the rotation of sections of the tube walls as a result of shear distortion 
is disregarded. These separate differences should be at least partially self-compensating ; but 
Fig. 11 shows that  their combined effect may still leave considerable discrepancies. 



Conically Tapered 

E x a m p l e  taken  f r o m  R .  & M .  
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Tube with Four Frames. 

1761, § 4.18, taking l --- 135 inches. 

Specification (dimensions in inches : unit torque applied at tip) 

Frame o r  ]3ay No. 

dr 
~ r  
Ar • • 

tr 
Sr  

Tr 

C~r = fir = Yr = dr~dr--1 
Rr ----- wr--ldr__l/4lr ~ . . . . .  
~r = (1 + gr)EAr--~/Gtrwr-1 
/~r -----(1 + flr)EAr__JGSrdr_ ~ 
lr/Wr--ldr--1 . . . .  
Oli = Rr(2r +/@) 
- -O n =O13= Rr~r(/~r-lr) . . . . .  
032---- -- O23 =Oaa---~ Rrc~r~(2r +#r) 

122 . . . .  

"]'23 . . . .  

I 3 3  . . . .  

Br=( In+On)d (~ r+f l r )  ~ At-1 l , -- 

A ~1. 

C r = ( I i .+On)  r/4~r2Ar_l 
A 

Dr = (Ila+Ola)r/4~r ~ At-1 
A 

Hr = (I2~+O22)r/4~r 2 At-1 
A 

A 
K r =  (Iaa+Os.~)r/4C~r 2 At-1 

A 

T r ' - -  Trlr/wr_ldr_l  .. 

Boom Loads. .  

6 
'20 
1.63] 

5 
20×~- 

same X 

22.5 
1-5 
O. 0394 
1 

5 

0.05926 
0.2592 
g1-304 
0.1875 
1.8704 
1.5330 
1.2989 
1.0594 

0.5006 
0-9672 

+0.6733 

--0.5519 

+0.5519 

+0.8490 

--  0.2874 

- -  +0.8158 

0. 1875 

- -  +0-8490 
- -  --0.2874 

- -  +0.13537 

I 

4 
20× ~ 

safile × -~ 

22"5 
1"5 
0"0394 
1 

5 
0"04116 
0.2545 
30"735 
0.2700 
1.2762 
1"0032 
0"8168 
1.0058 

0"4753 
0.8996 

+0.5982 

--0.4702 

+0:4702 

+0.8542 

--0"1601 

+0.8045 

0.2700 

--0.2874 
+1.6700 
--0.1601 

+1.572710 

+ O- 03984 

3 

3 
10 
same × ½ 

22.5 
1"5 
O" 0394 
1 

3 

0.02634 
0.2475 
29-881 
0.4219 
0"7982 
0.5854 
0.4490 
0-9261 

0.4305 
0.8022 

+0"5321 

--0"3903 

+0-3903 
/ 

+0.9167 

--0.0123 

+0.8341 

0-4219 

--0.1601 
+1.7212 
--0.0123 
--0.1601 
+1 '704900 

2 
20× ½ 

same × a 1- 

22"5 
1"5 
0- 0394 
1 

3 
0"014815 
0"2357 
28"458 
0"7500 
0"4327 
0"2787 
0'1923 
0"7954 

0 . 3 5 8 6  
0.6498 

+0.4868 

--0"3135 

+0.3135 

+1.1112 

+0"187i  

+9"9474 

0.7500 

--0.0123 
+1-9453 

--0.0123 
+1.945211 

A =  1.631 

/ = 2 2 . 5  

Torque applied 
at tip. 

\ E  
= 2 . 6  

I l l  ----- I 12  

---- I13 = 0 

A = 1 . 6 3 1  

--0.10348 
--0"02347 
--0.03773 
--0"07044 
--0"058500 
--0.043686 
--0.070755 

+0"02588 s +0"03637 lb./lb.-in. 
torque 

(6620s) D 



'Conically Tapered Tube with Six Frames. 

Same Tube as in previous Example. 

tr = 1"5, s r = 0 " 0 3 9 4 ,  T r =  1 

F r a m e  or B a y  No. 

d r = 0"3w r . . . .  

lr . . . . . .  

05 r 

Rr = 

2 r ---- 

#r = 

O l l  

- - O 1 2  

0 2 2  

1~ r 

I)r - -  

t t r  = 

Jr  = 

Z r  - 

T r t  

t~r = V r  = d r / d r - a  . . . .  

W r _ f l r - a / 4 l r  2 . . . . . .  

(1 + a r ) E A r - 1 / G t r W r - 1  . .  

(1 + ~ r ) E A r - 1 / G s r d r - 1  . .  

Rr(Yr + ~r) . . . . . .  

O13 = Rrmr(flr-Yr) . . . .  

--O~3 = 033 = Rr~fi(~r t-/'r) 

[23 

133 

(h~ + o~ , ) /4~  ~ Ar ~ l 

(Ilz + O12)/4~r 2 Ar-1 l 
A lr 

( I~  + O~)/4~r ~ Ar-~ l 
A 2r 

( I~  + O22)/4Z.r 2 Ar - i  l 
A lr 

( I~  ÷ o~) /4~r  '~ n~_, t 
A lr 

(1~ + o~ ) /4~ ;  ~ Ar-1 l 
A lr 

Tr/r/Wr_ldr-L . . . .  

Boom Loads  . . . . . . . .  

0 

. .  6 

1 2 

5 4 

22 .5  22-5 

4 
5 

0.05926 0-04116 

0.2592 0.2545 

31.304 30.735 

1.8704 1.2762 

i 1-5330 1.0032 ] 

1.2989 0-8168 

1"0594 1.0058 

0.5006 0 '4753 

0.9672 0:8996 
i i 

+ 0 . 6 7 3 3  + 0 . 5 9 8 2  

- -0 .5519  - -0 -4702  
I 

+0"5519  + 0 . 4 7 0 2  

+ 0 . 8 4 9 0  +0"8542  

- -0 .2874  - -0 .1601 

+ 0 . 8 1 5 8  + 0 . 8 0 4 5  

0.1875 0.2~00 

• - -  + 0 . 8 4 9 0  - -0 .2874  
- -0 .2874  + 1 . 6 7 0 0  

- -0 .1601 

+1 .57271  

i 

- -  - t 0 " 1 3 5 3 7 + 0 - 0 3 9 8 3  

3 

3 . 2 .  

18 

0-0411~ 

0" 2545 

30.735 

1.2762 

1.0032 

0.8168 

1.0058 

0"4753 

0"8996 

+ 0 . 5 9 8 2  

- -0 .4702  

+ 0 . 4 7 0 2  

+ 0 . 8 5 4 2  

- -0 .1601 

+0 .8O45 

0"3375 

--0"1601 
+1"6587  
--0"1601 

- -0 .1601 
+ 1 . 6 4 2 4 0  

+0 .02584  

4 5 

2 .8  2"4 

9 9 

(; 
7 

0 . ~ 5 3 5  0.08066 

0. 2651 0. 2626 

32.016 31.710 

3" 4008 2. 5789 

2.9269 2. 1742 

2'- 6037 1. 8947 

1" 1273 1- 0982 

0" 5458 0" 5280 

1. 0547 1" 0204 

+ 0 . 8 3 2 8  + 0 . 7 5 2 2  

- -0 .7168  - -0 .6341 

+ 0 . 7 1 6 8  +0 .6341  

+ 0 . 9 1 3 7  + 0 . 8 7 2 9  

--0"5040 - -0 .3986  

+0" 8959  + 0 . 8 5 0 2  

0.2637 0.3444 

- -0 .1601 
+ 1 . 7 1 8 2  - -0"5040 
- -0 .5040  + 1 . 7 6 8 8  

--0.3986 

--0.1601 
+1"7025~ - -0"5040 

+1"61961 

+ 0 " 0 2 9 4 3 + 0 ' 0 3 2 0 2  

2"0 

9 

5 

0.05926 

0.2592 

31-304 

1.8704 

1.5330 

1.2989 

1.0594 

0.5006 

0.9672 

+ 0 ' 6 7 3 3  

- -0"5519 

+ 0 . 5 5 1 9  

+ 0 . 8 4 9 0  

- -0 .2874  

+ 0 . 8 1 5 8  

0.4687 

- - 0 ' 3 9 8 6  
+1"6992  

Notes  

1.631 . 
A r = T ~ r  

I l l  --~ I12 ~ I la  
= 0  

--0"3986 
+1"60110 
+ 0 ' 0 3 1 2 4  

/ = 2 2 . 5 ,  
A = 1 . 6 3 1  

- -0 .10348  
- -0 .02347  
- -0 .03174  
- -0 .03033  
- -0 .02936  
- -0 .04032  
- -0 .058500 
- -0-037695 
- -0 .034004 
- -0 .039426  
--0"050023 

lb./ lb.-in.  
torque 
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(66203) 
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I0  9 o  

• 

~.0 3 0  4 0  .50 bO 70 8O 
inc.ha~ ~pnn ~:~,orn ~'oo1:, 
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inc.Y~ ,,(~c.~o~ wide)  ~.r~ ~ p ~  l~-~_.~,n(z.~s_l.5 inch. (down 
a.__~p.b._.h),- no z~c~u~ boom~ ~;b~,~. 

b 

Fi6. I I .  
@ 

D* 
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,.~ A P P E N D I X  

The Simple Theory of Bending and Shear for Tapered Beams 

A.1. In t roduc t ion . -The  ordinary  simple theory  of bending as commonly used by engineers 
is exact only in certain special cases ; but  its use in other  cases, to which it is not s t r ict ly applicable, 
is common practice and the practice is justified by  experience. In stressing parallel tubes 
t rea tment  of the warpirig distort ions by  the simple theory  of bending for a parallel beam yields 
results in good agreement with exper imental  results. For stressing tapered tubes, therefore 
it is deemed sufficient to establish for tapered beams a comparable simple theory  of bending. 

A.2. Basic Analys i s . - -The  analysis here presented has been previously developed in more 
detail  by Atkin  a in " Aircraft  Engineering ", November and December, 1938. I t  is repeated 
here in order to demonstra te  the basis of the simple rules for stressing slightly tapered beams, 
of which use is made in Par ts  I I I  and IV of the paper. 

Using cylindrical  co-ordinates, with pole at the apex of the beam, the stress dis tr ibut ion in 
a beam of uniform (unit) width has to satisfy the equations of equilibrium. 

(r.rr) ~rO O0 = 0 and . . . . . . .  
-Or + 60---  

d (r ~ ro)  doo _ 0 (58) 
dr - + r  a0 . . . . . . . .  

Solutions of these equations are 

r) = f ' ( 0 )  qo'(0) 00 = 0 a n d r - 0 - -  f ( 0 )  (59) 
r~-- + - - - ~ - - ,  r 2 . . . . . . . . . .  

where f(O) and 7' (0) are a rb i t ra ry  functions of 0. 

The relations between stress and strain 

rO 
err = (rr - aO--6)/E, eoo= (00 - - a ~ ) / E  and e r e -  G 

and the conditions for compat ib i l i ty  of s[rains 

(60) 

0u ~v u and er0 -- + r (61) err -- ~r'  eoo--  r~O + r  rO0 07 . . . . . .  

lead to the formulae 
¢,a 

f, Eu -- (0) + ~'(0) log r + ~o' (0) . . . . . . . . . .  (62a)" 

Ev = (1 --  a) f(o) (a -}- log r) q~ (0) -- 9 (0) + F (r) . . . . . .  (62b) 
g 

and the condit ion 

- [ ; '  (0) + + E 1 ~ ) f  (0)~ r -t- {9" (0) - k 9  (0)}log 

" + ,e" (o) + v (o) - (1 - ~) ~ (o) + ~V'(r)  - V(r)  - 0 ,  (63) 
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Assuming tha t  E /G = 2 (1 + a), this condition is satisfied by  

and 

When  the  

f ( 0 )  = A +  B c o s 2 0  + C s i n 2 0  "1 
! 

9 (0) = L c o s 0  + h I s i n 0  [ 

~v(0) = P c o s 0  + Q s i n 0  + 1 - , - - - 2 - - 0  (L sin 0 + M  cos 0) 
I 

F ( r )  = K r - - - -2 A  ] 

stresses become 

where A, B, C, L, 
M,P, Q, and K 
are constants .  

rff ---- ( -  2B sin 20r 2+ 2C cos 20) + (-- L sin 0 r + M cos 0) . .  . .  (64a) 

00 = 0 . . . . . . . . . . . . . . . . . . . .  (64b) 

r-0- --  _ A + B cos 2 0 + C sin 20 . (64c) 
~.2 . . . . . . . . . . .  

and  the  displacements  U and V parallel  and perpendicular  to the line 0 = 0 are given by  

E U  _ 3 - -  a ( B s i n 0  -- C c o s 0 )  -t- 1 + a 
2r 2r 

-- K r s i n 0  + Q + M l o g r  + 4 

1 - -  e L 0  . .  
+ 2 

(B sin 3 0 - -  C cos ,.30 + 2A sin 0) 

1 - - 3 a  M - - -  (L sin 2 0 -- M cos 2 0) 4 

E V  
3 - -  Cr 

2r 
( B c o s 0  + C s i n 0 )  

+ K r c o s 0  --  P - -  L l o g r  

. . . .  (65a) 

l + a  
2r (B cos 30 + C sin 30 + 2A cos 0) 

and  

1 + a  ( L c o s 2 0  + , M s i n 2 0 )  + 1  - - -3s  
4 4 

1 - -  O" 
. . . . . . . .  

and  the rota t ion ~ of the plane section through (r, ~ ~) is given by  

- - L  

(65b) 

E ~V° -- 2B 
~, ~ r  r ~ 

E ~ W° 4B 
~r ~ - -  r ~ + 

r 

2B 
EVo 1 + a  ( A + B )  + K r - -  L l o g r + c o n s t  . . . . . . .  (67) 

r 

+ 1 + a  ( A +  B) + K L . . . .  (68) 
~,2 ~ . . . .  

L 2(1 + a) 
r~ r3 (A + B) . . . . . . . . . . .  (69) 

E~ 3 - - ( r  B + l + a  { B . ( 3 - - 4 s i n  2c~) 4 - 2 A ) - - K  + l + ( r  -- 2r 2 2r 2 - - 2 r - - L  cos c~ 

1 --  ff o~ 
+ - - 2 r  L - - s in  c~ . . . . . . . . . . . .  (66) 

F rom equat ions (65) and (66) it will be seen tha t  P and Q represent  body  t ranslat ions of the 
whole beam and tha t  K represents ro ta t ion  of the whole beam about  its pole. The C and M terms 
represent  the  effects of loads along the axis of the beam and these terms will not be fur ther  
considered. 

Then  for the deflection V 0 of the centre line (0 = 0) of the  beam 
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The difference e I - -  e 2 between the radial strains at (r, ~ c~) divided by the distance d = 2 r  sin c~) 
between these points is 

el--e, ,  ;;% -- r ~  1 ( 4 B  cos c~ L ) 
- - d  . . . .  Ed . . . . .  E- r a - -  + ~ . . . . . . . .  (70) 

and the shear stress q0 (at 0 = 0) = (A + B)/r  ~ . . . . . . . . . . .  , . .  (71) 

If c~ be so small that  c~ 2 is negligible in comparison with unity,  equat ion (66) reduces to 

2B L (1 + ~ ) ( A  + B) 
E~ =: ) 2  + - ~ - +  r 2 K . . . . . . . .  (72) 

equat ion (67) to 

EV ° =  2B -- L l o g r  + K r - -  (1+~) (A + B )  r - r + const . . . . .  (73) 
and equat ion (70) to 

(el - -  e2) 1 4B / L X  
d E k , ~ - +  r~-] . . . . . . . . . . . . .  (74) 

Then choosing the constants  in equations (72) and (73) so tha t  # = 0 and V 0 = 0 at r = r 0 

E~ ( 4B  L - - f ~  _ I r d r  + r - 2 ) d r  2(1  + ~ ) ( A  + B )  -rS- . . . . .  (75) 
r o - r ° 

and 

E V o - -  + ) d r +  f ( + - - ) d r  
f(2B L r 2B L 

~o \ r ~ r ~o r ~  r~- 

or  

f r dr 
+ 2 ( 1  + ~ )  (A + B )  r r3 

r O 

f r (r ( 4 B  L )  f r  d r  
~o.trok-r~-- + drdr + 2 (1 + ~) (A + B) r r3 . 

,.~ r o 

Hence, using equat ions (71) and (74) 

= f  r e l - e 2  q°r2 f r r a 
g o  ~ 0  

and 

(76) 

(77) 

t frr 
Vo - -  f el - -  e2 d r  (78) 

~o ro d drdr + ra . . . . . . .  
r O 

/~ where X and /~ Equat ions  (77) and (78) are strictly true only if e 1 -- e 2 is of the form )~ -F r 

are constants  and if qo r~is constant  (cf. equat ion (64)) ; but  in practice it appears reasonable 
to use t hem more  generally. This extension may  be justified by analogy with the case of 
the parallel beam. 

A.3. The S imple  Theory of Bending for  a Parallel Beam as a Special Case . - -For  a parallel 
beam, when r o is very  large in comparison with r 0 -- r, writ ing r 0 -- r = x, equations (77) and (78) 
become 

f x e l_e2  dx + q°x . . . . . .  (77a) 
: -  o d Gr 0 . . . . . .  

and 

V 0 =  _ fx  fx  e l_e2  qo x (78a) 
o o d dxdx G . . . . . . . . . . .  

The second term in equat ion  (77a) is negligible:  the other terms correspond to the ordinary 
simple theory  of bending, including the deflection due to shear. 
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A.4.  Nature of the Simple Solution for the Tapered B e a m . - - T h e  n a t u r e  of t he  s imple  so lu t ion  
exp re s sed  in e q u a t i o n s  (64) to  (66) is bes t  u n d e r s t o o d  b y  re fe rence  to  t he  va lues  of t he  b e n d i n g  
m o m e n t  M a n d  t o t a l  shea r  force F a t  t h e  p l ane  sec t ion  t h r o u g h  r' p e r p e n d i c u l a r  to  0 = 0. T h e  
d i rec t  s t ress  p a n d  t he  shea r  s t ress  q on  th is  p l ane  are g iven  b y  

p = r r -cos  ~ 0 - -  r-0 sin 20 . . . . . . . . . . . . . .  (79) 

q = r r  sin 0 cos 0 + r'-0 cos 20 . . . . . . . . . . . . . . .  (80) 

T h e n  u s ing  (64), b u t  i gno r ing  t he  C a n d  M t e r m s  w h i c h  c o n t r i b u t e  n o t h i n g  to  t he  shea r  or 
b e n d i n g  m o m e n t ,  a n d  w r i t i n g  r = r '  sec O, y - - r '  t a n  0 d y = r '  see20 dO w h e r e  y is t he  
p e r p e n d i c u l a r  d i s t ance  f r o m  the  l ine 0 = 0, 

p = A B (sin 20 + sin 40) L s i n 0 c o s 2 0  (81) r2 s in  20 - - - f i  - -  ~ -  . . . . . .  

A B L (82) q ---- r-- ~ cos 20 +'  7 cos 4 0 - -  - - r  s i n 2 0  c o s 0  . . . . . . . .  

a n d  

M = - f  # r ' t a n O  r ' s e c  2 0 d 0  = pr ~' tanOdO 

----- - -  {A (2~ - -  s in  2~) + B (sin 2c~ - -  ½ sin 4~) + Lr' (o: -- ½ sin 2c~) } (83) 

0~ 

F =  f qr' sec ~ 0 d 0 - - -  ( A + B c o s 2 ~ ) s i n 2 ~  r' - -  L (c~ - -  ½ sin 2c~) . . . .  (84) 

- -0¢ 

Fina l ly ,  s u p p r e s s i n g  t he  p r i m e s  w h i c h  are  no  longer  necessa ry ,  

F ---- (A + B cos 2~) s in 2~ _ L(c~ - -  ½ sin 2 c ~ )  . . . . . . . .  (85) 

a n d  
F r  - -  M ---- (A + B cos 2~) t a n  2c~ + A (2~ - -  t a n  2~) . . . . . . . . .  (86) 

T h e n ,  w r i t i n g  A + B cos 2~ ---- q~v2, so t h a t  q~ is t he  shea r  s t ress  (~, 0} a t  ~ a n d  since 

A + B = qo r2, B (1 - -  cos 2c~) = (qo - -  q~) r2 a n d  A (1 - -  cos 2~) = (q~-- qo cos 2~) r 2. 

H e n c e  

Fr --  M ---- q~,r 2 t a n  2~ + 2~ - -  t a n  2e  1 - -  cos 2~ (q~ - -  qo cos 2~)r 2 

Yc~ - -  s in 2e  q~r2 + sin 2c~ - -  2~ cos 2c~ 
= 1 - -  cos 2~ 1 - -  cos 2e  q°r2 

2~  4~  8 (87) = -g (q~r 2 + 2q0 r2) + ~-~ (q~ - -  qo) r2 + . . . . . . .  " . . . .  

I f  ~ is smal l ,  all  t e r m s  a f t e r  t h e  first  are negl ig ib le  a n d  w r i t i n g  2r~ = d, whe re  d is t he  d e p t h  
of t he  b e a m  a t  sec t ion  r, e q u a t i o n  (87) m a y  be  p u t  in t he  f o r m  

3 F ~ (M/r) . (87a) 
qo = f2 + (qe/qo) " d . . . . . . . . . . . . . .  

I f  r be  large,  th i s  r e d u c e s  t o  
3 F 

qo - -  2 + (q~/qo) d 

t h e  u s u a l  f o r m  for  a pa ra l l e l  b e a m  w h e n  q var ies  ove r  t he  d e p t h .  
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In any case whatever  the values of r and ~, equat ion (87) shows tha t  the shear stress ~ is 
proport ional  to the momen t  Fr -- M about  the apex of the beam ; this conclusion is otherwise 
obvious because a load at the apex of the beam produces only direct (radial) stresses. This 
second conclusion is confirmed by equat ions (64) and (85) which shows tha t  the part  of the stress 
rr, which is proport ional  to I /r ,  is also proport ional  to the  shear load F. 

If q~ --- q0 when B = 0, the tapered beam loaded only at its tip exhibits the peculiar inversion 
that  shear load causes only direct (radial) stresses, whilst bending momen t  causes only shear 
stresses ; of course in the lat ter  case the necessary radial loads are carried by the heavy b o o m s  
implied by the assumption q~ -- q0. 

From equat ion (83) it may  be shown tha t  

- -  M = ( 4 B c o s ~  + Lr) ( ~ - -  ½ s i n 2 ~ )  

7 2 
+ i --  cos 2e {(2e --  2 sin 2~ + ½ sin 4e + 4~ cos ~--  4 sin c~ cos~e)q~ 

+ (sin 20~ -- 2e cos 2c~ -- 40c cos c~ + 4 sin c~ cos2c~) q0} 
or approximately  

r '  + , ' ) ( ' - . )  (8S) 

4B cos c~ L ei--e 2 Or neglecting c~ 2 in comparison with unity* and subs t i t u t i ng -  r ~ - - -  + r2---- - - E -  d " 

from equat ion (70) M Ed~ -- IQ ' ('1- '2)- ~ (qo + -~C¢) d' r "  • . . . . . . .  ( 8 8 a )  

The first term is the usual bending formula, just as for a parallel b e a m ;  the second term 
represents a small correction, which is usually negligible. Using equation (87a), this term may  
be wri t ten in the al ternat ive form 

20 2 + (q,/qo) F . . . . .  r r F . . . .  r 6r i f q ,  = q0. 

1- -- 27 °) this term represents a correction to the Even in the extreme case d --= r (~ -~ tan ---1 z -- 
bending moment  equal to the shear load carried by the web acting at a radius of only one sixth 
the depth  of the web. 

A.5. S u m m a r y  of  R e s u l t s . - - I t  is concluded tha t  the simple theory of bending for tapered 
beams is described in the following rules : - -  

(a) The distr ibution of radial stress may  be computed  from the value of the bending 
momen t  M and the modulus  of section of the beam at each section just as for a parallel 
beam. 

(b) The distr ibution of shear stress-rO (apart from the effect of buckling) may  be computed  
from the shape and dimensions of the section as for a parallel beam, except tha t  in 

place of the total  shear load F the effective shear load F M where r is the distance 

of the section from the apex of the beam, must  be used. 
( N o t e . - - I n  the body of the paper this reduction of the total  shear load i.s made  

ab iu i t io  by the use of the conception of " equivalent  booms " ; the te rm M/r  is then  
represented by the components  of the boom loads resolved parallel to the section.) 

• T h e  correc t ion  fac tor  1 - -  -5 r ep re sen t s  the  a p p r o p r i a t e  m e a n  b e t w e e n  1 and  cos ~ ;  if a c tua l  booms  are  

p r e sen t  the i r  con t r i bu t i on  to tile bend ing  m o m e n t  is of course  r educed  in the  ra t io  cos ~. 



57 

(c) The bending deflection may be computed from the radial strain~ exactly as for a parallel 
beam, the inclination of the booms or edges being disregarded. 

(d) The shear deflection may be computed from the shear strains by dividing these strains 
by the distance from the apex of the beam, integrating and multiplying the integrals 
by  the distance from the apex of the beam. (Note.--This procedure is necessary 
because pure shear of a tapered beam consists in relative rotation round the apex of 
the beam.) 

These rules are approximate in that  the square of half the angle between the 
edges of the beam has been assumed negligible in comparison with unity. Provided 
tha t  the angle .subtended at the apex of the beam is less than 20 ° , the error thus 
introduced is unlikely to exceed 5 per cent. and will normally be very much less. 

A.6. Comments on the Extension of the Simple Theory to Cases Strictly Beyond its Scope.- 
The rules (a) to (d) stated in §A.5 represent a considerable extension of the actual results of 
§A.2-4 in that  the restrictions on the type of loading have been entirely ignored. This extension 
corresponds exactly to the similar extension of the simple theory of bending in application to 
parallel beams, which is common .practice and justified by general experience. Appeal by 
analogy to justify the similar extension for tapered beams is perhaps sufficient ; but in view of 
certain unfamiliar characteristics of the tapered beam, some further discussion, based on the 
simplest illustrative case may be desirable. 

If a tapered beam held as a cantilever at section r 0 be subjected to a shear force F at section r 1, 

M Frl If the beam is of uniform thickness, the shear stress M = F (r--r1) and F 
r 

Frl is proportional t o - ~ - ,  which conforms to equation (64c). The radial direct stresses are pro- 

portional to M/r 2, that  is to F Fr 1 " r # ,  which conforms to equation (64a). The bending 

stresses and strains are then calculable by  the rules stated and the bending deflection follows. 

r 1 
Over the portion of the beam r 0 to r 1 the shear deflection is proportional to r° 2 r (equation 

(78)). So far as the bending deflection is concerned, the " slope " of the bent beam defined by 8 

is identical with ~V° , the rate of change of bending deflection; but the shear strain also 
br 

causes a change of slope, which is proportional to the shear deflection divided by the radius r. 
If r0> r this change of slope is exactly opposite to the rate of change of shear deflection ; in fact 

the shear deflection always represents rotation through angles proportional to 1 r°2 about 

the apex of the beam. In computing the deflection a t  sections beyond the applied load F, the 
bending deflection is found in the normal way as for a parallel beam, but the shear deflection 
instead of being constant, now varies in proportion to r. 

The effect of the local distortion of the section rl under the load F is disregarded just as in 
the parallel beam case, and the principle of superposition enables this simple case to be extended 
to cover all loading cases. In short, deep beams the effect of local distortion under the loads may 
not be neg!igible, but this source of error is no more serious for tapered than for parallel beams. 

If the section of the beam varies otherwise than by pure taper, the complete beam may be 
regarded as a composite one built up from a number of beams of uniform thickness loaded in 
parallel and sharing the load so that  tl~eir deflections are everywhere the same. The problem 
is thus reduced to a number in each of which the anomaly concerns only the loading conditions 
and this is covered by the principle of superposition. 

The variation of shear deflection (alone) along the length of a tapered cantilever is illustrated 
in'°Fig. 12, where the contrast between the two cases %> r 1 and r 0 < rl is shown. 
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SYSTEM OF AXES 

Axes 

Symbol 
Designation 

Positive 

Angle of 
Rotation 

X 

longitudinal 
forward 

Symbol 

Y 
latera] 

starboard 
direction 

Force Symbol X Y Z 

Symbol L M N 
Moment Designation ~ rolling pitching yawing 

~p 

P 

0 

V 

q 

- A  B 

Linear 
Angular Velocity 

Moment of Inertia 

Z 

normal 
downward 

W 

r, 

C 

Components of linear velocity and force are positive in the positive direction 
of the corresponding axis. 

Components of angular velocity and moment are positive in the cyclic order 
y to Z about the axis of x, z to x about the axis of y, and x to y about the axis of z. 

The angular movement of a control surface (elevator or rudder) is governed 
by the same convention, the elevator angle being positive downwards and the rudder 
angle positive to port. The aileron angle is positive when the starboard aileron is 
down and the port aileron is up. A positive control angle normally gives rise to a 
negative moment about the corresponding axis. 

The symbols for the control angles are : -  
aileron angle 
elevator angle 

~ tail setting angle 
¢ rudder angle 
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