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§1. I ntroduction au-l sl!/IIIW"/I)'.--Thc method to be described lu-re is attributed to t he H us"ii\l\
invest iga tor Y. G. Calcrk in, who ....c original pa prr" arc inaccessible to th e present wri ter . JIis knowledge
of the method is derived Irom a description glvcu in a paper by E. 1'. Crossman.' Crossman sl ates
tha t the me thod was g i\'CII by Gnlcrkin in his t reat ise " Rods an d l' Ia tcs ' (vcsmlk 11l!,:I'llcroff, 1915,
P. 897 ,1. and that appllcutk.ns to oscilla uo u problem '> were first ma de hy V. 1'. l .yskov. It is pointed
out hy Grossman tha t Galerkin's process in applica t ions to mechanics Icads to the same results as
Lagrange's pr inciple of vi rtu al work, o ut em ploys a specia l co-ordinate sys tem.

The met hod of Cakrkiu bclongs to the same genera l class as those of Rayleigh ..nd Hill., for it secks
to obtain an appr oxim ate solut ion of a diffcrcnria i equatio n with given bou ndary condit ions by t ak ing:
a function which sa tisfies these conditions exact ly , ami proceeds to specialise the funct ion in such a
manner as to secure approximate sat isfac tion of the differen tial equat ion . The selec ted function is
a linear combin at ion of 1/ independent fun ctions, and the cocrlicicnts arc determined by a process 0:
integ-ra t ion.

The Gnlerkin process can be considered from two poi nts of view , (al "imply a" a means for the
approximate solution of diffe ren t ial equa tions, and (0 ) as a method specially ada pted, for the
trea tm ent of problem", concern ing the st a t ics and dynamics oi clastic and ot her deformable bodies.
Tfu:se two aspects ar e t rea ted separa tely in Parts I and II of the paper respecti vely. and will n~w

be br iefly discussed,

(a) Let the result of substituti ng the given fun ction , which $Ut isfle'i the boundary conditions. in
the differen tial equation be t , Since the result should be zero, E is the erro r in the d iffer entia l equa t ion.
T hen the Catcrktn precess consist s in cho•.,sing th e I f coeff icien ts i ll the function in such a m anner that
, l distinct weighted means of the error , t aken throughout a certain range of representation , shall a ll
be zero.

(b) In mechanical applica t ions t can be inter preted as a gene ralised force , and the mult ipliers used
to weight t ile e rrors arc th e virtual displacements corresponding to increments of each of the generalised
co-ordinat es in t um . Thus the va nishing uf the weighted mean is here interp reted as the vanishing
of the vir tual work in the appropriate displacemen t.

T he degree of accuracy attained can be increased indefinitely by increasing the nu mbe r of inde
pendent func tions employed, but this entails a great increase of labour. However, when the funct ions
a rc well chosen, an excellent approximat ion can be ob tained by t he 1I;;C of a very small number, as is
su fficiently shown by t he examples incl uded in this paper. The result of the Galerkin prQC£"ss proper
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i.. a set o f II linear <'ljll:n i"ll"* , 11I.l;;, ibly iw, ul\-i n;:: a (" h:il ad~'r i, i ic number, and the further rrcatmcn t
o f tll ('sc lIlay fol low a llY of the established methods. For instance, if n wen- ku gc , it might be (If
;!l.h"auwgl' to apply ma tl ircs.

The illustrative ('x;t)lIVk's han ' all been delibera tely chosen of a simple nat ure. and all ha ve known
solutions, so that the ,lrCUI<lCy of t hl' approximat ions oh l;\irwd cow he tested. The examples in Part 1
arc bot h of one-point boun-ltuy pr oblem s, while the cx.uuplos of rm-cha nir-al applicatiouv given in
Part Ll are as follow:> :-

( I) Flexural {l,;cillal ioll of a un iform cantilever. (Sec §JO.)

(2) Torsional oscillation of a uniform canti lever. (Sec §I I.)

(3) Torsional (ISCilbtinll (If a uniform cantilever ca rrying a flywheel. [Sec §12.)

(4) Fle xural o-cillatiou of a un ilortu cantilcvcr cnrrying a tuns..ivc punk-lc. (Sec §I:!.)
(5) Determination of the crit icalload.. of st ru ts. (Sec §I-t.)

(6) Solut ion of the St. Yeuan t to rsion problem for certain boundaries. (See §15.)

T he Ja ..l i.. an instance of an application to a partial diffc-n-utial equation in two dimensions .

There is probably ~arccly a mechanical problem couccming clastic or ot her conti nuously deform
alilo bod ios to which tilt' (ialorkin method cannot he appliccl with success. Here arc a few obvious
applicati ons which arc not includ ed in the li"t of examples :-

(I) Forced motions.

(2) :\lotiollS of bodies subject to the notion of damp ing forces, or aerodynamical forces, e.g., wings
or blades place..I in an airs tream.

(3) Oscillations of diaphragm<.

(4) Oscilla tions of rotat ing blades.

(5) Dcflcxion s of st ru ts wit h eccent ric and la teral loads.

(6) The 51. Vcnant flexure problem and others of the Dirich let type.

A ck nouledgments...-Th e writ er is grea tly indebted to ~liss H. 1i. Lyon, :\LA.• who worked the
examples on flexural and torsional oscillat ions given in §§1O to 13.

• If t he different ia l equation is lion-linear, then these equat ions will also he lion-linear.
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T he Gotcrl:cill Jlcl/;nd f or the , ' p prox ilildle S olution of L inear Ordinary
J)~OiTCilii(f 1 Equations

§~. Stutcntrut of tlu: 1/fdhod.- - SllPP0:-iC tha t it is desired to find the solution of
the linear ordinary different ia l equation

(1)

for the ra nge 1/ :< x <: b of the indepe ndent variable, gin'll certain " boundary
conditions J! whi ch render the solution uniq ue". i\ typical condit ion will be

(2)

to he satisfied whe n .r "'-= .\·0 ' where Ao' . . . . An and B arc give n constants. Let
Y be a function whi ch sa tisfies the compl et e set of condit ions , and let '"1' y :!, . . . . ' .",
he a sequence of lincruly iud cpc ndcut fun ctions which all sa t isfy the set of homo
genrou5 condit ions obtained from (~) by replacin g B hy zero. Then clearly the
fu nction

: " '"
)' = y + ~ cr Yr .,-. (3)

wh ere the coeffic ient s C are in dep endent of x , 0. 1:'-0 satisfies all t he boundary conditions,
In the import a nt case where t he boundary con d itions arc of the hom ogeneous
t ype t he function Y will be om itted. It remains to determine t he coeffi cients so
t ha t y shall be a good approximat ion t o the exact solut ion of (1) for t he prescribed
range of x.

T he t ypical Galcrkin process for the det ermination of t he coefficients is as fellows.
Subs titute the expression (3) in t he different ia l equat ion ( I). m ult iply by Ys •

integrate the resul t from a to b, a nd eq uate to zero . When s is made 1, 2 , . . . J!!

in succession, m linear eq ua tions are obtained which det ermine the coefficien ts c.
It is shown in Par t II that in certa in mec hanical applications of the method it
m<L.r be preferable to employ a di fferent ial coefficient of Y 8 in place of Y 6 as
multiplier , and plainly t he method can be extended by taki ng as mult ipliers any
con venient se t of linearl y independent functions of x . The discussion given in
the following sec tion shows that a ny of t hese va rian ts must yield a good approxi 
mation whe n m is su ffi cien tly large.
- - ----- - -- - - - - ---------

* The" boundary condirions " need not he restricted to condit ions to he satisfied for the extreme
values a and b of x.
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§3. Th e mel/lOt! (~( has! 11/((/)/ squaJ'cd crror ,-- -T IJ~ justificatio n of t he. Galcrkin
proce:-.s will he approached by the considerat ion of an alt ernative method whose
correctnes s appeafs to be self-eviden t.

Let th e result of su bsti tuti ng th e (~xpre~sion (~) for yon th e left-hand side of
(I ) be r , T hen r is t he error in th e different ial equation corresponding to the
approximation (a), which, it is to be remembered, satisfies t he boun dary condit ions
exactly. H ence, if r mcrc zero for a ll values of .r wit hin the range (/ to b the solut ion
would be vxact , sin ce it is by hypothesis un ique. Fa iling t his , the criterion will
be adop ted that the npproxima tiou is best when the mean squared error in the
differe nt ial equation is a minimum". Thus th e coefficients c are to he such th at

is a minimum'[. H ence

?J', '- = 0 (5 ,~ I, 2 , . . .. JII) .
( '('g

(4)

(5)

J is a quadratic fun cti on of t he coefficients , so t hat t he m equations (5) arc linear
an d serve to det ermine the coefficien ts uniquely. Xow

•
f ?,

- 2 € --- dxcCs '
•

and ) d"Y s
I " (x) ' Jx' - +

- Z , (x ), say.

+ I" . ,(x) ;~' + P, (x) Y.

(6)
.'

\Vith th is notation
, o m

e = Z (x) -I- Q (x) + ~ c,Z , (x ) ,,. , (7)

.,

where Z(x) results from the subs titu tion of Y Ior Y. In (6) , Hence equat ion (5)
becomes

or

,
f ,Z, (x) dx - 0 ,
•

•
' ~. c, f Z, (x ) Z , (x) dx + f [Z (x) -i- Q(xl] Z , (x ) dx - 0 .,.,

(8)

(9)

• •
------'---

• T his, of course. docs uot imply th at the mea n squa red error in y is a mini mum ,

t It is to be understood that ( I) is purely real.
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The Galcrkin PHl(, l'~S leads to m equations ty pified by

•
J ,y, dx =O,
•

or
• •

' ;;"c, f z,v, dx + J[Z (xl + Q (x)] Y, dx - 0 .,-, (10)

• •

Consequ ent ly

•Je (}; g. Yd dx = 0, (1 1)

where th e constants g are arbitrary. Now Z, can be expand eel approximately as
a series in V I' Y2' ctc ., so that

Z "\' +""& = ~g&r r 1]5 ,

where T]s is the error ill the seri es. Hence the equa tion (8) ca n be writte n

•J' (Lg"Y . + ~,) = 0 ,
•

(1 2)

(13)

"

and t he (i alcrk in equa tions (11) only differ by th e omission of t hc small quantit ies
'J. \Vhen 1J! is large, 'i s will he small, and it is therefore obvious tha t t he two
methods will then lead to almost iden tical results. A similar argument can be
applied when arbit rary multipliers \V. (x) arc used in place of th e multipliers Y II

of the Galcrki n process.

It may be rema rked t ha t th e int rod uct ion of an addit ional funct ion Ym+t in
th e least mean squared error method mu st lead to an improved approximation in
the sense that t he mean squared error will be reduced. For , when th e coefficient
C", +I is zero a nd th e ot her coefficients arc th e same as before the value of ] is
t he sam e as before. Bu t th ere will in genera l be a set of values of c1 • • • • cm +!

which will give ] a minimum value which is st ill smaller.

§4. Primary allti secondary boundary condi tions, and the choice of thef unctions }"".
Consider the di fferent ial equation

dy
dx - y = 0 ,

a nd suppose tha t the boundary condit ion is y = 1 when x = O. T hen, in orde r
tha t the di fferent ial equation shall be sa tisfied at x = 0 it is necessary that

~ = 1 at this point. Th is, t hen, is t he secondary boundary condi tion which is



a COl1s('<J lI(~IlCC of th e primary bo und ary condi tion y == 1 and of th e differentia l
cqunt ion itself. In general, tile secondary boundary condit ions will be defined
as th ose which arc 11J(' conseq uence of t he sat isfac tion of the d ifferent ial equat ion
and of the p rimary boundary condit ions jointly.

Now it is only necessary t ha t t he funct ion (:1) sha ll sa tisfy the primary bounda ry
condi tions, but in genera l a ruuch better approximation is secured with a give n
number of disposable coefficient s c when th e function also sa tisfies the secondary
bo undary conditions exactly. This amounts to a combination of th e Galerkin
met hod with t he method of collocation which is discussed in a COIHlx111 ion pa pers.

§5. I llustreliue cxtlillples.-.- T hc following examples arc in tend ed merely to illustra te
th e method , and very simple equations wit It known solut ions have been selected.
Since most of the exam ples ill Part II a rc two point boundary problems, t hose'
given here arc bot h one point boundary problems for t he sake of va riety.

Example Lc-Takc the differential equat ion

dy
dx -y = 0

wit h the condit ion y = 1 when x = O. T hen t he exact solution is e" .

Let the ra nge of representat ion be 0 to I , and first take a function (3) which
sa t isfies the primary but not th e secondary boundary condition. Such a fun ct ion is

(14)

Then
t: = (c, - I) + (2c, - c,)x + (3c, - c,lx' - c,x' ,

a nd the Galerkin equa tions arc

,
J' x' dx = J

,
f EX dx =

o o c
- O.

W hen clea red of fractions t hese become

IOc, + 25e:!; + 33c, - 30, }Sc, + 1&, + 2&, - 20 , (IS)

21 c, + 9&, + ISOc, - 105 ,

and thc corresponding ex pression for y is

116y ~ 116 + 120x + 4Sx' + 35x3 • (16)
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If th e approx imation y :..=-; 1 + ( IX had been em ployed . t hen t he Galcrkin equa tion
would have been the fi rst of equations (15) with t he terms i ll c2 and c3 omitted ,
wh ile if)' = 1 + (' IX + C2'1:2 had been used , th e two Galerk in cq uations would he
obta ined from t he first pair of equa tions (1 5) by omission of th e terms in ca- In
this way t he following earlier approxima tions an' obtained :-

and

y - 1 + 3.< ,

lly - II + 8.. + lOx' .

(1 7)

(18)

T he t hree approximations arc com pared with th e t rue solu tion in t he following
table :-

Approximation.
Value of r .._--- ---x.

Linear. Quadra t ic. Cubic.

._ - - -
0 1-0 1-0 1-0 1·0

0 -2 1·6 1 ·18 18 1,22·18 1' 2'214
0 -4 2 -2 1 ' -I:~ -I ' , -1952 1' -19 18
0 -6 2·8 1 ,7\",16 . I ·HZ':;5 1·8221
0 -8 3· -1 2 ·1636 2 ·2..103 2 ·2255
1-0 4-0 2 -6.16-1 2 ·7241 2· 7183

----

The same problem will now be t reated using a funct ion which sat isfies the pri mary
and seconda ry boundary condi tions . Clearl y such a function is

(19)

Then

e = (2c2 - l )x -i- (3cJ - - C~ ) X2 + (4c-l - C3)xJ - c-IX4 ,

and th e Ga lerkin equat ions are

,
f £x:! dx,

,
= f ex3 dx,

,
= f ex" dx

o

- O.

These yield

12Gc2 + 182ca + 220c-l - J05 .

19&2 + 300ca + 375c.. - 168 ,

!J6c, + 153<:3 + 1!J6c. = 84 ,

and the correspo nding approximate solut ion is

.1198y = 1198 + 1198.. + 609-,' + 16Sx' + 8-lx· . .. (20)



49 1

Approximations of lower degree can be obtained at once 1Il t he same manner as
before. They a rc

a nd

6)' _ 6 ·1· Gx + 5x2 ,

76y - 76 + 76x + 33x' + 2 1x3 •

(21)

(22)

The approximat ions arc compared with Ow t rue solution in the following tahle :-

Quartic.
--_ .__._--

.- ._--
Approximat ion.

Value 01 - -
x.

I IQuadratic. Cubic.

---
0 \ ·0 \ ·0

0 ·2 1 ·2,.'\.13 1 ·2196
O' ~ I · 53;.t3 1 ·4872
O·G 1 ' OOסס I ·S UiO
0 ·8 2 -333.1 2 '219~

\ ·0 2 ·&.133 2 '7105

\ ·0
1·2216
1 ' 49~1

1' 8:!2-1
2 '2259
2 '7187

c-,

t oO .
1·2214
1 ·49 18
1·82'21
2 ' 2'255
2 '71 ~:J

(23)

It will be seen that the approximation when a g1\"cn number of coefficients C IS

employed is much bet ter than before.

Example 2.-Thc diffe ren tial equation is

([2)'
dx ' + xy = 0

an d the boundary condit ions )' = I , ~: = 0, when x = O. It can be shown that

the solution is

It is obvious tha t the function

x3

Y =I - lf
sa tisfies the primary and secondary bounda ry condit ions, and it is furth er clear
that t he series for y must proceed in powers of -,-.3. Hence it will be advantageous
to take the approximatio n

3
- I x + e u, 9Y - - 6" Ce·,\: -: cgx .

Let the range of representation be 0 to b. Then the Galerkin equations are
,
f £.1.... dx
•

,
- f £xg dx = 0 ,

•
where



and
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When simplified the cq unti ous become

( 15 b" ) ,,(72 1>' ) 1
c' 7 + T7 + c,o' Y7 + 2(j . . M

and it follows that

and

c,

c,

1 + 3~O b"

; 80 +-~ b"+2l~(j b'

- I
--- ---- --<)'H-
12,960 + 2521>" + -8'~ b'

"

(21)

(25)

If b := 2 these formulae yield

c, _. 5 · 491774 X 10- 3

C, --- .- 6 ·60066 X 10 '

The approxi mate and true solutions are compared in the following table :-
---~~-

Value of
x.

Value of y.

---_.~~-,

Approximate. True.

-~-----;--~-"- '-----,~----

o
0·2
0 ·4
0 ·6
0 ·8
' ·0
, ,2
1-4
, ,6
, ,8
2 ·0

1·0
0 ·99SG7
0 ·98936
0 · 9G-1~G

0 -91610
0 ·83876
0'7~

0·58~65

0 ·40-193
0 ·20169

-0 ·01566

' ·0
0 ·998G7
0 ·98936
0·96--l26
0 ·91611
0·83881
0 ·728 19
0 ·5829--1
0 ·-105-10
0 ·20230

- 0 ·0 1498

It may be remarked that when b -> 0 equations (24) and (25) yield

and

1
c, - 180 '

- 1
12,960 .

These are the true values of the coefficients of x6 and x9 in the in fi nit e series for y.
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PART II

A pp/jeer/iulls of fire Gd a kin Alctlrod fo Me chanics

§6. I ltf rodtlclory .- T lJe wri ter's interest in the Galcrk in met hod chiefly con cerns
its applications to mecha nical problems. and he believes the method to he of great
valu e in t he treatment of th e statics and dynamics of clastic a nd ot her cont inuously
deformable bodies. As already stated, th e met hod may he rega rd ed as an casy
way of deriving the Lagra ngian dynamical equat ions with a special choice of the
generalised co-ord inates, but the specific problem requi res examinat ion in order
t hat t he proper multipl iers shall he used ill t he Galcrkin proc(.\'is. (Sec, for
instance, §14.)

The coefficients obtained in th e Galcrkin equations arc always definite int egrals .
In th e illustrat ive exa mples which follow t hese integrals are all readily obtained
ex ac tly, Lu t in more com plica ted instances, or ill cases whe re the mechanical
propert ies of the bodies concern ed arc specified by graphs or tables, approx imate
methods of integra tion , such as Simpson's rul e, must be used . For th e sake of
case ill integrat ion it is advisable to employ rat ional in tegra l functions in (3)
wherever possibl e.

xlany of the examples are problem- concern ing th e dctcnnina tion of characteristic
nu mbers and the corresponding modes of displacemen t. Xow t he Galerkin process
yields as many modes as there arc inde pende nt functions employed, an d t he labour
involved rises with grea t rapidi ty as th e number of these increases. H ence, if it
is desired to invest igat e one of the higher modes, it will be most advantageous to
employ a small number of func tions which are known to resemble the requi red mode.
It may he added th at the choice of t he fun cti ons is of grea t importan ce, and
provides opportunity for the display of skill ; the choice should be guided. by the
greatest possible kn owledge of analogous prob lems. T he advantage of choosing
functi ons which sat isfy t he secon da ry boundary conditi ons (sec §-1 and §14, Ex. 1)
should not be o-..crlooked.

The following arc some brief miscellaneous notes on the method :-

(a) Whe n an clas tic body is subjec t to a concent ra ted load of any kind it may be
adv antageo us to em ploy on e discon tinuous function . (Sec discussion in §§12
and 13.)

(b) If it is desired to obtain th e value of a st ress from the a pp roximatc solution ,
t hen an integral expression rather th an a differential coefficient should be used '
wherever possible. A conside rat ion of the case of a n oscilla ting cantilever will
make t his clear.

(c) In deali ng with a problem in 11 dimensions it would theoretically be necessary
ir general to usc an a -ply infinite set of fun ctions in ord er to obtain convergence
to the exact solu tion, (Sec, for example, th e discussion of t he torsion of prism s
in §15.)



(d) If a linear combin a tion of the funct ions in usc happens to be an exact solut ion,
t hen the Galcrkin method will yield that exact solu tion. (Sec, for cxnmplc,
§14, Ex. 2.)

§7. Flexural motion of a cantilever uCt1Ul .- The general discussion of the con
nect ion between Galcvkin 's meth od and t he dynamical equat ions of Lagra nge will
be approached by a discussion of t he flexural mot ion of a cantilever beam as t he
argu men t is specia lly simple in this case.

The di fferen tial cquat ion governing th e dcflcxion of a thin bea m not subject
to end 10;)(1 parallel to itself is

d' ( d'Y)-- El -· ·
dx' dx'

=..: 'It' , (2G)

where

and

y normal dcflcxion ,

x - d istance from the root .

Er - flexural rigid it y.

w - load per unit span.

I n general E I will be a funct ion of a-, a nd w will he a function of x a nd of t he timet.
\Vhen the beam is in motion, iii must be taken to include the reversed effective

force (inert ia force) per un it span, g iven by - In (~~) • where m is the mass

per un it spa n. Let WI be the iner tia load , and w. the resultant ex te rnal load.
both p lT uni t spa n. Then (26) becomes

d'( d')·d" EI d--~ = w. + w, .x- x· (27)

Now t his equat ion simply expresses th e equality of the clast ic reaction and applied
load. Let t he cla st ic force per un it spa n be

w. =

Then equa tion (27) becomes simply

d·, ( d·' )- , -y
- ax' £ 1 it:?' . (28)

U'. + WI + w~ = o. (29)

The point to be em phasised is that (26) or (29) IS an expression of th e balance
of normal forces per unit span.

The dcflcxion y mu st sa t isfy the following boundary conditions for the case of
a cantilever without tip load :-

At t he root (x = 0)
dy

Y = a:i: =O . . . (30)



and at the ti P!(x>-= I)

El d');
dx -

. _ d . (EI d'l:)
dx dx~

(31)

Th e equations (3 J) t'xpres:s t he condi tions th at t he bending mom ent and shear ing
force vanish at the tip. Provided that E I does not va nish at t he tip th ey are
equivalent 10

d"! d"Jiff, = (If, = O . (32)

Suppose th at YI , Y2, 1'3 ' et c., arc a seq uence of linc.u ly ind ependent funct ions
of x only which a ll sa tisfy -(30) and (31). Th en if

y = l: q, Y, • (33)

the qua nt iti es q may he regarded as t he Lagrangia n dynamical co-ord ina tes of
the beam, for , when t hey are assigned, the dcflcxion at all points becomes definite.
Since the hcam is all clastic body it would st rictly be necessary to employ an infinite
number of dynami cal co-ordina tes, but t his docs not affect t he argument.

•T he Lagrangian dynamical equation corresponding- to t he co-ord inat e qr is
the expression of th e fact t hat t he total work done by all the forces applied to the
beam (including t he inertia forces) in a vir tual di splacement corresponding to
the increment bqr of q, (wit h all the other co-ord inates constant) is zero. Hence
the eq ua tion is

or

,
r (w. + U' ; + w,) :.1'. dx -- O.
- uqr,
,
f (w.. + WI + we) Y r dx = o.
;.

(34)

T his is precisely t he equation given by Galerkin 's me thod , a nd' it is therefore
equivalent to the employment of Lagrange's equations wit h the special co-ord inate
syste m ex pressed by (3:l). The iden tity of (31) \vith t he usual Lagrangian
equat ion

•

follows from

and

d oT) 01' av
litCq; - oq, + oq, ~ Q, ,

,
1· 1 f (dY)'- '2 m dt dx ,,

,
1 (d' )'V= zfEI\d::; dx ,,

(35)

(36)

(37)



I t can be shown that

i.l V
oq,

,
J a' ( . If')')- Y ' ·t ·, lela· ·.. axax- x-
u

(40)

by integration by part s and lise of the bounda ry conditions (30) an d (~31) .

It is evident th at t he resul ts of applying Galcrki n' s process would no t agree
with Lagra nge's cqnations if th e equa tion (:26) had been multiplied throughout
by an arbi trary factor , as might appea r permissible. In fact it is alway s necessaJ)'
to 1mow the physical nrcaning of the dUJerC1llial equation in order thai the proper
multipliers may Lc o nploycd, Jr t he wrong multipl iers arc used a fair approxi mat ion
may still be ob tained, but the process will not be eq uiva lent to the employment of
Lagrange's equat ions.

§S. Flexural-torsional motion of a blade or ic ing.- - ] t is d ear that a torsional
motion of a beam or bla de can be t rented in the same general manner as the flexural
mot ion. The fundamen tal equa t ion of mot ion corres pon ding to (29) is

I, + I, + I, = 0 , (38)

where each t is a twisti ng moment per unit span . Let 0 be the angle of twis t
a~ any point . and let 0 ), 0 2' ctc. , he a sequence of linearl): independent func tions
of x which all sat isfy th e same boundar y condit ions as O. Then if

Q ~ };q; 0 , , (39)

the quanti ties q ~ may he regarded as th e dynamical co-ordina tes . The Lagra ngian
equat ion corresponding to q~ is obviously

,
J(I, + I, + t.) 0 , ax = 0,
o

which is also the Galcrkin equ ation.

If the motion is act ually beth flexural and torsional both sets of equations
(34) and (40) must be employed. The combined set can be solved by ordinary
methods. For instance, in th e case of free mot ion it would be assumed that each
dynamical co-ordina te was proport ional to eh , and thi s would lead to a deter
minantal equat ion for i..

§9. Application of Galerkin's method to elastic bodies in gellcral.-- It is evident
that a procedure similar to that explained above can be applied to problems on
the dynamics or stat ics of an clastic body when the condition of support is zero
displacement on a certain surface . Here the three components , H, v, w of the
displacement would be wri tt en

u - ~q,~.(x, y, z) , }
v -- _q,\ , (>, y , z) .

w - };q,W, (x, y , z) •

(41)
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V , V, \Y would he chose-n to snt i..rr the bou ndary conditions
T ilt' fund.uucutul cquntions of motion arc, in th e case of all

(42)

together with two similar equat ions. Now thi -s equation expresses th e balance of
the componen ts of force in the direction OX, and may he writt en concisely

(43)

where Xc. Xi <mel .r , arc th e components of clast ic, inertia a nd ex te rnal force
respectively, all pC'r 1111i t vol ume. H ence th e Lagra nge or Ca lcrkiu equa tion
correspondin g' to t he co-ordinate qr is

J
'JJ[U, (v, + x, + x'.) + V, (y" -I- y, +Yo)]

. dx dy dz - -+ \I ' (' . + z. -I- z.)
0 , .. (44)

' Surface t ract ions. if ,lilY, a t point s where t he displu ccmc uts arc not zero mu st be
int rod uced through surface int egrals Wll USC form is sufficien tly obvio us.

§1O. Flexural oscillation of d uniforsn Cfl ll t il~ 'i '~y .-The case of a un iform cant ilever
will be consid ered since the object in view is to illus trate t he me thod, and to test
t he a pprox imat ion obtained by comparison with a known solu tion. The oscillations
of a canti lever of variable sect ion ca n be treat ed in exactly th e S<1.Jne way.

The first step is to obtain a convenient set of funct ions satisfying the condit ions:-

Y
dy o when x 0 ,- dx - -

and
d'y tFy 0 when .t" t .iix' - d.T3 -

Let <
x

(45)- T

l~hen one su itable functi on is

(46)

where r is a positi ve int eger. H owever , it is usually convenient to employ a
ra tional int egral function if possible, and it will be found that the trinomial

v, = ~ (r + 2) (r + 3) I '" - ~ r (r + 3) /'+' -I- ~ r (r + 1)e+' (47)
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sa tisfies all the condit ions when r is positive". It lllay be noted in passing that
th ese funct ions have th e propcrt ics r-c-

y, -- I when , 1 _ (4S)•

J Y, d ;
2

(49)
r + 4o

,
J d 'Y, d, 8 (whe n r ~ 1)a,'
u (50)

- - 20 (when r ~ 2)

- 0 (when r > 2) _

, ,
J a'y J v, a:~~, a, _Y

r
. ____8 d ~

~ (0 J)d $.f. ~

o "
T he last equation follows from t he recip rocal th eorem, since Yrand Y8 arc possible
displacements of a uniform canti lever , a nd t he corr esponding loads per un it span
a rc proport ionalfo the fourth different ial coefficients of t he disp lac ements.

The general equation of mot ion is

a nd if the beam is oscillating purely 111 one mode with frequ ency p j2:r. , this
becomes

0 _

It is con venient to change t he independent variable to $ a nd t he equation then
becomes

where

d4y
- ay 0,J, ' -

a
mpel4

- - EI

(52)

(03)

Now subs tit ute

y = q,Y, + q,Y"

*' Analogous funct ions for other types of support are easily ob tained .

(54)



,
\ ' ) I ' + Jv (d IY,( I J f.,. q: J · d~ .J. -

"

and forru the Gnlcrk iu equa l ions :-
, )#,

J (d4Ys. YJ _ . _ 1 _
d ;.J.

"
I

J (dlY+ 0 ., y 2 _.. 2 _
~ ~ d f l

o

These yield

and

s, (15' ~ IO_~ ,,) + (~ _ ~:~~l ,,)
q2 :l ..W~ 3 ~(j /O

t (~ .- ;~~~ ,,)+ (~ .- n~t ,,) (55)

TlJC condition of compati bility of these equat ions is

(56)

and t he roots of this quad ra t ic arc found to be 1 ~ ·3G25 and 5 15 ·86. The cor rect
va lue for t he lower root is the four th powe r of th e lowest root of

J + cosh 11l cos III = 0, (57)

and is 12 · 3623, so t ha t t he app rox imat ion is excellent. The correct value of the
second root is verr nearly (3."1 /2)·1.= .f93 ·1 3. Thus, as would be expected, the
second root given by the qu adra tic (56) is considerably in error. When a has
been foun d. ql/q2 can be obtained from (55) and the mode of displacement calculated
from (5 1).

Further calculations ha ve been made using the t hree functions Yl' '"2 and Y3'
T he results of all t he calcu lations arc summarised in the following table :-

.' ..,

Correct
Result.

3rd.

F undamental Flexural Jl ode aJld Frequency Coefficie1l1 f or a Umform Cantilever

1_ _ . _ _ ~pproximat ion. .
I --~------

I tst . 2nJ .
(qJ = q3 = 0) (q3 = 0)- ----_._--_.

12·46

-,- 0 ·25 0 ' 1055 I 0 ·0072 0 ·0973 0 ·0973
L- 0 ·5 0 ·35·12 0 ·:.t397 0 ·3395 0 ·3395
y, 0 ·75 0 ' 6GS(j 0 ·65S0 0 ·6577 0 ·6577,

1·0 1·0 1·0 1·0 1·0

- - -* The last digit IS doubtf ul.
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The II H.Hk is specified as 111e ratio of y to ) '1 ' t1H~ va lue of y a t t he tip. It will be
seen tha t both th e second and third a ppro ximat ions give excell ent approximations
to ~ ltc mode as wel l as to t he frequency.

§l l. Torsional oscillation of (( uniform cfll/filc<"'u.- T he d ifferen ti al equation
governing the torsional mot ion of a cantilever is

wlicrc o _ angle of twist,

e - torsional s tiffness of unit length,

and J - moment of inertia of unit length.

(58)

When C and J arc cons tant, and when the cant ilever is oscillati ng in a single mod e
wit h frequency P/2.rt , this becomes

C d'~ + JP' O~ O .
dx '

Let I be th e length of t he cantilever, and define ; as in (45). Then t he last equat ion
can be written .

.
•

d' O
0 ,df' + kO --

where k JP'['
- c:

The boundary conditions are

0 = 0 when , - 0,

and
dO o when , 1 .d , - • -

Clearly the funct ion

0, ~ Sin !(2r - I) n, ,

(59)

(60)

(61)

where r is a posit ive integer, satisfi es the boundary cond itions, and is in fact a
possible mode for a uni form cantilever. But it will be conven ient to select
rat ional integral funct ions when C and J arc va riable, and t he following binomial
satisfies t he bo undary condit ions :-

Sr - (r. + 1) i f - r Ef+l • (62)



.sOl

lhc lll l"::- : -'::: : b inomials ha ve t he properti es :--

0 r ,..,-.;- 1 when ~ ,...,., 1 .

- 0 (1'> 1) .

,.fd' t',cU' d, = - 2 (,. = I)

"

f 0 , d,
o

2
-- rTZ '

}
(6~)

(6.1)

(GGI

1'1:(' C.:..~ torki n method will now be applied to the uniform cantilever. a nd the
appl"ox:::·.:: -:. ion

o ~ g,0 , + g,0,

will be aioptcd. The Galcrki» equa tions obta ined from (59) are

(67)

,
- _ (d'O )' ; , 1 \:' , - -- } + k0 d:... Ii e 2 1 "

"
and

,
+ g, f 0 , (~~,' + k0,)d, - 0 .

" .

T hese reduce to

} (68)

"

The cor.dition of com pat ibility of these equat ions yields a quadratic for k \vhose
fl.....ots are

12
-i"3iJ (l~l ± "rI 3 ,OJ6).

~ 9 2
i.c., 2 ·-4650 and 23 · 5625. The true va lues are ~- = 2 ··1674 and -; - 22 ·207.

It will be seen that t he fundamental root is very closely correct.
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Further calculations have been made using the Junctions Gl • 02 ' and 0 :J. Th"

results of all the calculation s are given in th e following tnblc, which includ «, ;1

compari son of the true and approxima te modes.

Fundamental Torsional Xlode and Frequency Coefficient f or n Uniform Cant ilever
- - - - ------- - -------- - -- -- - --- -

Approxlm at lou . :

-- - - - - - -
JP'I'k ~.1:

Correct
resul t .

o

"
$ = 0 ·25

0 -,')
0 ·75
1-0

0· 4375
0·7500
0 ·9:175
' -0

O<~S2 1

0 '7008
0 -9190
1-0

O·:1~27

0 ·707 1
O ' 9~,

' -0

0,3·";:27
0 ·7071
O·92:J9
1-0

§I2. T orsional oscillation of a cantilever carry ing a fly ,()lI ccl.-The procedure
explained in the last two sections is ad equate fur th e treatment of the oscilla tions
of cantilevers of constant or vari abl e sect ion, but a new problem arises when the
beam carries an isolated mass or masses. In this case the t rue solution will exhibit
a discon t inui ty a t each ca rried mass, and different funct ional expressions for tin:
displacement will hold for the several intervals between the masses. I t is possible
to obtain a good approxima tion even here by th e Galerkin process employing only
conti nuous functions, just as it is possible to approximate to a discontinuous
function by a Fourier series. But as a ru le a much more accura te result will be
obtain ed by using oll e suitable discont inuous function together with a set of
continuous funct ions of th e ord inary kind. It appears tha t t he adva ntage ob tained
in this way is greatest when there is a discontinuity in the fi rst differential coefficient
of the displacement (as in torsion), and that the adva ntage becomes less and less
as the order of the first discont inuo us differential coefficient increases. For flexural
oscilla tions the ea rlies t differential coefficient to exhibit discontinuity at a carried
mass is the third , and here the adva ntage gained from the usc of a discontinuous
function is very slight . (Sec §13.)

In order to derive the Galcrkin equations correct ly it is always best to imagine
the added mass to be distributed over a shor t distance, and then suppose thi s
distance to tend to zero. whc» th is is not done terms arc apt to be omitted from
the equations.
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The choice of the disconti nuous function must he cons idered . J'\ow it is d ear
that this functio n must remain suit able even when the density of the cantilever
i tself te nds to zero. Clearly , t herefore, the most suitable function is the modal
funct ion for a massless beam carrying an isolat ed mass. I n the case of torsion,
fo," instance, t he function will be obvi ously

Ho - - ,(0 <: , <: h) ,

Il (Il <: , <: 1) , } (69)

when t he added mass lies at the dist ance hl from the root.

When t here arc severa l ca rr ied ll1 ;JSSCS the advantage obtained from t he usc of
d iscontinuous functions is reduced (at <l ny rate so far as the fundamental mode
is concerned). since the ind iv idual d isconti nu ities at the masses will be less
impor tant.

The following problem will now be discussed :-- Find the funda mental frequ ency
awl mode for the torsional moti on of a uniform ca nt ileve r carrying a flywhee l
whose moment of inert ia is twice t hat of the ca nt ilever itself at a d ist ance of aile
third of t he span from t he root. T his will be trea ted by the Galerkin met hod
employi ng one discontinuous and one con tinuous functi on. Accordingly

(70)

where 0 0 is as defined by (69) wit h Ii = A, and O] IS given by (62). The
different ial equa tion governi ng t he motion is

d' O "
C dx' + JP-O- 0 "

Consider th e equation 'which resul ts when t his is multiplied by 0 r and int egrated

oyer the span . Take first the contribution of th e term C ~~~, which is the sum of

~H "" ~B
tlu- continuous part Cq1 -dx} and the discont inuous part Cqo -dx '!.o. The first

of t hese only calls for the comment t ha t the range of int egration mu st be split into
two parts if t he mult iplier Or is discontinuous. On the other hand d2 0 o/dx 2

va nishes except at the discontinuity , and it is easy to see t hat t he value of

J" C d' Bo d ken ovcr t he di " ""El r qo -d,}-- x ta en over t ie iscon tinuity IS

Cq H,(' ) f(dELo). _ (~EJJ) . } _
o 3 ( dx 3+ < dx 3- <

CqoH, (S)
I -
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sm cc ('10,,) 0,(I.~ ~ + € :-"::

and (dG) 1" --fix· ~ _ f- T'

Next take the con t ributio n of t he t er m JF Oto th e integra l. T he part of thi -,
due to t he beam it self requires 110 comment. but there is obviously tile additiul:al
tcnn Ip:! () (5 ) 0 r{ ~ ) due 10 the flywheel of moment of inertia I = 2lJ in the pn'~{"nt

example.

It follows from the foregoing" th at th e Galcrkin equa tion corresponding to 011 i-,,
S I

Cq, JGo dd'"'" dx + Cq, J00 dd'''; ' dx - S:qo?/oi'J
x· x-, ,

,, ,
+ 11" J°0 (q00 . + q,0,) dx + J1"J0 0 (q. 0 0+ q,0 ,) dx, ,

r
(7 1)

and the equation corresponding to 01 is

,
Cq, J

o °
,1'0 , d Cq.0 ,W

1 -~_ . - X - - - - - . .•. -
dx2 I,

" ,
+ 11"J0 , (q. 0 . + q,0,) dx + JP' J0 , (q0 0 0 -i- q,0,) dx, , .

:;

(72)

Change the variable from x to i , multiply by l iC, an d reduce. The equations
become

and } (73)

These yield a quadratic for k whose lower root is 1·0337. Now it can be shown
th at the exact value of k is ).2 , where ). is a root of

cos l = G~ ) l sin ill cos (I - iI ) ). . . (74)
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JIere 11 is th e distance from the root to th e Ilywl u-cl as a fract ion of th e overhang.
In the present instance the equa tion becomes

.). 2i.
cos z :.:.: 2). sm ~i cos -~r

and it 1S found that th e smallest root is I ·OlG..J. ..J. 6S radians. Hence
/( :::,.-; ). 2 = I .Oa:H64, an d it will be S(' (' J1 t hat the approximation obtained by the
use of one discont inuous an d one continuo us function is excellent. The following
table gives a compa rison of the true and approx ima te modes, an d abo shows
the results of some calcu lations in which only coutinuo us functions were used.
I t is eviden t tha t it wou ld be necessa ry to employ a lnrgc number of such funct ions
in order to obtain a good approx imation.

Fu ndamental T orsional Mode and Frequency Coefficient f or a Uniform Cantilever
carrying (1 Flytehcel

Fly tl111ecl situated at one third of the orcrlmng jro lJ t the roo!

Moment of inertia of the fl)' ,chccl lii:ice that of the cantilever
--------~------_ ... - .._--------~---

Functions used in Approxiruatio usv.
Correct
result .

o
0,

, = 0 ·25
0"'5
0 ·75
1·0

0) & e, °1.°2 & 03 e, & e,

1·1019 tossa 1·0337

0 ·5693 0 ·5754 0 '59S~

0 ·867 <J 0 ·8..<l()S 0 ·8785
0 ·9$14 1·0015 0·9696
1·0 1·0 1·0

• e u is discont inuous.
e,. et • and 0 , are continuous.

1·0332

0-5..~

0 ·8736
0 ·9679
1·0

§13. Flexural oscillation of a unifonn cantilever carrying an isolated mass.-The
most convenient discontinuous funct ion for use here is the modal function appro
priate to the oscillation of a massless can t ilever ca rrying a massive particle. This
is obviously identica l with the stat ic dcflcxion funct ion for an isolated load. Hence
the discontinuous function will be tak en as

(~ 3tl71J- 1

Yo = 3M' -,' (0 <: , <: II) ,

_ 311 ' , - II' (11<: , <: 1) . } (75)



The di fferenti al equ ation is (~l.-· c $10)

1I1/>,y
--EI . --- o.

and the only point requiting specia l att cntion II I forming th e Galcrki u equat ions

is the influence of the discontinuity in Yo all the value of j v, ~;: dx. It is

"easy to sec th at t he cou tribut ion of the discontinuity at ; == It to this integral is

(76)

The Iollov..-illg specific problem has been t rea ted 11)' the Ca lerk in met hod, employing
the disconti nuous function Yo in conjunc t ion wit h the c<:mtin uou s functions Yr,
and using the continuous functions on ly :-

F ind the fund amental mode an d frequency for a uniform canti lever carrying a
parti cle of mass equal to 1·5 t imes the mass of the cantilever at a distan ce of
one third of t he overh ang from the root.

In view of the detailed discussion of the corresponding torsional problem given
in the preceding sect ion it will not be necessary to discuss furt her the t rea tment
by the Galcrkin meth od , but a few words must he sa id about the or thodox solution
of the problem. It can be shown that the frequency pa rameter u defined by
equation (53) is given by

where It is a root of th e equation

(77)

1 + cosh p cos It ~ ( .~ .) #F (." il) .
2m! '

(78)

Here ::\1 is t he mass of th e ca rr ied particle, and

F(.u , h) = cosh Itll sin ph - cos ph sinh l I lt

+ cos # (1 - il) sinh /. (1 - il ) - cosh /, (1 - il) sin 1'(1 - il )

+ cosh ph sin II cosh /1 (1 - II) - cos ,d: sinh p cos ,11(1 - 11 ) . (79)

E xact form ulae for the displacements of the two segments of the beam can also
be obtained, but these will not be quoted.
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The result s obt ain ed II)' t he various uu-thods a rc compared in tile following
table. It will he seen t ha t till' adva ntage ga ined by t he usc of n discont inuous
funct iou is here l H·~lig i "I (' . an d t he reason for this has be en given a t th e beginning
of §12. .

Fundamental Flexural .Hode and Frequency Coefficient fo r d U nifonn Cantilever
carrying a .lIassh·., Particle

Partido situated at olle third oj lite o,yrlwug [r om the roo/
M oss oj p arti cle 1·5 times mass of cantilever

- - - - - --------.- ._ --- -- - ----- --
Funct ions used in "\ pproxiIllO\t ions*,

.~ --- --- -- -

L
y ,

e = 0 ·2.')
0 ·5
0·75
1·0

• Yo is di scon ti nuous.
\ '1' Y! . '"3 arc continuous.

Correct
result.

§14. Determination of the critical loads oj sfruts.- Collsidcr a st ra ight strut of
. lengt h t, pin-jointed at the ends , and subject to an a xial compressive load P . Then

t he differential equa tion gove rning the deflections of t he strut is

EI d'y , I'• -- - T Y
dx 2 = 0, .. (SO)

and, if the or igin is at mid span, the primary boundary conditions are y = 0 when
x = ± 1/2. On account of (SO) th ere is t he secondary bound ary condi tion

d'EI d' -{ = 0 when x := ± l/2, and, provided that £ 1 docs not vanish at th e ends ,x·
t his implies that

Now suppose that

o when x
I

- ± z ·

1~ W;1I-1

y - "£.qr Yr .= 8 1)

••
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where t he Juuctions v, sat isfy at least t he primary bo undary condit ions, and n'ga rc1
t he quantities qr as dynamical co-ordinat es. In order to ob tain thc Lagraugiau
equations of cquilihrium it will first be necessary to obtain all expression for 1£,

t he :"hor tening of the distance between the ends of the strut du e to the latera l
bowing. Let as be an clement of arc of t he bowed centre line. Theil

dx _ { (dy )' }-I _ 1 ( dY )'--- - 1 + .. - J _ .. _.
ds dx 2 dx

_ dy
since dx IS very small . H ence clearly

" (82\

and

+1.,
on _ I J~ (~)')2 dx
oqr 2 cqr dx,

- 2

d'y,
Y - - dx

dx'

,
+ 'i

J
d'y ,

Y d x[dx.,-,

Therefore t he work done by P 10 a virt ua l d isplacement corres pond ing to the
increment tJqr is
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AI:::o the elastic potent ia l ('ncrgy b

,
+ ~

V = ~ J El G;;;)' dx.,

and oV
cq,

.I' l"'-- J EI -J?; '~~:i d.x -,
- :1

virtual work of P . H ence

,
+ !'

/
- d'y .I' ).,

EI --., - '.,- dx --I-
. dx- dx-, o . (&1)

This is prec isely th e Galcrkin eq ua tion obtained from th e diffetfntinl equ ation
(SO) by usc of the multi plier J:!Yr /dx'!. . 1'1Ic reason why the multiplier is this and
not merely y , is that (SO) ex presses a balance of momen ts, not of normal forces.
a nd t I J(~ proper multiplier must t herefore be a rat e of rotation.

Application s will now be made to two concrete examples.

E:Hlii!ple I.- Uuij orm pin-jointcd slrut.-l hc first step is th e choice of a suitable
set of funct ions. In t he present case, or in an.y ot her in which the stru t is symme
trical abou t its mid-point , on ly even functions of x should be employed, since
in terest is confined to the fundamental mode of defluxion . The set

1 (8~)

S3l i,;;fy the primary , hut not the secondary, boundary conditions, while t he set

(0,)" srY, = (~r + 1) - (r + 1) (2r --I- J) =, --I- r(2r - I) T (85)

sa t i- fy Loth the primary and secondary condit ions. T he problem will be work ed
with omit sets of Iunct icns, as t his will make apparent the advantage of adop ting
fun ct ions satis fying both t he prim ary and secondary boundary conditions .
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First usc t he functions .\'1 and Y;l ' T he corresponding multipl iers <Ire 8jl:! an d
1 92x~/IJ. . so that the Galcrkin cq untious arc

These become, when multiplied by IOSP /16EI .

g, (~20 - 35P) -I- g, (8~0 - - ~2fl )

and

and

where

+ 1,
~g, J (EI d.'y, ,
I:! dx'!. - I ',-,

g, (8~0 - ·12fl ) + g, ( ~J02~ _. GOfl) 0 ,

o.

(&i)

(87)

T he eliminant of the eq uations (86) is

fl' - 180p + 1G80 ~ 0 , (88)

of which the roo ts a re 9 ·875 1 and 170 - 125. Now the t rue fundamental value of
p is :1 2 = 9-8696, so t hat the approxima tion is fai r.

The problem has a lso been wor ked out using t he functions Yl and Y2' bu t it
will not be nccessary to enter into det ai ls. The final qu adrat ic for .p is

13 {l' - 1332{l + 11 ,880 ~ 0 , (89)

of which the roots a rc 9 ·8696 1 a nd 9:! · 59 19. The firsl of these is an ex tremely
close approximat ion to :t z, and the second is not fa r from 9.' :! = 88· 826*. T he
resu lt s of all the calcu lations are given in the following ta ble.

Crilicdl Load CoejJiciedjor a Ulllf urm P i;:·Joinlt"d S trut

F unct ions used in Approxlmat lons] .

Correct result ,

y , YI &Y:

9 ·875 1

y ,

9 ·&-;2-1 9 ·S6%1 ~, = 9 ·86960-1

--~_._------ ------ .
tYI Y2 sat isfy primary boundary condit ion only.

Y. Y: sat isfy ha th pr-i mary and secondary boundary condit ions.

*The root ·b t is absent since this correspon ds to a displacemen t which is not symmetrical about
th e mid- poin t.
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H:rdll1ple 2.- -Pill-joiuled lajJcrt'd slrut.-Thc stru t considered has a flexural
rigidity given by

B f (')'}EI "~ '7 ./? - 3 :{ . (90)

where 13 is the max imum val ue of El , occu rring at t he end .t: = 0 , and I is the length.
It can easily be verified that the different ial equat ion

B( ( ')')d'Y; ' 7 - :J -. )" ,,+ l'y7 ( 1 dx-

has the exact solution

(91)

with
GOB

l' = '7/' '

(92)

(93)

Since the strut is not symmetrical about its mid -point, the funct ions must not
. be rest rictecl to the symmetrical type. The cond itions (primary and secondary)
to be satisfied arc :-

d'
Y = lifo 0

when x = 0 and when x = l , The following functions are suifablct-c-

Yo (D - 2(7)' + (n' (9-1)

( X)'" {X)<+3 (X)'"y , = (r + 3) i - (2r + 5) \, T + (r + 2) '/ • (95)

\·vhere in (95) r is no t to be less than 1.

The functions Yoand Yl will be used in the presen t case, and the Galcrkin equations
become when reduced

and

where

qo (206·1 - 3~y) + q, (852 - 17y)

qu (852 - 17y) + q, (2 136 - 16, )

71'1'
Y = -If '

- o. }
- o.

(96)

(97)

so that the exact (fundamental) value of y is 60 by equation (93).
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The eliminant of equa tions (96) is

17 )'2 - 5112 i' -I- 2·15,520 = 0,

of which th e roots ar e 60 (exact) and 2-10· 705 . The sub stitution of y = 60 in
th e first of equations (9G) yields

24q, - 168q1 = 0 ,

or 10 = 7q1 .

P ut 11 = 1. T hen the mode of deflcxion is given by

which agree.:; with (92) . This result exemplifi es th e fact t hat if any linea r coin
bination of th e functi ons employed happens to be an exact solut ion of th e differentia l

. equation, then the Galcrkiu method will produce that exact solution.

It only remains to add that the approxima tion to y ob tained by the usc of Yo
only is 20G:l /~H =-= 60· 70G (sec the coefficient of qo in th e first of equations (96)).

§15. Applications to the St. Fellall! torsion problem.-The St. Vcnan t problem of
th e torsion of a solid cylinder or pr ism can be reduced to the following fonn 3 : 

Fi nd a function \1-" of x and y which van ishes on the boundary of the section of
the cylinder and sat isfies

(98)

every-vvherc withi n the section. Then the components of shearing stress are given
by

where -r

and It

x, oq'

}I). ~~, oy '

Y,
0\1"

-- - Jl • -ax- ,

twist (radians) per unit length,

modulus of rigid ity of the isot ropic material .

(99)

Also the torsional stiffn ess of unit length is

C = 2,,, If 'I' dx dy . (100)
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In the present discussion attention will be confined to cylinders or prisms whose
cross-sect ions IXl55CSS an aXIS of syuunctry OX*. The boundary will th erefore
be specified by

y = ± t ,

where t is a known function of x. It is clear that the func t ions

(101)

al l vanish on the boundary. and it might be supposed that ~CTT r would be
ca pable of represent ing the solution of th e problem. But on inspect ion it \\; 11 be
found that this is t he difference of a function of x only and of a funct ion of)' only.
and manifes tly this is too rest rict ed i ll form to represent the t rue solut ion in all
cases. Again (t2 - ),2) (ko + k 1x -+ k'l.x2 + ..) is insufficiently genera l since it is
parabolic in y. The conclusion is that the general expression for the torsion st ress
funct ion is

'I" = k(t" - y" ) (k" + ",,-, + k" x' + ...). .. . (102)

Tl.IC question now arises as to the proper mu lt ipl iers to be used in t he Galcrk in
process. Th is can be answered by reference to th e well known membran e analogue
of t he torsion problem. In that analogue the equat ion (98) expresses a balan ce
of forces normal to the membrane, while the deflcxion is proportional to \1". II C' l1cc
the equat ions of vir t ual work are obtain ed by mult iplicat ion by b' t' , and integration
over the sect ion.

Example I.- Elliptic cylindcr.-Herc

I' _ ~: (a' -" ) .

Assum e 'I' - k, (I' - y')

kO( "b" b"O .,")- - .. a- - - ·x- - a-y - .
a-

Th en e 2~o (a2 + b') + 2 .
a

TI, js va nishes if

and the exact solution is accordingly

* The method can easily be extended to cylin ders with unsymm etrical sect ions.
{l3011)-I
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E.m mpl,; 2.--Cylil1dcr whose sedion is 11 cubic o..-al (sym 1l1etrical arrofoil) .--Xo
« classical " solut ion has bee n fou nd in t his case, bu t t he problem has been treated
in det a il by t he t hickness-para meter mcthodt",

T he cross-sec tion of the cylinde r is here specified by

o o( • X')t» = 0- ex - 2l-- +- 'r .

where c is t he chord and 0 is the thickness parameter.
using first th e approxim ation

~ . = "0(I' - y') ,
and then with

The problem will be worked

(104)

~' = ko (I' - y ') + kIx (I' - y') . (lOS)

Let the result. of suhstit ut ing the approximat ion to '!" in (98) be e. Then the
Galcrkin equa tion correspondi ng to (10·1) is

ff ' (I' - y') dx dy ~~ 0 ,

where in t he presen t instance t IS a funct ion of .t" only. Accord ingly the last
equa tion becomes

,

;Jt3 t dx - O ,,
which can be reduced to

H ence

13 (I - ko - 21:0 °')+ 15koo' - O .

13
ko = 13 + II 0' '

and the corresponding expression for the torsional st iffness yielded by (100) is

(l 06)

The thickness param eter method gives th e following approx imat ion which IS

corr ect up to th e Dth power of 0 ;-

_ !-' 0' + O' _ 379 0')
13 221 '

(107)

Equa tion (106) agrees with this 3 <; far as the fifth power of O.
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When the expression (105) is used the Galcrkin equat ions arc

If ' (I' -- y') dx dy --- 0 ,

and

where E. =

If ' x (I' - y ' ) dx dy -- 0,

( ( X)) ( 3X')2 - (k. + k,x)t 2 + 0' 4 - 6 C ; + 2k, O' c - 4x + -c _

The Galcrkin equations reduce to

k. (l :J + 11 0') + I',e (5 + 3 0' ) = 1:1 ,

and k. (255 + 153 0' ) + ",e (l19 + 810' ) = 255 _

lIenee k. =
17 + 180'

17 + 5ziV+ 270'"

and
510'ek - - --- ----- ---- --

J . - 17 + 5202 + 270.1'

The approximate stress funct ion is therefore

and the corr~sponding expression for the stiffness is

(108) _

(109)

by (lOG). (109) and (107) for the case where
the quant ity tabulat ed is the multiplier

A comparison of the resul ts given
n = 1/5 is given below where
of 256,," 0' /3-165:-

Galcrk in (1 function)

Galcrkin (2 functions)

Thickness parameter . .

(431171)- 1

0 -967262

0 -967652

0 -967644

Error.
- 0 -000382

+ 0 -000008
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