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SUMMARY

The full equations of motion are expressed in coordinates defined by the
body shape and the exact body surface boundary conditions are applied. The
flow equations are expressed in terms of the velocity potential and are solved
by finite-difference methods. For accuracy, further transformations are
necessary to concentrate the grid points in regions of greatest variation in

potential.
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1 INTRODUCTION

Reliable methods for the numerical calculation of two-dimensional, sub-
critical, potential flows past general shapes (lifting and non-lifting) have
been available for some years, notably the work of Sellsl. Subsequent work
dealt with pl ine supercritical flows, some of the more important work being
done by Murman and Cole2 in small perturbation theory, and Steger and Lomax
and Bauer, Garabadian and Korn4 who considered the full equations of motion.
The usual method of solution was by finite differences, using central differ-
ences in subcritical regions and backward differences in the supercritical

zones.

Improvements in computer hardware have made it feasible to attempt the
calculation of flows around three-dimensional bodies. The method normally used
has been transonic small-perturbation theory and examples of the solution of
the full equations of motion, applying the boundary conditions exactly, have

been few, eg Ducks, Jameson6.

This Report deals with a numerical scheme to calculate the steady, sub-
critical flow around a swept elliptic cylinder between walls. The full equation
of motion is expressed in terms of the velocity potential and is solved using
the exact body surface boundary conditions. The speed of sound is obtained from

Bernoulli's equation.

The work is done in coordinates defined by the body shape, thus allowing
the boundary conditions to be satisfied in a straightforward manner. The
infinite flow field is mapped into a finite region by means of a transformation
of one of the variables. For an accurate solution, further transformations of
the other two variables are necessary to concentrate the grid points in regions

of greatest change in potential.

Section 2 gives details of the transformations used to reach the final
coordinate system in which we express the equations of motion (section 3).
Details of the computation are given in section 4 followed, in section 5, by the
results. The concluding remarks appear in section 6. Details of the derivation
of terms required in the continuity equation are given in Appendix A and

Appendix B deals with the matrix inversion technique used.



2 THE COORDINATE SYSTEM

Our original cartesian coordinate system, xi » is defined with the stream
flowing in the -x2 direction, x3 being vertically upward and the walls being
given by xl = s (see Fig.l). This notation enables us to describe our trans-
formations succinctly using tensor analysis, The conventional (x,y,z) system is

equivalent to (~x2, xl, x3).

We transform to a non-orthogonal reference system, Ei » as described in
section 5 of Mangler and Murray7. The walls and planes parallel to them are
represented by El = constant and the cylinder is represented by 52 =0 . The
system is chosen such that the base vectors 32 and 2, (see Appendix A) are
perpendicular to each other and normal to the x -axis (i.e. y-axis). This

transformation is equivalent to conformal mappings in the set of cross-sectional
planes x] = constant . We are concerned with an untapered cylinder, in which

case a, will be parallel with the leading edge (52 =0, 53 = 0), which is

1
swept by an angle A (see Fig.l).

For an untapered cylinder the mapping has the general form
X =gl i = —w ee@ o, (2-1)

[i.e. y=¢ ; -x +1iz= —uE] + £(3)]
where g = &+ ig” (2-2)

and tan A .

=
[

For a wing whose profile in the cross-sectional planes is the ellipse

defined by

ux! + x2)2 L & 2
2 2 2 ’
C cCT

(2-3)

where ¢ is the semi-chord and <t 1is the thickness parameter in the cross-

sectional plane, the mapping function is defined by

f(z) = c cosh g + ¢1 sinh ¢ . (2-4)



The limits of the coordinates are

-s <8 <s; 0 < E <e; 0<8 <o
Since we are dealing with the non-lifting case we can make use of the
symmetry about the plane x3 = 0 to reduce our considerations to x3 20 only.
This reduces the range of F,3 to 0 < 53 < T , where (52 = 0, 53 = T) represents

the trailing edge.

The transformation defined in (2-1) trivially satisfies the integrability

condition given in Ref 7.

Leg
df  _ I ld_fl - -
a; = C+iD; T A, (2-5)
so that
a2 = cZ2+p? (2-6)

From these equations we derive, in Appendix A, relationships which are

required in the equations of motion.

For an elliptic cylinder

2 -2
be [(1 + 'r)eg - (1 - 1e 2 ] cos 53 (2-7)

(9]
it

2 -r2
je[( + e + (1 - 1™ sin & . (2-8)

o
]

For the application of finite difference methods to the equations of motion,
further transformations are necessary. To shrink the infinite range of 62 to a

finite working space, we define

I 0 < n? < 1 (2-9)

and to concentrate the grid points in areas of greatest change in velocity

potential, we apply the transformations

1 £ L3 22> - ym) (2-10)

1/(a + 1)32 - a(£])2 1/(8 + l)’rr2 - 45(53 - %ﬂ)z




where ™1 < nl,n3 <1

and 0<a,8 <=,

The n3-transformation is applicable only to the non-lifting case where we

use the range 0 < 53 <7 .

In equation (2-10) o and B are parameters to adjust the transformation
as required. The effect of increasing o is to bunch grid points near the
walls, and increasing B similarly bunches points at the leading and trailing
edges. This is illustrated in Fig.2. If the parameter is zero in either case,
the transformation merely represents a scaling. The practical ranges of o and
B depend upon the particular configuration being investigated, for example, if
the span is increased then o must also be increased to maintain the fineness

of the mesh near the walls, which is where the greatest variations occur.

In the equations of motion we will require the derivatives of transforma-

tions (2-9) and (2-10), denoted by Pi = dnl/dE1 , and these are

P = _é_il_z__ . P = 1 - n2 . P = .__213_/.2—- (2 11)
1 s/o + 1 2 ’ 3 TYg + 1
2
where A = a(nl)2 +1, r = B(n3) +1 (2-12)
3 THE EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

If we denote the velocity vector by V and the velocity potential by ¢ ,
then the contravariant and covariant components of velocity will be v' and Vi
respectively, where

vi o= v.at; V., = V. . (3-1)

The relations between these quantities are set out in Appendix A and if
the speed |X| is denoted by q , equation (A-17) gives

q“© = Vv, = glJvivj . (3-2)

2 . . N \
Mangler and Murray~ derive the equation of continuity for a compressible
inviscid fluid in steady irrotational motion with no external forces in the

form:
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%_@_{, (JVl) - _V_2 __3_{_ (q2) = 0 s (3"3)
9E 2a” 93

where J 1is as defined in equation (A-1) and a 1is the local speed of sound

obtained from Bernoulli's equation:

2
a

v—T1* %qz = constant . (3-4)

Here Y 1is the ratio of specific heats.

The freestream velocity potential is given by

¢, = -Ux , (3-5)

. . s . 2_,. .
since the stream is in the negative x"—direction.

We express equation (3-3) in terms of the perturbation velocity potential

6 = 6-08 = 0+Ux’ = o+U[-ut +Re(D)] (3-6)

and non-dimensionalise with respect to U_ and c .

Using equation (A-11), we define a set of coefficients, Ql , by

. 1 3 .. 13 9 13
Q' = 3 @t = 55N . (3-7)
aE? A” 5gd
These arise when we expand the first term in equation (3-3):
2
1 . ..
2 3 (Jvl) - glJ 8.q> ]

J 1

+ Qi 32
dE 3eragd 3E

1

We find that Ql =0 .

The second term in equation (3-3) is similarly expanded. If, for clarity,
we denote V' by Y, then, after lengthy algebra, equation (3-3) when expressed
in terms of the perturbation potential with respect to the nt system of

coordinates, becomes



2 2 )
Y
1 - —l'P2¢ + A% + u2c2 - E& P2¢ +|A_* UZDZ T3 P2¢
2)51%11 - —
. R 2] "2%22 K] 2| “3%33
Y.Y Y. Y
C 12 D 1°3
= —ZB—- P.P.¢ +2L+"""’"PP¢
(A a2)1212 2Tzt
wlep  Yo¥s Y% 3an!al
P2 T RPatyy + | - 1] =P,
A a a syo + 1
_ ) ,
+ .A—Z_:__u.%_c_%.—z.z_.p i_]QZPd)
A4 a2 a2 272
8 2 2
2
_ a2+ u%?  Y3) epnirt Y_1_1Q3P¢
At a2 B+ 1\ 2 373
v -v V.V
3 "2 2Y3 2T, o
ST Bt P (Vp t Ys)
A A'a A
2
(RV, + SV.) V2 o+ v
2 3 2 3
Y N A (3-8)
o2 1 2 ,
2 2
3 3 d°f .
where ¢i- = i¢ T 3 ¢1 = —EI-; — = E + iF ; (3-9)
J antand an dg
R=CEZDF, s—DEZCF, T = DS - CR . (3-10)
A A

The boundary conditions to be applied are those of tangential flow at the
boundaries. Since é} is normal to the surface El = constant , the tangential
flow condition on that surface (V . 3} = 0) implies, from equation (A-16), that

vi=0.

The boundary conditions are:

(i) on the body surface nz = 0,

which becomes, using equations (2-5), (2-11), (3-6), (3-9) and (A-12),



2 2.2 2

uC A" + uC u CD C
SR T by s T P = 5 (3-11)
A2 '] A4 2 A4 373 AZ ’

(note that on the body P2 = 1).

(ii) on the walls n = *I,

by similar algebra,

uC uD

(iii) at the wall-body junction,

since equations (3-11) and (3-.2) must be satisfied simultaneously,

b, = C ;3 po -2py uc” (3-13)
2 H — - - —— ; —
171 A2 373 A2
. P 2
(iv) at infinity, n~ - 1,

Equation (3-8) and boundary conditions (3-11) to (3-14) are expressed in
finite difference form as outlined in section 4. As stated previously, the
symmetry of the flow enables us to restrict computation to the upper half of the
flow field to save on computer time and storage. Also, for profiles with fore-
and-aft symmetry, such as the ellipse, we can exploit the antisymmetry in ¢ ,
i.e.

sn'nZind) = - et (3-15)

further to reduce the computation.

4 DETAILS OF THE COMPUTATION

The differencing scheme applied to equation (3-8) was the usual central

differences approach in which, for example,

- ¢

99
Bn] 2hl

¢i+1,j,k

iml,ik O(h?> (4-1)
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2 . . - 26, . .+ b, .
9 ¢ s = ¢1,J,k+1 ¢l,J,k ¢1,J,k-1 + 0<h2) (4=2)
2

(an’) (hy) 3

2 . . - 0. . - . . .

S L T P L P TS VS B I S T U0 TS I S O P It 1 2,.2

.2 ihh + 0(n) +hy) (4-3)
3n an 172
where hi is the step-length in n'  and ¢i 3,k is the value of ¢ at the
*J>

(i,j,k)th grid point in nl, n2, n3 respectively. The port wall corresponds to

i =1, the body to j =1 and the leading edge to k = 1.
The only exception is at the wall-body junction for the calculation of

2
2 (see Fig.3). To apply formula (4-3) at point (1,1,k), we require ¢
3132 0,0,k
which is not obtainable from the boundary conditions. We therefore resort to

the formula

2
2% _ 1
- 7h b, [?2,1,k * 40,1,k T 01,2,k

) ) _ 2 2
* 9,0k " 201,10,k T %0,2,k ¢2,o,k] ¥ O(hl * hz) :
XEEREE (4_4)

The second, fourth, sixth and seventh terms are calculated from the
boundary conditions, that is, by applying, respectively, the finite-difference
forms of equation (3-13b) at point (1,1,k), of equation (3-13a) at point (1,1,k),
of (3-12) at (1,2,k) and of (3-11) at (2,1,k).

The error term in equation (4-4) is different from that of equation (4-3),

though of the same order.

Having differenced equation (3-8) as above, the equation is arranged as
suggested by Sellsl to give a tridiagonal matrix which is solved by block
relaxation. We can solve in two different ways: on lines n2 = constant (rings)

and on lines n3 = constant (spokes). The forms of the equations are:

i : .. - . . = <k <
rings dk¢1,J,k'1 + ck¢1,3,k + bk¢1,3,k+l a 1<k<L,

spokes: d.o. . + c.d. . + b.o. . = .
P J¢1,J'1,k J¢1sJ,k J¢laJ+1,k h|
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Application of the symmetry condition at the leading and trailing edges
in the rings example means that d1 = bL = 0 . Application of the body surface
condition and the condition at infinity (n2 + 1) in the spokes case means that
d1 = bM = 0 . Thus in both cases the matrices are wholly tridiagonal and do
not have the corner elements present in Sells' work. This makes the matrix

inversion somewhat simpler; details are presented in Appendix B.

In the cases of both rings and spokes the field is swept first in the
cross—sectional plane and subsequently by moving the plane from the port wall

through the field.
5 RESULTS

In Figs.4 to 7 we present results for a flow with freestream Mach number
0.65 past an elliptic cylinder swept at an angle of 45°, The aspect ratio is
2 and the thickness/chord ratio, T , is 0.1. This case exhibits the typical

properties of the flows considered.

Fig.4 shows the chordwise distribution of local Mach number at several
sections. It is observed that at the port wall (y = -s) there is a high peak
with large gradients in the neighbourhood of the trailing edge. This arises
from the combined effects of the sweep, which accelerates the flow normal to the
leading edge, the constraint of the wall and the rapidly increasing slope of the
profile in this region. It is shown in greater detail in Fig.5. By the anti-
symmetry, there is a similar peak near the leading edge of the starboard wall.
The distribution in the centre section is almost indistinguishable from that for

the infinite swept wing with the walls absent.

Fig.6 shows the local Mach number distributions in sections parallel to
the leading edge. We see that the behaviour in the centre of the span is very

smooth and that the peak extends only a small distance from the wall,

Fig.7 shows a plan of Mach number contours on the wing surface arnd
emphasizes the local nature of the peak. Fig.8 shows a magnified view of the

trailing edge region of Fig.7.

The Mach contours meet the wall normally and there are occasions when
lines of constant chord cross and then recross them. This explains the occurrence
of the depressions in curves 6 and 7 of Fig.6 and the slight lip in curve 4.
The phenomenon is best observed in Fig.8 near the junction of the wall and the

0.81 contour. This is close to the chordwise station for curve 4.
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By considering the starboard wall, it can be seen that at the centre of
a swept-forward wing there will be a pressure peak near the leading edge, even

for a profile section.

Fig.9a to 9d for the same wing are included to show the variation of
the pressure distribution as the freestream Mach number increases through 0.1,
0.45 and 0.6 to 0.65. There is relatively little change in the pressure at the
centre span but close to the wall the peak becomes much more exaggerated. The
position and magnitude of minimum pressure is marked in each case with a cross,

and the adjacent numeral shows the peak Mach number.

Other calculations have shown that curves of local Mach number for lower
values of M_ have the same form as in Figs.4 and 6 but exhibit lower 'plateaux'
and have relatively smaller peaks. An increase in the span appears fractionally
to decrease the height of the peak while a reduction in the angle of sweep

decreases the peakiness and shifts the peak forward marginally.

In a typical run, the computation is started on a coarse grid (11 x 6 x 11
in nl, n2, n3 respectively) and a mesh-halving routine is implemented twice
to reach a final grid of 41 x 24 x 41, The program stops when the change in
potential from one iteration to the next is less (at all grid points) than some
prescribed value. For a change in potential of less than 10_5 per iteration
(corresponding to a change in Mach number of 3 x 10_5 per iteration), we require
100 iterations on the finest grid, following 250 and 200 respectively on the

coarse grids. Total computation time on a CDC 7600 computer is approximately

270 seconds. For a change in potential of less than 2 x 10—6 per iteration
(corresponding to a Mach number change of 3 x 10_6 per iteration), we require
350 iterations on the finest grid and the computation time increases to 700

seconds. The relaxation parameters used — w 1in equation (B-4) - are 1.83 for

the first mesh size and 1.84 for the subsequent grids.

The convergence appears to be rather sensitive to the choice of transform-
ation parameters, o and B . For the case studied in detail, results obtained
for different values of o and B 1lying between 5 and 15 were comnsistent, apart
from at the apex of the peak where there was a range of disagreement of 1 to 27,
because of the impossibility of placing sufficient points in this region for a
practical size of grid. If the parameters lay outside this range, then the grid
points were either spread too thinly near the walls and the leading and trailing

edges to deal numerically with the 'peaking', or they were so bunched in these
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areas that the remainder of the field was underpopulated. In these situations,
the solutions were not wholly reliable, or worse, there was a tendency for the
solutions to diverge for the small grid sizes, causing the computation even-
tually to break down. In this context, decreasing the relaxation parameter may
help if the divergence is not too rapid, at the cost of increased computation

time.

It should be noted that the working range of the parameters given above
is not absolute and will be different for different wing geometries - the
important point is to maintain the density of points near the peak. If the span
is doubled, for example, one would have to increase a , probably to within the

range 12 to 25.

Tables 2 to 5 contain values for the perturbation velocity potential at a
selection of grid points as an aid to future investigators. The total velocity
potential can be calculated using equation (3-5) in conjunction with equations
(2-1), (2-4), (2-9) and (2-10). Values of the constants are A = 450, T = 0.1,
M = 0.65, o =11, B = 8, the grid sizes in E], 52, £3 being 41 x 25 x 61.
The data are shown for four sectional planes, at alternative points along alter-
nate spokes (reading horizontally). Note that the tabulated values are 10 x ¢

for convenience.

Calculations have been made for the geometries and Mach numbers listed
in Table 1. Further details of these results can be obtained from the author at
the Department of Mathematics, Polytechnic of North London, Holloway, London,
N7 8DB.

Table 1

SUMMARY OF RESULTS OBTAINED

Aspect ratio Thickness, T Sweep, A° | Mach No., M_
2.0 0.1 45 0.65
2.0 0.1 45 0.6
2.0 0.1 45 0.5
2.0 0.1 45 0.45
2.0 0.1 45 0.1
2.0 0.1 30 0.6
2.0 0.1 20 0.6
4.0 0.1 45 0.6
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6 CONCLUDING REMARKS

Results have been obtained for subcritical flow past swept elliptic
cylinders between walls. The full equation of motion was expressed in terms of
non-orthogonal coordinates defined by the body shape and the boundary conditions

were thus satisfied exactly. The equation was solved using finite differences.

The method is at present being extended to deal with different profiles,
such as the Karman-Trefftz, and to cover the case of a semi-infinite swept wing.

It is hoped to deal also with supercritical flows.
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AEEendix A
SOME RELATIONS FROM TENSOR CALCULUS

. . . i
If we have a transformation from a cartesian coordinate system, x , to a

general system of coordinates, EJ , of the form

i 2

X = xi(glag 953) s i=1,2,3

the Jacobian of the transformation, denoted J , is given by

le

s ’ (A_l)
agd

where J # 0 except, perhaps, at isolated singular points.

At each point we construct a system of base vectors, a; i-= !, 2, 3,
which are tangential to the curves of intersection of the surfaces El—l = constant
and Ei+1 = constant . We also construct a set of vectors, 2} , normal to the
surfaces Ei = constant . Employing the summation convention of tensor analysis,

we relate the vectors by

i
Jsijké = Ay (A-2)

+1 if i, j, k are an even permutation of 1, 2, 3
where €k = -1 if i, j, k are an odd permutation of 1, 2, 3
0 otherwise

We define a tensor, t , by

. i
i _ 09X

- agd
agd

dx

il

t;dEJ . (A-3)

It can be shown that if g, are the cartesian unit base vectors, then

a. = toc,
= j=i

. (A-4)

We define the symmetric covariant metric tensor, 8 and the contravariant

metric tensor, glJ s by

g.. = « 4. M glJ = _a_l . aJ . (A—S)
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Since

c . e - 5 - 1if r =8
=r =g rs 0if r+#s ?

equations (A-4) and (A-5) give

sS. T
85 = %, - (a-6)

This property can be used to show

- j -
a; gijé- ’ (a-7)
al = ng_a_k 5 (A-8)

ik _ gk -
gijg 61.. ’ (A-9)

where 6? is defined similarly to Grs .

The system of equations (A-9) can be solved for gln .
2 in _ nrs _
eiij g = g gjrgks , (A-10)

with ™% defined as eijk previously,

Hence, given the form of the transformation as in (2-1) and (2-4), we can
use equation (A-3) to calculate t; and use (A-6) then to calculate gij .

Equation (A-10) used in conjunction with equation (A-1) now gives gt .

For transformations of the general form of equation (2-1) we obtain, using

equations (2-5) and (2-6),

J = A ’ (A-11)
and
1 xe s
A2 A2
.. 2 2 2
[813] By Loy -L 2. (A-12)
a2 A% A%
_ b - uZCD A2 + uzD2
L A2 AA AA B
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For the particular case of the elliptic section we substitute for C and

D from equations (2-7) and (2-8).

Any vector Vv can be written in the forms
v = v.,a = ng_J. , (a-13)

where Vi v are respectively the covariant and contravariant components of

V .

From equations (A-5), (A-7) and (A-9)

._a_.k = g.. I, ak = 61.< (A-14)

a.
—i 1j— - i

Thus using equations (A-5), (A-13) and (A-14),

V. = V.a, = g..v . (A-15)

s

Similarly,

v o= z._g_l = g'lv. . (A-16)

Using equations (A-13), (A-14) and (A-16) we find

]
il
<
<

2
v

|X|2 i i 1 . (A-17)

]
<
<

[

()]
<
<



We solve explicitly the

form Tu = a where

O

_ (n+1)
and u, = ¢i,j,k

the (n + 1)th iteration.

Appendix B
MATRIX INVERSION

rings example.

‘c

The matrix equation is of the

for fixed i, j , the superscript referring to the value at

The matrix T is now factorised into upper and lower triangular matrices

so that
Here,
_;1
sy r, (:)
s3 r
R =

If R is non-singular and

our problem is equivalent to

solving successively

(B-1)
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Rz = a |, (B-2)

Uu = z . (B~3)

Thus we obtain the following sets of equations from (B-1) and (B-2)

b B
by = 1x
8 T 15
de = ¢ 1
e "
}2 <k <L
bk = rkxk
b S S B R

In this scheme X and z, are calculated without the need to store

Lo Sy We now use equation (B-3) to obtain

]
N
-

UL L

Z T XU L-1 2 k = 1

Kk

The matrix u is calculated in reverse order.

If we require over— or under-relaxation, we then put

(n+1)

o= w e - w) o™ (B-4)

i,j,k
where w is the relaxation parameter and the superscript (n + 1) refers to the

updated value of ¢i,j,k .

The procedure for solution along spokes is identical.
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[N

cod.

Table 2
J u 1

VALUES OF PERTURBATION POTENTIAL x 10 IN PLANE x = -s (WALL)
Body >
2 s} 0.0370 0.1823 17 0.2877 CLb055 C.5390 Ceh931 0.8755 1.0986 1.,3863 1.7918 2.4849
o] -0, 7496 ~0.088( -0.L292 -G, 5630 -0.5060 -0, 430 ~0.3813 ~0.319% -0.2581 ~0,137% ~0.1386 -0.0778
0.0041 ~0.7498 -0.6885 -0.629, -C.5680 ~-0.5060 ~0.uk37 -0.3813 ~0.3194 -0,2581 -0.1979 -0.1386 -0.0778
0.0090 -0.7508 -0.6845 ~0.6296 -C.o682 -0.5062 -0.4438 -0.3614 -0.3194 -0.2581 2.1979 -0.1386 -0.0778
0.0149 -0.7529 ~0.0904 0. 0304 -0.5687 -0.5065 =0. 4440 -0.38610 -0.3195 -0.2582 2.1979 -0.1386 -0.0778
0.0223 ~0.7507 -0.6926 ~0e0310 -G.5097 ~0.5072 -0 hlhle -0,3819 -0.3197 -0,2583 -0.1980 -0.1386 ~0.0778
0.0315 ~0.7628 -0.£964 ~0.0543 ~C.571h ~0.5083 -0.4453 -0.3824 -0.3201 ~0.2585 -0.1981 -0.1386 -0.0778
0.0431 ~G.7721 -0.7¢28 -0.£555 ~0.5743 ~0.5104 ~0. 4467 -0.3830 ~0.3207 ~0.2589 -0.1983 -0.1387 -0.0778
0.0580 ~0.7850 -0.7127 ~Oeuh5] -0.5792 -0.5138 ~0.4491 ~0.3851% -0.3218 ~C.2596 -0,1987 -0.1389 -0.0778
0.0773 -0.3039 -0, 7274 ~Cab267% ~0.587 1 ~0.2195 -0.4552 -0.387% -0.32338 ~0,2609 -0.7994 -0.1391 -0.0777
0.1026 -0.8270 -0 P47 ~0en720 ~0.3995 -0.5237 -0.4590 ~0.3920 ~0.3270 -0.2629 -0.2005 -0.1396 -0.0776
0.1362 -0.8527 ~0.7725 -0.0933 ~0wo 17 =0.5k2k -2.4705 ~0.4003 -0.3323 =0.2963 -0.2024 -0.1403 ~0.0773
0.1807 -0.6742 -0.7967 -0.7166 ~0.0375 -0.50601 -0, 4540 -0.4113 -0.3403 -0.2717 -0.2054 -0. 1412 =0.0767
0.2389 -0.8705 ~0.8057 -0.7210 ~0.6535 -0.5759 ~0.4y92 -0.4237 ~0.3501 -0.2784 -0.2092 -0.1420 -0.0749
0.3129 -0.8320 ~0.7778 ~0.7139 =0.6452 -C.5738 ~-0.5011 ~0.4278 -0.3546 -0.2820 -0.2105 -0 1404 -0.0701
0.4017 -0.7130 ~2.6789 =0.0547 -0.58%0 ~0.35271 -0 4660 -0.4029 -0.3369 -0.2690 ~0.1998 -0.1296 -0.0584
0.5 -0.5025 -0.4550 ~0.b750 ~0.h478 0. 4134 -0.3729 ~0.5269 ~0.2760 -0.2208 -0.1617 -0.0991 -0.0350
0.5983 ~0. 2250 -0.2451 -0.2513 ~Goee 27 -0.2383 -0.2200 ~0.1964 -0.1661 -0.1304 ~0.0898 ~0.0kbh 0.0002
0.6871 0.0547 0.0171 -0.00y2 ~0.0205 -0.03¢0 -0.038¢ ~0.0352 -0.0269 -0.0143 0.0026 0.0244 0.03%98
0.7611 0. 5009 0.2495 02700 6. 1795 0. 1559 0.1375 0.1225 0.1101 0.0999 0.0930 0.0909 0.0744
0.8193 0.4946 0.4251 0.23884 0.3497 0..158 0.2842 0.2532 0.2225 0.1929 0.1661 0. 1441 0.0993
0.8638 0.6399 0,576k 0.5257 0.4310 0.4373 043941 2.5493 0.3041 0.2596 0.2181 0.1814 0.1153
0.8974 0.7476 0.6822 0.6285 0.577¢ 0.5247 0.4704 0.4148 0.3588 043038 0.2522 0.2057 0.1249
0.9227 0.3278 0.7613 0.7033 0.6445 0,583 0.5207 0.4572 0.3937 0.3316 0.2734 0.2206 0.1305
0.9420 0.8882 0.8199 047559 0.6896 0.6216 0.5527 0.4837 0.4153 0.3486 0.2863 0.2296 0.1338
0.9569 0.93%6 0.8621 0.7912 0.7187 0.6456 0.5726 2.4999 0.4283 0.3588 0.2940 0.2349 0.1356
0.9685 0.5672 0.8909 0.81,8 0.7369 0.6604 0.5846 0.5096 0.4360 0.3648 0.2985 0.2380 0.1367
C.9777 0.9906 0.9087 02270 0,778 0.6692 0.5910 2.5152 0.4405 0.3683 0.3011 0.2398 0.13574
0.9851 140032 0.9188 0.8350 0.7541 0.6742 045956 0.5184 0.4430 0.3703 0.3026 0.2408 0.1377
0.9910 140095 049240 V.8598 Ca7574 0.6768 «5977 2.5201 C.bub3 0.3713 0.3033 0.2413 0.1379
0.9959 1.0119 0.926 0.84 17 e 73y 0.6780 0.5986 0.5208 0. 4449 0.3717 0.3037 G.2416 0.1380
1.0 1.0125 0.92069 0.8422 0.7595 0.6783 0.598% 0.5210 0. 4450 0.3718 0.3037 0,246 0.1380

Table
1
VALUES OF PERTURBATION POTENTIAL 10 IN PLANE x = -0.9531 s

Body 44> 0
£ 7% g* o) 0.0870 0.1823 0.2877 0.4055 0.5390 0.6931 0.8755 1.0986 1.3863 1.7918 2.4849
0 -0.8116 ~0.7467 -0.0680 -0.59,5 -0.5229 ~0.4550 -0, 3808 -0.32h1 -0.2603 -0.1993 -0.1392 -0.0780
0.0041 -0.8117 =0, 7067 ~0.6636 -0.5936 ~0.5230 -0.4550 -0.3888 ~0.3241 -0.2609 ~0.1993 -0.1392 -0.0780
0.0090 -0.8120 -0.7467 -0.0688 -0.5937 ~0.5231 ~0.4551 -0.3889 -0.3242 -0.2609 -0.1993 -0.1392 -0.0780
0.0149 | ~0.8128 | -0.7467 | -0.6692 | -0.59k2 | -0.5234 | -0.4553 | -0.3891 ~0.3243 -0.2610 [ =0.1994 | -0.1392 | -0.0780
0,0223 -0.8142 ~0.7469 -0.5699 ~0.5950 ~0.52L0 -0, 4558 -0.3894 -0.3245 -0.2611 -0.1994 ~0.1392 -0.0780
0.0315 ~0.8167 -0.74L76 ~0.0712 ~0.5964 -0.5252 ~0.4566 -0.3899 -0.3243 -0.2614 ~0.1996 ~0.1393 -0.,0780
0.0431 -0.8209 -0.7L93 -0.6737 ~0.5988 -0.4579 -042909 -0.3255 ~0.2618 -0.1998 -0.1394 -0.0780
0.0580 -0,8275 ~0.7536 -C.6779 ~0.0028 2 -0.4603 -0.2925 -0.3266 -0.2625 ~0.2002 -0.1395 -0.0780
0.0773 -0.8377 ~0.76 14 -0.4850 ~0.5092 -0.5354 -0.4642 -0.3953 -0.3285 -0.2657 ~0.2008 -0.1398 -0.0779
0.1026 -0,8517 -0.7728 ~0.090 1 -0.6190 -0.5436 -0.4705 -0.3999 -0.3316 -0.2657 -0.2020 -0, 1402 -0.0778
0.1362 -0.8683 ~0.7905 -0.7114 ~0.0320 -0.5554 -0.4801 -0, 4072 -0.3368 -0.2691 ~0.2039 -0, 1409 ~0.0775
0.1807 -0.8815 -0.8067 -0./7251 -0.6bs9 -0.5702 -0.4929 -0.4175 ~0.3445 -0.2743 ~0,2068 -0.1478 -0.0768
0.2389 -0.8760 ~0.8096 -0.735 -0.6594 ~0.5820 ~0.5048 -0.4282 -0.3534 -0.2806 -0.2104 -0. 1425 -0.0750
0.3129 -0.3280 ~0. /767 -0.7127 -0.64 . -0.5753 -0.503" -0.4298 ~0.3564 -0.2833 -0.2113 ~0.1407 -0.0702
0.4017 -0.7035 -2.5210 ~Cer 285 -0.57490 -0.5239 -0.h6ké -0.4018 -0.336k -0,2688 -0.1997 -0.1295 ~0.0583
0.5 -0.4891 -0.4821 —Cubbhy -0.4390 -0. 4062 -0.3672 -0.3226 -0.2729 -0,2187 ~0.160k ~0.0984 -0.0348
0.5983 -0.2112 -0.2297 -0.2575 -G.2260 -0.2278 -0.2119 -0.1894 -0.1608 -0.1267 -0.0875 -0.0433 0.0009
0.6871 0.0749 0.0357 0.0075 -2.011) -0.0232 -0.0279 -0.0268 -0.0206 -0.0100 0.0052 0.0257 0.0402
0.7611 0.32b8 0.2710 Ce2a21 041959 3.1695 0. 1482 0. 1306 0.1157 0.1036 0.0952 0.0919 0.0746
0.8193 0.5220 0.4591 Dl b0ve C.3(59 0.3281 0.2923 0.2589 0.2262 0.1951 0. 1674 0. 1447 0.0994
0.8638 C.6702 0.6013 0.54%6 04340 0, 4459 0.3987 0.3518 0.3054 0.2602 0.2189 0.1816 0.1152
0.8974 0.7783 0.,7045 0.6418 0.5836 0.5268 0.4703 0. 4140 0.3579 0.3031 0.2519 0.2055 0.1247
0.9227 0.8524 0.7744 0705 0D.6423 C.5793 0.5165 0.4537 0.3912 0.3300 0.2727 0.2202 041302
0.9420 0.8959 C.8172 0.749 05754 O.u124 0.5454 0.4783 0.4116 0.3464 0.2852 0.2290 0.1335
0.9569 0.9706 0.8417 0.7715 0.7025% 0.632 0.5€21 Oew332 0.4239 0.3562 C.2927 0.2343 0.1353
0.9685 0.9258 0.8558 0,75 G702 0.(L52 0.5737 0.5021 0.4311 0.3620 0.2971 0.2373 0. 1364
0.9777 0.9302 0.364: 0.7953 0. /245 0.6525 05799 0.507> 0.4353 0.5653 0.2996 0.2591 0.1370
0.9851 0.9325 0.8090 0.80C4 0,791 0.6560 0.5034 0.5102 C.4377 0.3672 0.3010 0.2401 0.1374
0.9910 0.9233 0.3716 0.6031 2.731% 0.6597 2.5852 0.5117 G. 4389 0.36817 0.3018 0.2406 0-1376
0.9959 0.9537 0.8723 Co80h3 0.7527 0.0597 0.5500 0.5124 0.4395 0.3(86 0.3021 0.2408 0.1376
1.0 0.9328 0.8731 C.804L 0.7530 0.6599 0,5852 0.5125 0.4396 0.3687 0.5022 0.2508 0.1377
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Table L
1
VALUES OF PERTURBATION POTENTIAL x 10 IN PLANE x = -0.9160 s
Body N o
e 3 o} 0.0870 0.1823 0.2877 0.4055 0.5390 0.6931 0.8755 1.0986 1.5863 1.7918 2.4849
o] -0,9151 -0.8602 -0.7902 -0.7068 -0.6123 ~0.5168 -0, 4287 ~0.3438 -0.2752 ~0.2067 ~0.1423 -0.0789
0,004 1 -0.9151 ~0.8601 -0.79M -0.7067 -0.6123 ~0.5168 -0.4288 -0.3488 -0.2752 | -0.2067 -0.1423 ~0.0789
0.0090 -0,9152 | -0.8597 ~0.7897 -0.7065 -0.6122 -0.5168 -0.4288 -0.3489 -0.2753 -0.2067 -0.1423 ~0.0789
0.0149 -0,9153 -0.8588 -0.7889 ~0.7060 -0.6121 ~0.5169 -0.4289 -0.3450 -0.2753 -0.2068 -0.1423 -0.0789
0.0223 ~0.9155 -0.8572 ~0.7874 -0.7050 | -0.6118 -0,5170 -0.4292 ~0.3491 -0.2754 ~0.2068 ~0.1423 -0.0789
0.0315 -0.9160 -0.8551 -0.7851 -0.7035 -0.6114 -0.5173 -0.4296 ~0.3495 -0.2757 -042069 -0. 1h2h -0,0789
0.0431 =0.9167 -0.852k | -0.7820 -0.7013 ~0.6108 -0.5178 -0.4303 ~0.3500 ~04 2760 -0, 2071 -0, 1424 | ~0.0789
0.0580 -0.9178 ~0.3496 -0.7782 -0.6986 -0.56101 -0.5186 -0.4314 | -0.3510 -0, 2767 -0.2075 -0.1426 -0.0788
0.0773 -0.9191 -0.8471 -0.7744 ~0.6956 -0.6094 ~0.5199 -0, 4334 -0.3527 -0.2778 ~0.2082 ~0. 1428 -0.0788
0.1026 ~0.9200 -0.8453 -0.7711 -0.6929 -0.6092 -0.5221 =0 4364 -0.3553 -0.2797 ~0.2092 -0. 1432 -0.0786
0.1362 -0.9185 ~0.8434 -0.7685 -0.6911 -0.6096 ~0,5252 -0, 4407 ~0.3594 -0.2827 -0.2110 -0, 1438 -0.0783
0,1807 -0.9095 -0.8375 -0.7641 ~0.6884 -0.6096 -0.5282 -0, 4457 ~0.3646 -0.2869 -0.2135 ~0. 1446 -0,0775
0.2389 -0,8808 -0.8166 -0.7488 ~0.6777 -0.6035 ~0.5266 -0,4478 -0.3687 -0.2909 -0.2161 -0.1449 -0.0755
043129 -0.8089 ~047587 -0.7028 -0.6420 -0.5770 ~045084 -0.4370 ~043634 -0.2889 -0.2147 -0. 1421 -0,0703
0.4017 -0.6639 -0.6345 -0.5978 -0.5548 ~0.5060 -0.4524 -0.3942 -0.5322 ~0. 2668 -041988 -0.1289 ~0.0579
0.5 ~0,4318 -0.4279 ~0.4161 -0.3969 -0.3709 -0.3386 -0.3005 -0.2568 -0.2078 -0.1529 -0.0951 -0.0336
0.5983 -0, 1384 ~0.1603 ~0.1740 =0, 1799 -0,1786 -0, 1706 -0, 1561 -0.1355 -0.1091 ~040766 -040577 0.0022
0.6871 0.1615 0.4179 0.0826 0.0549 0.0342 0.0198 0.0110 0.0075 0.0093 0.0171 0.0317 0.0417
0.7611 0.4212 0.3612 0.3092 02644 0.2257 0.1924 0.1636 041391 041191 041046 0.0967 0.0756
0.8193 0.6160 0.5438 0.4793 0.4217 0.2699 0.3228 0.2796 0.2399 0.2040 0.1729 0.1474 0.0996
0.8638 0.7354 0.6567 0.5862 0.5226 0. h642 0.4097 0.2582 0.3090 0.2625 0.2202 0.1824 0.1147
0.8974 0.7934 0,7154 0.6461 0.582k 0.5224 0.L4646 0.4084 043534 0.3003 0.2506 0.2048 0.1238
0.9227 0.8202 0,7466 0.6807 0.6186 0.5582 0.4987 04396 0.3809 0.3236 0.2694 0.2185 0.1291
0.9420 0.8333 0.7651 0.7023 0.6412 0.5804 0.5196 0.1L586 0.3976 0.3577 0.2807 0.2267 0.1321
0.9569 0.8400 0.7770 0.7163 0.6555 0.5942 0.5323 0.4700 0.4076 043460 0.2874 042315 0.1339
0.9685 0.8436 0.7849 0.725% 046644 0.6025 0.5399 0.4768 0.4135 03509 0.2913 0.2343 0.1349
0.9777 0.8456 0.7901 0.7310 046698 0.6074 05443 0.4807 0. 4169 043538 042935 0.2360 0.1355
0.9851 0.8466 0.7933 0.7343 0.6729 0.6102 0.5468 0.4829 0.4188 0.3553 0.2548 0.23%69 0.1358
0.9910 0.8472 0.7950 0.7362 0.6745 0.6117 0.5481 0. 4840 0.4197 0.3562 0.2955 0.2373 0.1360
0.9959 0.8474 0.7959 0.7370 0.6753 0.6125 0.5487 0.4845 0.4202 043565 0,2957 0.2375 0.1361
1.0 0.8474 0.7961 0.7372 0.6755 0.6125 0.5489 0. 48L7 0.4203 043564 0.2958 0.2376 0.1361
Table 5
1

VALUES OF PERTURBATION POTENTIAL X 10 IN PIANE x = 0 (CENTER SECTION)
Boay 4} o
£ : ¢ 0.0870 0,1823 0.2877 0.4055 0.5390 0.6931 0.8755 1. 986 1.2863 1.7918 2.4849
s} -0.8582 -0.8091 -0.7519 ~0,6909 -0.6282 -0.5651 -0.5024 ~0.4408 ~0a3799 -0.3140 -0.2219 -0.1050
0.,0041 -0.8582 -0.8089 -0.7517 ~-0.6907 -0.6281 ~0.5650 -0.5023 -0.4408 =0.3799 -0.3139 -0.2219 -0.1050
0.0090 -0,8580 -0.8082 -0.7510 -0.6901 -0.6276 -0.5646 -0.5020 -0, 4505 -0.2796 -0.5138 ~0.2218 -0.1050
0.0149 -0.8576 -0.8067 -0.7495 -0.6888 -0.6265 -0.563%6 -0.5012 -0.4399 -0.3792 ~0.3134 ~0,2217 ~0.1049
0.,0223 -0.8569 -0,80L40 -0.7466 -0.6863 -0.6244 -0.5619 -0.4998 -044387 -0.3782 -0.3128 -0.2213 -0,1049
0.0315 -0.8555 ~0.7997 -0.7420 -0.6820 -0.6207 ~0.5588 -0.4972 =M L366 -0.3765 -0.3115 -0.2208 -0.1047
0,031 -0.8530 | -0.7933 | -0.7348 -0.6752 | =0.6145 ~0,5535 -0.4927 ~0.4329 ~0.3736 -0.3094 | -0.2197 -0.1045
0.0580 -0.8484 -0.7842 -0.7241 -0.6645 -0.6048 -0.5448 -0.4853 -0.4267 ~0. 3686 -0.3058 -0.2180 -0.1040
0.0773 -0.8399 -0.7712 -0,7087 -0.6487 -0.5896 -0,5311 -0.4733 -0.k4165 -0.3603 -0.2996 ~0.2149 -0.1033
0.1026 -0.8240 -0.7516 -0.6864 -0.6254 -0.5669 -0.5099 -0.4542 -0 4000 -0. 3466 ~0.2893 -0.2096 ~0,1018
041362 ~0.7941 -0,720k -0,653k4 -0,5915 -0.5333 -0.4779 -0.4249 -0,3741 -0.5248 -0,2725 -0.2005 -0.0992
0.1807 «0.7398 ~0.6684 -0.6021 =0,5409 -0.4841 -0.4311 -0.3815 -0.2351 -0.2912 | =0.2461 -0.1851 ~0.0943
0.2389 -0,6450 -0.5813 -0.5209 -0.4643 -0.4119 -0.3637 -0.3195 -0.2792 -0.242h -0.2064 ~0.1598 -0.0847
0.3129 -0,4915 -0. 542k -0.3949 ~0.3499 -0.3079 -0.2693 -0.2341 -0.2034 -0.1761 -0.1510 -0.1205 -0.0671
044017 -0.2702 ~0s2431 -042166 -0,1912 ~041673 -0.1452 -0.1254% | -0,1081 -0.0933 -0,0803 -0,0656 ~0.0387
0.5 ~0,0000 ~0,0000 -0.0000 ~0,0000 -0.0000 -0,0000 ~0.0000 ~0,0000 -0.0000 -0.0000 -0.0000 -0,0000
0.5983 0.2702 0.2431 Q.2166 0.1912 0.1673 0.1452 0. 1254 0,1081 0.0933 C.0803 0.0656 0.0381
0,6871 0.4915 0. 442k 0.3949 0.3499 045079 0.2693 0.2344 0.2034 0.1761 ©.1510 0.1205 0.0671
0.7611 0.6450 0.5813 0.5209 0.4643 0.4119 0.3637 0.3195 0.2792 0.2h2h 0.2064 0.1598 0.0847
0.8193 0.7398 0.6684 0.6021 0.5409 0.4841 04311 0.5815 0.3%551 0.2912 0.2461 0.1851 0.0943
0.8638 0.7941 0.7204 0.6534 0.5915 0.5353 0.4779 0.L2by 05741 0.3248 0.2725 0.2005 0.0992
0.8974 0.8240 0,756 0.6864 0.6254 0.5669 0.5099 04542 0w 4000 0.3466 0.2893 0.2096 0.1018
0.9227 0.8399 0.7712 0.7087 0.6487 0.5896 0.5311 0.473% 0. 4165 0. 360% 0.2996 0.2149 0. 1033
0.9420 0.8484 0.7842 0.7241 0.6645 0.6048 05443 0.4853 0.4207 0.3686 0.3058 0.2180 0.1040
0.9569 0.8530 0.7933 0.7%48 0.6752 0.6145 045535 0.4927 0.4329 0.5736 043094 0.2197 0.1045
0.9685 0.8555 0.7997 00,7420 0.6821 0.6207 0.5588 C.h972 0.4206 0.2765 0.3115 0.2208 0.1047
0.9777 0.8569 0.3040 0.7467 0.6863 0.6244 0.5619 0.4998 0.4387 C. 3782 0.3128 0.2213 0.1049
049851 0.8577 0.8067 0.7495 0.6888 0.62605 0.5637 0,5012 0.4599 3792 0.3154 0.2217 0.1049
0.9510 0.8580 0.8083 0.7510 0.6902 0.,6276 0.5646 045020 04405 0.5797 0.3138 0.2218 0. 1050
0.9959 0.8582 0.8090 0.7517 0.6908 0.6281 0.5650 0.5023 0. 4408 0.3799 0.3140 0.2219 0. 1050
1.0 0.8582 0.8092 0.7519 0.6909 0.6282 L, 0.5651 0.5024 0. 4409 0.3800 | 0.3140 0.2219 0.1050
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SYMBOLS
local speed of sound
column matrix in Appendix B

base vector

normal vector

element of matrix a
df
dg

elements of matrix T

semi-chord of ellipse

cartesian unit base vector

real, imaginary parts of %%

o d2f
real, imaginary parts of —=

az?
mapping functions from x* to &

covariant metric tensor of order 2

contravariant metric tensor of order 2
mesh-length in ni
Jacobian of the transformation from xi to
mesh sizes in n3, n2, nl, respectively
freestream Mach number
maximum Mach number
_an’
dEi
fluid speed
see equation (3-7)
element of matrix R

see equation (3-10)
lower triangular matrix in Appendix B

semi-span
element of matrix R
see equation (3-10)

axt

= e——

agd
see equation (3-10)
tridiagonal matrix in Appendix B

column matrix in Appendix B
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SYMBOLS (concluded)

upper diagonal matrix in Appendix B

freestream velocity
arbitrary vector
velocity vector

covariant component of V

contravariant component of V

cartesian coordinates

. . . 2
cartesian coordinates equivalent to (-x",x

1
=V

column matrix in Appendix B
parameter of the transformation
parameter of the transformation
ratio of specific heats

see equation (2-12)

Kronecker delta symbols = 0 if
1 if

see equation (2-12)
see equation (A-2)
= £+ ig

general coordinate used for the

from El

from 53

i#]j
i=]

solution

angle of sweep of the centre chord

= tan A

general coordinate (intermediate)

thickness/chord ratio

perturbation velocity potential

2 8%
L, 2t
ont  antan?

value of ¢ at grid point (i,j,k)

total velocity potential
freestream velocity potential

relaxation parameter

1

to
to

%)
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