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SUMMARY 

A numerical method has been developed to calculate the pressure distribution on 

the surface of steady and oscillating aerofoils in incompressible inviscid flow. 

In this method singularities are placed on the mean camber line of the aerofoil 

and the boundary condition of tangency of flow is satisfied on the surface of 

the aerofoil. Problems considered include steady single aerofoils with and 

without control surfaces, a cascade of aerofoils, aerofoils oscillating in 

pitch, aerofoils oscillating in heave, aerofoils in harmonic travelling gusts 

and control surface oscillations. Comparison with analytic solutions, and 

other numerical methods, where available, are good. The main advantages of 

this method are the relatively fast computing times and the fact that the 

method converges satisfactorily in the limit of zero aerofoil thickness. 
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1. INTRODUCTION 

There are a number of well established 'exact' methods for 

calculating the inviscid incompressible flow around steady aerofoil 

sections. Some of these methods are analytic while others are 

numeric. Analytical methods are based on the conformal transformation 

technique and are restricted primarily to special aerofoil profiles. 

Numerical methods are based on singularity distributions and are 

generally applicable to both the single and multiple aerofoil problems. 

A surface singularity method is one in which singularities are 

distributed over the aerofoil surface and the strength of the distribution 

is then adjusted to satisfy the boundary condition of no flow normal to 

the surface. The method which uses the source as the fundamental 

singularity is generally referred to as the A.M.O. Smith method (l). The 

method which uses vorticity as the singularity was developed in Germany 

by Praeger('), Martensen(3), Jacob and Riegels(4). A further vortex 

singularity method has been developed more recently by Maskew (5). 

In the version of the A.M.O. Smith method used at Q.M.C.(6) the 

aerofoil contour is represented by a series of straight line elements, 

on each of which is placed a uniform source distribution, the strength 

of which varies from element to element, and a uniform vorticity 

distribution which is the same for all elements. To satisfy the 

boundary condition of zero flow through the aerofoil contour a control 

point is selected at the mid-point of each element and the normal 

component of the total velocity (due to the free stream and source 

and vorticity distributions) at each control point is set to zero. 

The Kutta condition is satisfied by equating the downstream tangential 

velocities at the mid-points of the straight line elements adjacent to 

the trailing edge on the upper and lower surfaces. A set of linear 
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simultaneous equations results from which the source and vorticity 

distribution can be calculated. 

Experience has shown that the A.M.O. Smith method gives good 

results except for 

i) thin aerofoils (i.e. less than 5% t/c ratio) 

ii) aerofoils with cusped trailing edges (e.g. all Joukowski aerofoils) 

iii) highly cambered aerofoils at large CL (refs. 7, 8) 

In the numerical solution of the surface vortex distribution 

method, due to Jacob and Riegels (4), isolated vortices are placed at 
\ 

points on the aerofoil surface. The boundary condition, that the 

aerofoil profile be a streamline of the flow, is achieved by setting 

the total tangential velocity on the inside of the contour to zero at 

pivotal points located at the isolated vortex positions. The total 

velocity is the sum of the velocities induced by the surfaces vortices, 

plus the free stream. This inner surface tangential boundary condition, 

used in conjunction with a vorticity distribution, automatically satisfies 

the condition of zero flow through the surface for a closed body. The 

Kutta condition is achieved by selecting the trailing edge as one of the 

pivotal points and setting the vortex strength there to zero. 

Naskew(5) surveyed several surface singularity models for practical 

aerofoil sections and concluded that the model with a linear variation of 

continuous vorticity along each element is the most accurate. The Kutta 

condition in this model is satisfied exactly at the trailing edge by 

setting the resultant vorticity there to zero. The method offers high 

accuracy in the prediction of potential flow pressure distributions over 

a greater range of cambers and lift coefficients than other surface 

singularity methods. Again the method has difficulty in handling an 

aerofoil with a cusped trailing edge. 
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One feature which is common to all surface singularity methods 

is the division of the aerofoil surface into a large number of elements 

in order to achieve the desired numerical accuracy. The number depends 

on the shape of the aerofoil section under consideration; for a 

conventional symmetrical aerofoil section of moderate thickness the 

number is of the order of 50 but for highly cambered aerofoils or for 

aerofoils with control surfaces the number needs to be as high as ZOO. 

To extend these methods directly to three dimensional problems implies 

extremely large numbers of elements which will lead to long computer times. 

A singularity method is presented here for two dimensional aerofoils, 

both steady and oscillating, in an attempt to improve the efficiency of the 

existing surface singularity methods by reducing computer running time 

while maintaining the numerical accuracy over a wide range of practical 

problems, including the limiting case of zero thickness. The method 

essentially consists of distributing singularities, both source and 

vorticity, on the mean camber line of the aerofoil; the boundary condition 

of zero normal velocity is satisfied on the surface of the aerofoil. 

For the steady problem the present method involves the division 

of the mean camber line of an aerofoil into N-straight line elements, 

the numbering starts from the trailing edge (Fig. 1). A small gap is 

left between the end of the Nth element and the leading edge of the 

aerofoil. On each element is placed a uniform source distribution 

which varies from element to element and a vorticity distribution, 

the strength of which varies linearly across each element. Two point 

sources are placed on the ends of the Nth element (closest element to 

the leading edge) and a point vortex on the mid-point of the Nth element. 

Thus, for N elements on the camber line, there are N unknown distributed 

source strengths, (N+l) unknown distributed vorticity strengths, two 

unknown point source strengths and one unknown point vortex strength, a 
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total of (2N+4) unknowns. These (2Nt4) unknowns are determined by 

satisfying the boundary condition of tangency of flow at (2Nt3) points 

on the aerofoil surface together with the appropriate Kutta condition 

at the trailing edge. Corresponding to the mid point of each element 

on the camber line two points can be defined on the upper and lower 

aerofoil surfaces from the intersection of normals drawn from the camber 

line with the aerofoil profile (see Fig. 1). This identifies 2N points 

on the aerofoil surface where the tangency boundary conditions are to 

be satisfied. Again as shown in Fig. 1 the two mid-points on the 

aerofoil profile in the 'gap' between the mean camber line and the 

leading edge, plus the leading edge point itself,give the other three 

points when the tangency boundary conditions are satisfied. The Kutta 

condition for the steady aerofoil problem is satisfied by making the 

strength of the vorticity at the trailing edge zero. 

The above singularity model has been applied to 4% and 9.3% 

thick symmetrical Joukows ki aerofoils at O" and loo incidences and to 

a 17.8% cambered Karman-Trefftz aerofoil at 10" incidence. The results 

have been compared with the exact analytic solution and the agreement 

is found to be excellent. The method has been applied to NACA 0012 and 

NLR aerofoils at incidences of O" and 10" and to a Garabadian-Korn 

aerofoil at O" and 5O incidences. The results of the present numerical 

method have been compared with the standard AM0 Smith solution. 

Numerical results have also been obtained for a 4% thick symmetrical 

Joukowski aerofoil and 1541 section fitted with a control surface of 

30% and 20% chord respectively. 

The present method has also been applied to a cascade of aerofoils. 

A cascade of aerofoils is defined as a set of identical aerofoils equally 

spaced and identically oriented along an axis. Since the aerofoils are 

all identical, the flow and thus the source and vorticity distributions 

are identical. The influence coefficients are now due to a row of 
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of sources and vortices equally spaced along the axis. The cascade 

programme is capable of handling any problem in which the flow pattern 

repeats indefinitely along an axis. Numerical results have been 

obtained for NACA 0012 aerofoils in a cascade for 0' and 30° stagger 

angles. 

The present numerical technique is extended to a two dimensional 

aerofoil performing harmonic variations of small amplitudes of perturbation. 

In the extension of the model incremental oscillatory source and vorticity 

distributions are situated on elements distributed over the mean steady 

camberline of the aerofoi 

vorticity distributions, 

placed at the ends of the 

vortex is placed at the m i 

super imposed on the steady source and 

ncremental oscillatory point sources are 

Nth element and an incremental oscillatory point 

d-point of the Nth element superimposed on the 

steady point sources and point vortex. An oscillatory vorticity 

distribution, representing the shed vorticity due to the rate of change 

of circulation, is placed on the mean streamline from the trailing edge. 

The unsteady boundary condition is satisfied on the mean steady profile. 

It is also assumed that the shed trailing vortex sheet is carried of 

with the flow at the freestream velocity. The Kutta condition is specified 

that the vorticity is continuous at the trailing edge. 

The above mathematical model has been applied to the particular 

symmetrical aerofoil studied by de Vooren and de Vel (9) undergoing pitching 

oscillations. The numerical results for the in-phase and out-of-phase 

pressure distributions agree well with the results from the analytic 

solution. 

Numerical results have been obtained for an 8.4% thick symmetrical 

Von Mises aerofoil and a 4% thick symmetrical Joukowski aerofoil undergoing 

heaving oscillations about 0' mean incidence. Comparison with the 

numerical solutions using an AM0 Smith approach (10) is found to be good 
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for the Von Mises aerofoil. The results of the Joukowski aerofoil 

indicate that the present method converges to the linearised theory 

solution for vanishingly small thickness. The method has also been 

applied to an aerofoil in a sinusoidal vertical gust field. 

The aerodynamic characteristics induced by a control surface 

oscillating about its hinge line have been calculated for a 4% thick 

symmetrical Joukowski aerofoil and a 13% thick symmetrical Karman-Trefftz 

aerofoil both fitted with a control surface of 30% chord. A comparison 

with the numerical solution of reference 10 shows reasonably good 

agreement for the Karman-Trefftz aerofoil. The results of the thin 

Joukowski aerofoil show the tendency of the present method to converge 

satisfactorily to the linearised theory for small thickness. 

2. STEADY TWO DIMENSIONAL AEROFOIL 

As shown in Fig. 2 Cartesian coordinates Oxz are taken with the 

origin at the nose. The aerofoil chord is taken to be unity. The 

freestream at infinity is Uco, inclined at an angle of incidence a to the 

Ox-axes. 

The equation of the steady aerofoil profile relative to the axis 

system is denoted by 

zS 
= z;,(x) (1) 

If is and is denote the perturbation velocity components on the aerofoil 

surface normalised with respect to Uoo the boundary condition of tangency 

of flow can be written 

sina t W 
S 

= r,'(x) (cosa t is) (2) 

where the dash denotes differentiation with respect to x. 

The mean camberline of the aerofoil is divided into N straight 

line elements as shown in Fig. 1; numbering of the elements starts at 

the trailing edge and proceeds towards the leading edge. There is a 
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small gap between the end of the Nth element and the aerofoil leading 

edge. A uniform source distribution of strength os and a vorticity 
, 

distribution of strength varying linearly from y, t: y across the 

th 
'i+l 

element is placed on the i element. Two point'sources of strengths 

Q ' Qs2 are placed at the ends of the N 
th 

3 
element and a point vortex 

of strength KS is placed at the mid-point of the Nth element. Taking 

as , ‘Y 
i 

s >~sl,~s 3 
i 2 

KS all normalised with respect to c and Ua3, the 

normalised perturbation velocities at the .th 
J collocation points on the 

aerofoil surface due to the singularities can be expressed in the form 

N N+l 2 
i 

2 
= C A.. as f C C.. 7, + C R.. 0, + E. k 

i=l J’ i i=l Jl i i=l Jl i J S 

(3) 
N N+l 2 

\;j 
2 

= C B..zs t C D.."s t C S..os tH.K 
i=l J’ i i=l J’ i i=l Jl i J S 

A B C D R.. S E jiY ji9 ji9 ji’ J,) ji¶ j¶ Hj are the appropriate influence 

coefficients. These coefficients are given in the Appendix. The 

Kutta condition for the steady two dimensional flow is satisfied by 

making the strength of the vorticity at the trailing edge (i.e. 7 
% 

) zero. 

The solution for the unknown variables as , ys , 6, , 0, , and KS 
i i 

is obtained by satisfying the boundary condition eqn. (2) at the collocation 

points on the aerofoil surface as indicated in Fig. 1, along with the 

Kutta condition of zero vorticity at the trailing edge. From the solution, 

ii 
Sj' 

w 
2 

can 

s * 
2 

be reobtained using eqn. 

= ; 2+w2 
9 2 

, 

and t.he pressure coefficient 

(3); the total velocity is given by 

(4) 

cpj = l-;i 2. 
9 

(5) 

Total force and moment coefficients are obtained by numerical integration 

of the pressure coefficients. 
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2.1 Steady Cascade 

The method described for the single aerofoil can be generalised 

to a cascade of identical aerofoils all with the same flow characteristics. 

Since each aerof"oi1 of a cascade has the same singularity distribution 

the basic program for the single aerofoil only needs modification in the 

expression for the influence coefficients; the velocities at point in the 

flow due to say os the source strength on the 
.th 
1 element can be obtained . , 

by a simple summat:on of the appropriate influence coefficients for the 

contribution from each aerofoil in the cascade. In the results presented 

later it is assumed that the effective cascade characteristics about a 

typical reference aerofoil can be found by assuming 30 aerofoils above 

and 30 aerofoils below the reference aerofoil. 

3. AEROFOILS IN SMALL AMPLITUDE SIMPLE HARMONIC MOTION 

3.1 Pitching Oscillations 

To extend the method described for the steady problem in 

Section 2 to oscillatory flow problems consider the simple harmonic 

pitching motion of an aerofoil,which can be superimposed on the steadjr 

profile, by 

0 = 0, elut (6) 

where u is the frequency and 8, is the amplitude of oscillation. The 

point (x,z) on the aerofoil at any instant t, defined in terms of fixed 

axes (Fig. 3) may be expressed as 

x = xs + ~s(xs)eo elwt 

2 = c.&.)- xseo e 
iwt 

1 

(7) 

where B. is assumed to be small, and xs, 5, refer to a point on the steady 

mean profile. 
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The boundary condition for the oscillating aerofoil can be 

written as 

Uoosina + w - az/at 
= (az) 

az/ ax, 

'Ir cow t u - ax/at ax t=const = T ’ (8) co 

where u and w are the total perturbation velocities at the surface of 

the aerofoil relative to fixed axes and az/at and ax/at are the surface 

velocities in the z and x directions respectively. It is assumed that 

the variables will be composed of an oscillatory solution superimposed 

on the basic steady solution; the oscillatory solution is assumed to 

be proportional to e 
iwt 

. Thus, 

From equations (8) and (9) the following relations are obtained for the 

upper surface 

sino t W S = Qx)(coscY. t Us) (10) 

\I; 0 - Go g’(x) = - Oo{(cosa + is) + (sincl t W,);,'(x) 

+ iv(X + 5,(x)cs’(x)> , 

where is, is, io, wo, are normalised perturbation velocities and x(= s), 

i (= $) are nondimensional coordinates , and v is the nondimensional 

frequency parameter (F). 
a, 

According to Kelvin's circulation theorem the total circulation 

around a circuit in irrotational flow must be zero. Thus any change in 

circulation around the aerofoil must show up as shed vorticity in the wake. 

When the aerofoil oscillates the unsteady component of the circulation 

around the aerofoil roelot changes with time. It is assumed that this 

shed vorticity is convected along the steady trailing streamline at the 
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free stream velocity. The vorticity in the wake can be expressed in 

terms of the unsteady component of the aerofoil circulation 

iWro l/W (x> = - 7 e {- iw(x-xT)/UJ 
, 

0 co 
(12) 

where xT refers to the trailing edge; for further details see 

reference (10). 

In order to find a unique value of the aerofoil circulation, r, 

the Kutta condition at the trailing edge has to be applied. The Kutta 

condition for the present theory simply states that the vorticity is 

continuous at the trailing edge. It follows from the equation (12) 

that the vorticity at the trailing edge 

id 
(Yolt e = - -+ . 

. . 00 
(13) 

The numerical solution is outlined later in Section 3.5. 

3.2 Heaving Oscillation 

The formulation of the pitching oscillation problem can be easily 

adopted for the heaving oscillation problem by modifying the surface 

boundary condition. 

The simple harmonic heaving motion of the aerofoil to be 

superimposed on the steady profile is denoted by 

h = ho eiwt . 

Following the analysis of reference (10) the boundary condition 

sina + ijs = s,'(x)(cosa i- iis) 

and 

w 
0 

- ii0 <l(x) = iv h' 
0 

(14) 

(15) 

(16) 
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3.3 Sinusoidal Gust Response 

The boundary condition of the problem of an aerofoil passing 

through a stationary vertical gust pattern having a sinusoidal 

distribution of vertical velocity has been derived in reference (10). 

The boundary condition of this unsteady problem give the following 

relations 

sincl + W 
S 

= ~s'(x)(cosa + S,) 

w 
0 

- i. c-‘(X) = - Rg eeivx 

(17) 

where w 

2TCS 

is the normalised amplitude of the vertical gust velccity and 

v = - , where X is the spatial wavelength of the sinusoidal cust. 
x 

3.4 Control Surface Oscillation 

When a control surface oscillates about its hinge the unsteady 

boundary condition formulated in equation (11) is applied on tt-$e part 

of the surface defining the control surface. On the remaining stationary 

surface ahead of the oscillating control surface the modified unsteady 

boundary condition has been derived in reference (10) and is given by 

w 
0 

- i. r,‘(x) = 0 (1% 

3.5 Numerical Solution 

The numerical procedure is similar to the one used in solving 

the steady problem. The steady mean camberline of the aerofoil is 

divided into N-straight line elements as shown in Fig.4; numbering of 

the elements starts at the trailing edge and proceeds towards the leading 

edge. There is a small gap between the end of the N 
th 

element and the 

aerofoil leading edge. A uniform source distribution of strength 

lement together with a vorticity (4. + Oo. eiwt) .th 
is placed on the 1 e 

disiribution of strength varying linear 

(ysi+l+yoi+leiwt) 
across the element, 

1~ from (ys + y. eiwt) to 
i i 

Two point sources of strength 
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(4, 
1 

+ 9, 
1 

eiwt), (Qs2 + Qo2 eiwt) are placed at the ends of the N 
th 

element and a point vortex of strength (KS t K. e 
iwt 

) is placed at the 

mid-point of the N 
th 

element. Because the wake extends to infinity 

downstream the vorticity in the wake cannot be represented by a finite 

number of elements. Following the procedure of reference (10) it 

is assumed that only the first chord length of the wake behind the 

trailing edge need be represented by finite elements. The effect 

of the remainder of the wake is calculated analytically by making the 

assumption that only downwash is induced at the aerofoil by this far wake. 

For one chord behind the aerofoil a number (!I) of straight line elements 

are taken similar to those on aerofoil camberline and the uniform vortex 

strength of each of these wake elements is taken to be the vorticity 

strength at the centre of each element, as given by equation (12). 

Taking z , i , vs., q. , Q, , Q, , 0 
Si Oi 

1 i 1 2 

, 0 , KS, R. all normalised with 
01 02 

respect to c and Uco, the normalised perturbation velocities due to the 

singularities will have a steady and an oscillatory component, The 

steady components of the velocities will be given by equation (4), while 

the oscillatory components can be expressed as 

N Ntl 2 
‘j 

Oj 
= C A.. a0 t C C.. Y. + c R.. a0 t E. i? 

i=l Jl i i=l Jl i i=l 31 i J 0 

(20) 
N Ntl 2 

w 
Oj 

= C 13.. z. + C D.. 7, t c S.. 0, i- H. k 
i=l J’ i i=l J’ i i=l Jl i J 0 

where ii , ti 
.th 

0; 0; 
are the complex velocities at the centre point of J element 

and A.., JB JC D R S E Jl ji' ji, ji' ji' ji' j) 
Hj are the appropriate influence 

coefficients, (see Appendix). The contribution to the velocity components 

due to the first chord length of the wake behind the trailing edge can be 

expressed in the form 
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M 

ii = k;l Bjk (7, ) = - i4 ! B. e 
-iv(Xk-X,) 

Oj ok k=, Jk 

- - 

w 
,", Jk 

ro M 
= C A- (ywo)k = iv c 

k=, *jk e 

-iv(xk-XT) 

Oj - i 

(21) 

The remainder of the wake aft of one chord behind the trailing edge 

is retained as a continuous distribution of vorticity and it is assumed 

to 9ie in the free stream direction; furthermore it is assumed that the 

velocity field due to this far wake is a downwash field only. The 

downwash field due to this far wake has been derived in reference (10) 

and is given as 

w =- 
ivro 

zFe 

-iv(Xj-XT) 

Oj 
{Ci[v(l - (‘j-XT))] 

- i[Si[v(l - (jij-‘T))I - ~I} 

where 

Si(c) = - F dX + $ , 

are standard tabulated functions. 

The steady state solution is obtained by satisfying the steady 

state boundary condition at the collocation points along with the Kutta 

condition, as applied in the steady state. The procedure is that 

described in Section 2. 

The unsteady problem is solved by satisfying the unsteady boundary 

condition, eqns.(ll),or(l6),or(lFJ),or(19), at the same collocation point 

along with the Kutta condition, eqn. (13). The solution gives the unknown 

complex variables a , 7 
Oi Oi Y sop ao, and R. from which the unsteady velocity 

components are obtained using eqns. (20, 21 and 22). The calculation of 

the unsteady pressure coefficient cpo follows from the unsteady Bernoulli 

equation, 
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3-b = - 2 io(coscl + is) 
Ziw$o 

- 2 wo(sino. + Ws) - n 
co 

(23) 

The velocity potential $. is calculated by following the procedure of 

reference (10). Total force and moment coefficients are obtained by 

numerical integration of the pressure coefficient. 

A programme has been developed in FORTRAN IV for the steady 

problem which requires a core size of less than 20 K on the ICL 1904S, 

including system and programme for a problem involving 50 unknowns. 

For a 'clean' aerofoil of moderate thickness it has been found that 

about 12-14 elements on the camber line with closely spaced elements 

in the nose region give an accurate solution. Thus, for a lifting problem 

the number of unknowns is of the order of 30 and a solution on 1904s 

takes about 4 sets. When the aerofoil thickness is small and the aerofoil 

is fitted with a control surface the number of elements needs to be 

increased, for example,a 4% thick symmetrical Joukowski aerofoil fitted 

with a 30% control surface chord requires about 40 elements on the mean 

camberline for a reasonably accurate solution. 

A separate programme has been developed in FORTRAN IV fcr the 

oscillating problem which requires a core size of just over 35 K including 

system and programme for 23 elements on the mean camberline (abcut 50 

unknowns). The number of elements required for an oscillatory solution 

is about the same as for the steady solution except that the unknowns 

are now complex. Typical tine for a solution involving 15 elements on 

the camberline (34 complex unknowns) and one frequency parameter is about 

10 sets on ICL 1904s. 

4. RESULTS 

To check its accuracy the present method has been compared with 

results from analytic solutions in particular for 4% and 9.3% thick 

synmetrical Joukowski aerofoils at O" and loo incidences and to a 13% 
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thick, 17.8% cambered Karman-Trefftz aerofoil at 10" incidence, 

these are cases where the standard A.M.O. Smith method is deficient. 

A comparison of the numerical results derived by the present method 

with the exact analytic solutions are shown in Figs. 8-12. The 

agreement between the analytic and numerical solutions is good. 

Figs. 13-18 show a comparison of the present method with the 

standard A.M.O. Smith method (11) for a NACA 0012, an NLR and a Garabadian- 

Korn aerofoil. For the NACA 0012 and NLR aerofoils 12 elements on 

the camberline (28 unknowns) and for the Garabadian-Korn aerofoil 

10 elements (24 unknowns) have been taken. For the A.M.O. Smith method 

80 surface elements (81 unknowns) were taken for both NACA 0012 and 

NLR aerofoils and 196 elements (197 unknowns) were taken for the 

Garabadian-Korn aerofoil. The numerical accuracy of the present 

method appears to be good for a relatively small number of unknowns. 

The A.M.O. Smith method only gives the values of the flow 

quantities on the surface of the aerofoil at the collocation points at 

the mid point of elements, for any other surface locations values are 

obtained by interpolation. In the present method the flow quantities 

can be directly calculated at any point on the aerofoil surface; the 

values of cp at points intermediate to collocation are shown for the 

NACA 0012 at O" in Fig. 13. This is an encouraging feature of the 

present method. 

The pressure distribution of a 4% thick symmetrical Joukowski 

aerofoil fitted with a 30% control surface chord and a 1541 section fitted 

with a 20% control surface chord have been calculated. 

In Figs. 19 and 20 the overall forces and moments and the loading 

distribution for the 4% thick symmetrical Joukowski aerofoil fitted with 

a 30% control surface chord are compared with the standard linearised 

solution, the comparison shows that the present numerical method has 

the correct tendency to converge to the limit of thin aerofoil theory. 
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In Fig. 21 results for the 1541 section are compared with 

the AM0 Smith solution. For the present method 13 elements on the 

camberline (30 unknowns) have been used for the 1541 section of which 

only 4 elements are on the control surface. For the AM0 Smith method 

156 elements have been used of which 80 elements are on the control 

surface. There is a small difference in the pressure distributions; 

which is more accurate is debatable. 

Figs. 22 and 23 show the results of a lJACA 0012 aerofoils in 

a cascade at Do incidence and at O" and 30° stagger. In the solution 

it is assumed that there are 30 aerofoils above and 30 aerofoils below. 

Fig. 24 shows a comparison of the numerical oscillatory pressure 

distribution derived by the present method with an analytic solution 

obtained by De Vooren and De Vel, The comparison shows clearly that 

the oscillatory pressure distribution both in-phase and out-of-phase 

agrees well with the analytic solution, 

The results of an 8.4% thick symmetrical Von Mises aerofoil 

and a 4% thick syr;metrical Joukowski aerofoil performing a simple harmonic 

heaving oscillation at O" incidence are plotted in Fig. 25. A comparison 

with the numerical solution (10) based on the AM0 Smith approach for the 

Von Mises aerofoil shows that a solution using 11 elements on the 

camberline (26 unknowns) has a comparable accuracy using 72 surface 

elements (73 unknowns) for the AM0 Smith solution. The numerical results 

for the Joukowski aerofoil when compared with the linearised theory 

show that the present method has the correct limiting tendency for thin 

aerofoils. 

The results of the 8.4% thick Von Mises aerofoil and a 4% thick 

symmetrical Joukowski aerofoil passing through a sinusoidal (vertical) 

gost are plotted in Fig. 26 along with the numerical solution using the 
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A.M.G. Smith approach for the Von Flises aerofoil and the linearised 

theory solution. A comparison of the results for Von Mises aerofoil 

confirms that the accuracy of the present method using 11 elements 

on the camberline (26 unknowns) is of the same order as that of the 

A.M.G. Smith type solution using 72 surface elements (73 unknowns). 

The results of the Joukowski aerofoil when compared with the linearised 

theory confirms the correct behaviour for thin aerofoils. 

The present method is also applied to the case of an oscillating 

control surface on a symmetrical Joukowski aerofoil. The results are 

plotted in Figs. 27 and 28 along with the A.M.G. Smith type solution 

for the Karman-Trefftz aerofoil and the linearised theory solution. It 

shows that the present method gives a solution using 14 camberline elements 

(32 unknowns) comparable to the A.M.G. Smith solution using 120 surface 

elements (121 unknowns). The results for 4% thick symmetrical aerofoil 

show the method has the correct tendency to converge to the linearised 

solution as the thickness becomes small. 

5. CONCLUDING REMARKS 

(a) A method has been developed for the calculation of the pressure 

distribution on steady and oscillating aerofoil in incompressible 

inviscid flow by placing the singularities on the mean camberline 

of the aerofoil. 

(b) Satisfactory agreenent has been obtained between the present 

numerical approach and analytic solutions. 

(c) The number of unknowns in the present method is generally much 

less than those in the A.M.G. Smith approach for comparable 

accuracy. In addition the present method gives satisfactory 

results for thin aerofoils where the A.M.G. Smith method breaks down. 
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The faster method presented here is particularly advantageous 

for oscillatory problems. 

PI Flow quantities can be calculated directly at any point on 

the aerofoi'l surface rather than by interpolation between 

collocation points. 
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APPENDIX 

SOURCE DISTRIBUTION 

A source distribution on the i 
th 5 'i 

element between - T < x < T 

(as shown in Fig. 5) with uniform normalised strength zi/unit length is 

considered. 

The velocity components 6u and bw at the point (x,z) due to 

the small element of source distribution on fi< are 

6. t- 
Gu(x,z) = & 

I 
,-E 

0: -xE)2 + z2 
- 6F 
i 3 

3. 
bw(x,z) = $ 

I 
Z 

I 

66 

,(x - g2 + z2 

on integration 

a. r A. 
12 - 

u(x,z) = +$n 
(x + T) + z2 

i 

A. 
(x - $)’ -- 1 + z2 

= 

ai [tan-l[' : '1 - tan-l[x ] '11 = si G(x,r,Ai) w(w) = z 

(A4 

(A. 3) 

In equation (A.3) 

SF < tan-'8 < t -- 
2 

this condition gives the correct velocity distribution i.e. antisymmetric 

w and symmetric u, about the x axis. 

Since elements are at different orientation the problem is transformed 

to a fixed axis system (i,?) as shown in Fig. 6; the origin of the (x,f) 

system is taken at the leading edge. 

For the source distribution along an element i the normalised 

velocity components ;(x,?) and w(x,;) are by reference to eqns. (A.Z), (A.3), 

now taken relative to 02, axes 
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U(X,Z) = ai{F(~,~,Ai)~O~f3 - G(X,Z,Ai)Sine I 

ii(Q) = gi(F(x,z,&.)sinfl + G(x,Z,Ai)COSB I 

when 

x = (X - Xo)cosf3 e (2 - ;o)sin8 

z=- ';- ( x,)sinO t (Z - Qc0se 
I 

.th 
The velocity components on the mid-point of the J element on 

the aerofoil surface due to N elements as shown in Fig. 1 is therefore 

written in the form 

N 
‘i = 

j 
c {Fji COSei 

i=l 
- GjisinBi} ai 

where 

N 

= J, Aji 'i 
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‘j 
= c {Fjisinei + Gjicosei) ai 
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i=l J’ 
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J’ Jl 
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V.8) 

where 
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9 sinei = 
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LINEARLY VARYING DISTRIBUTION 

A linearly varying vorticity distribution across the element 

i between - Ai/ < x < hi/2 (as shown in Fig. 7) with normalised strengths 

7-i and Yj+l at x = f hi/i? is considered. 

The velocity components fiu and 6w at the point (XJ) due to the 

small element of vorticity distribution St are 

For the linearly varying vorticity across the element 

;= Yi+l + Yi Yj+l - Yi 
2 

-3 
Ai 

-5 

From (A.lO), (A.ll), (A-4) and (A.5) 
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The velocity components on the t-G&yoint of element j due to N elements 

is written in the form 

(A.13) 
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(A. 16) 

C 
ji = aji-l +b ji 
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ji = 'j-i-1 +d ji 

C 
jl 
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J ,N+L = aj ,U 

D. 
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D 
j ,N+l = ",i ,ii 

POINT SOURCE 

The velocity at the mid-point of element j due to the point source 

of strength Qi at (Xi, Zi) is 

ii 
j=k 
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(A.18) 

POINT VORTEX 

The velocity at the mid-point of element j due to the point vortex 

of strength K at (x,5) is 
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