

MINISTRY OF DEFENCE (PROCUREMENT EXECUTIVE)

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

NPL 9615 and NACA 0012 A Comparison of Aerodynamic Data

By N. Gregory and P. G. Wilby Aerodynamics Division, NPL

LONDON: HER MAJESTY'S STATIONERY OFFICE

1973

PRICE 80p NET

NPL 9615 AND NACA 0012 - A COMPARISON OF AERODYNAMIC DATA

- by -N. Gregory and P. G. Wilby Aerodynamics Division, NPL

SUMMARY

Ordinates, surface slopes and curvatures are listed for the two aerofoils together with a detailed tabulation of lift, drag and pitching moment data obtained at Mach numbers between 0.3 and 0.85 in the NPL 36 in. \times 14 in. transonic tunnel. The aerodynamic characteristics and all the pressure distribution are plotted, with some comparisons.

1. Introduction

NACA 0012 is a standard section frequently used for helicopter rotors and NPL 9615 is a derivative of it having a 6.2,0 extension to the chord and a drooped leading edge with larger radius of curvature. The position of NPL 9615 in the current programme of aerofoil section development for helicopter use will be reported on separately, but as this section has been found to possess advantages over NACA 0012, its description and measured aerodynamic characteristics are given herewith and some comparisons are drawn.

2. Section Shapes

The NACA four-digit series of wing sections was first reported on in 1932, and the following formulae for the thickness distribution and leading edge radius are taken from Ref. 2.

$$\pm y/c = \frac{t/c}{0.20} \left(0.29690 \sqrt{x/c} - 0.12600 x/c - 0.35160 (x/c)^{2} + 0.28430 (x/c)^{3} - 0.10150 (x/c)^{4} \right)$$

$$R_{c}/c = 1.1019 (t/c)^{2}$$

NACA 0012 is obtained by putting t/c = 0.12 in the above equations, and the ordinates are listed in TABLE 1 together with surface slopes and curvatures.

The new section, NPL 9615, was obtained by taking the rear portion NACA 0012 and modifying ordinates forward of the position of maximum thickness, extending and drooping the nose. The ordinates for NPL 9515 are non-dimensionalised with respect to the extended chord and are listed in TABLE 2, also with surface

slopes/

*Replaces A.R.C.30 657 - NPL Aero Special Report 017.

slopes and curvatures. The nose portions of the aerofoils are compared in Fig. 7 and the upper surface curvature distributions ahead of position of maximum thickness are compared in Fig. 2. The thickness/chorl ratio of NPL 9615 is 0.113 compared with 0.12 of NACA 0012, and the new profile blends smoothly into the NACA 0012 rear portion at \sqrt{c} (based on the new chord and nose position as origin) equal to 0.28333 for the upper surface and equal to 0.3409, the position for maximum thickness, on the lower.

The leading-edge radius of NPL 9615 is 0.01883, non-dimensionalised in terms of the actual chord. This should be compared with 0.0158 for the standard NACA 0012, (a figure which is reduced to 0.0141 for a NACA four-digit thickness distribution with the 11.37 thickness/chord ratio of NPL 9615).

Che of the aims of the design features of NPL 9615 was to reduce the curvature of the upper surface, relative to that for NACA 0012, in the region where supersonic flow develops at incidence. This helps to reduce the maximum velocities and hence the strength of the shock wave that terminates the supersonic region. The reduction of curvature was made possible by the extended leading edge which also allowed the incorporation of leading-edge droop and an increase of leading-edge radius, both of which help to increase the low speed $C_{\rm L_{max}}$. The droop and increased radius also have an effect on the development of the local supersonic flow.

3. <u>Test Conditions</u>

The aerodynamic data for the two sections were obtained under identical conditions so that the comparison should not be influenced by these conditions. The tests were carried out with 10 in. (0.254 m.) chord models spanning to 14 in. (0.356 m.) dimension of the NPL 36 in. x 14 in. $(0.92 \text{ m}. \times 0.36 \text{ m}.)$ transonic wind-tunnel, which operates at atmospheric stagnation pressure. The floor and ceiling of the tunnel were slotted (4 slots, overall open-area ratio = 0.33) and were 31 in. (0.79 m.) epart throughout the length of the working section. These conditions are close to those giving blockage-free and lift-interference-free results, and no corrections for wall constraint have been upplied.

Further tests are now in hand to determine optimum test conditions and to calibrate the tunnel precisely. Lift interference and blockage are affected by both wall divergence and open-area ratio and it is not clear whether a wall configuration can be found to give zero values of lift interference and blockage simultaneously, or whether such a wall would remain entircly interference-free at the high values of C_L and Mach number which need to be covered in the present tests.

For the present, it should suffice that any neglected constraint corrections should be small, and may be equivalent to a small change in free-stream Mach number. Furthermore, the comparison between the two sections should not be influenced by whether the identical test conditions are entirely interference-free. In one respect they are not: the thick end-vall boundary layers lead to a serious departure from two-dimensional testing conditions at high angles of incidence and hence to a reduction in $C_{L_{max}}$.

Companion tests have been carried out in the 13 ft \times 9 ft low speed wind tunnel on a model of NACA 0012. Although the end effects are much further removed from mid-span with a planform aspect ratio of 3.6 compared with 1.4 for the 36 in. x 14 in. wind tunnel, the tests revealed a gain in $C_{\rm L}$ max of over 0.1 when premature flow separation at the ends was inhibited by boundary-layer control by suction.

- 2 -

All results were obtained with a roughness band of 230-270 mesh carborundum⁴ present between the leading edge and 0.02 chord on both surfaces. Sufficient roughness was required to produce boundary-layer transition ahead of strong shocks in order to avoid optimistic values for C_{L-max} at high Mach number. On the other hand, too much roughness was likely to produce low values of C_{L-max} at low speed and a high overall level of drag. The band that was chosen provided a compromise roughness that could be used over the whole range of the tests and gave a reasonable simulation of the conditions on a full-scale helicopter blade. However, the most important point to note is that the same roughness band was used on both models so as to ensure a valid comparison of one set of results with the other. Direct-shadow photographs revealed that with the band present, transition occurred between 0.10 and 0.40 chord downstream of the band, depending on Mach number and pressure gredient. Without the band, transition would have occurred in an unrealistic position much further aft.

4. <u>Results</u>

Lift and pitching moment were found by integration from the distribution of pressure round the centre portion of the aerofoil measured at about 43 static pressure hole stations in the surface of the model. Profile drag was obtained by wake traverse.

The measurements were taken in order to construct tables of aerodynamic characteristics at 0.05 intervals in Mach number and $\frac{10}{2}$ intervals in incidence required as input for the comparative machine computation of rotor performance and it was therefore necessary to double-smooth the experimental observations. This has therefore already been done and the tables here presented contain the smoothed values, limited to the (M, α) regions actually covered by the tests, and obtained by interpolation where necessary: Only a few of the $\frac{1}{2}^{\circ}$ settings were actually tested. The graphs on the other hand make use of values measured at 0.025 intervals in Mach number in regions where the values are varying rapidly. TABLE 3 lists values of C_L , C_D and C_{m_c/l_1} for NPL 9615 at Mach numbers between 0.3 and 0.85 with incidences between -2° and the stall, and TABLE 4 contains corresponding information at positive values of incidence for the symmetrical section NACA 0012. The test Reynolds number varied from 1.7×10^6 at M = 0.3 to 3.75×10^6 at M = 0.85. Curves showing the variation at C_L , C_D , and $C_{m_c/4}$ with incidence are plotted in Figs. 3, 4 and 5 for NPL 9615, and in Figs. 6, 7 and 8 for NACA 0012.

The pressure distributions for NPL 9615 are plotted for each incidence in Figs. 9 a - q. Up to 3° incidence the upper and lower surface distributions are plotted separately; above this incidence the two distributions are combined on the same diagram. Corresponding pressure distributions for NACA CO12 are shown in Figs. 10 a - m, for positive incidences up to 12° .

5. Some Comparisons

The effect of the profile changes referred to in Section 2 on the aerodynamic characteristics of the two sections is summarised in Fig. 11. This figure shows an improvement in the values of C_{L} over the whole Mach number range of the tests and also gives boundaries in the (M, C_{L}) plane for the onset of a rapid change in pitching moment and for the onset of a rapid rise in drag. The latter boundaries are not easily defined everywhere, and are only approximate in their location. In particular, at incidences below 1°, NPL 9615 exhibits a pronounced drag creep preceding the more rapid rise, as can be seen at zero lift in the drag comparison of Fig. 12. This figure serves to emphasize another limitation of Fig. 11. This is that the values of CD, Cm and α differ in/

^{*230-270} mesh carborundum implies grains that were sieved through a gauge with 230 wires to the linear inch, but which were retained by a gauge with 270 wires to the inch. This implies grains that passed through a square aperture with side 0.0027 in. (0.062 mm) but not through one with side 0.0023 in. (0.053 mm).

in general between the two sections at any point on that figure, and also along the boundaries: the values must be inferred from the Tables, but are shown in some more detailed comparisons which follow.

NPL 9615 has slightly larger zero-lift drag than NACA 0012 at Mach numbers below dreg rise, (Fig. 12), though its critical Mach number for repid drag rise is marginally greater, and beyond this point its rate of increase of drag is appreciably less. This latter feature α curs also at non-zero values of C_L , both with respect to increase of Mach number and also with respect to increases of ST at constant Mach number, as can be seen from the comparison of drag polars, Fig. 13.

Drag reductions are obtained in regions of high drag at all Mach numbers, with both sub-critical and super-critical flow. The largest drag reductions are obtained at Mach numbers between 0.55 and 0.65, a range that covers the tip Mach numbers of many helicopter rotors, and at values of $C_{\rm L}$ in the region of $C_{\rm L}$ max for NACA 0012, the saving in drag can amount to as much as 30%. In super-critical flow, a comparison of typical pressure distributions is made in Fig. 14 for a Mach number of 0.6 and a C_L value of 0.76. (The distribution for NPL 9615 was interpolated between two observations). It will be seen that the profile change

has reduced the velocities in the supersonic region as expected, and this has resulted in the desired reduction in shock strength, and hence in wave drag.

The improvements in $C_{L max}$ and the reductions in the high-drag level together result in an improvement in the maximum value of the lift/drag ratio over the whole Mach number range of the comparison, Fig. 15.

The pitching-moment variations with Mach number are compared in Fig. 16 for angles of 3° and below. On account of its camber, NPL generally shows a nose-down bias compared with that for the symmetrical section: this also shows up at zero-lift, Fig. 17. At high Mach numbers, the pitching moments on both sections change rapidly.

6. Conclusions

A slightly drooped extension with larger radii of curvature at the leading edge and on the upper surface has been fitted to NACA 0012. This reduces the maximum velocities in the supersonic region at high Mach numbers and also the strength of the shock wave that terminates it.

The modification has reduced the thickness/chord ratio from 125 to 11.51, but a zero-lift pitching-moment coefficient at M = 0.3 of -0.008 has arisen because of the droop (Fig. 17). The following benefits have been secured by the re-design --

> An increase in $\rm C_{L~max}$ of between 0.08 and 0.14 at Mach numbers below 0.65 (Fig. 15) despite the reduction in thickness/chord ratio.

An increase of about 0.02 in the drag-rise Mach number (Figs. 15, 18).

A reduction of drag in the high-drag region, particularly where supersonic flow is present. At values of C_{L} in the region of C_{L} max for NACA 0012, the saving in drag can amount to as much as 30_{\circ} (Fig. 13).

The maximum values of lift/drag ratio are increased at all Mach numbers (Fig. 14).

Conclusions/

Acknowledgement

The work herein reported was carried out as a team effort. Particular acknowledgement must be made of the parts played by Mr. V. G. Quincey in charge of the 36 in. x 14.in. wind tunnel and by Miss E. M. Love in preparing the smoothed data and the Figures.

References

I

<u>No.</u> $\underline{Author(s)}$

2

- Title, etc.
- 1Eastman N. JacobsThe characteristics of 78 related sectionsK. E. Ward andfrom tests in the variable-density windR. M. Pinkertontunnel. NACA Rpt. 460, 1932.
 - I. R. Abbott and Theory of ving sections. A. E. van Doenhoff McGrew Hill, 1949.

TABLE I/

- 6 -

TABLE I

NACA OOI 2 CRDINATES

x c	<u>у</u> c	θ	ρ
0 0.0005 0.0010 0.0025 0.0050 0.0075	0 0.0040 0.0056 0.0087 0.0122 0.0149	°0 75.5 70 59.6 49.8 43.5	63.291
0.0100 0.0125 0.015	0.0170 0.0189 0.0206	39 35.6 32.8	21.062
0.02 0.03 0.04 0.05 0.06	0.0236 0.0284 0.0323 0.0355 0.0383	28.6 23.1 19.5 16.9 14.8	10.893 6.976 4.985 3.815
0.08 0.10 0.12 0.14 0.16 0.18	0.0499 0.0499 0.0524 0.0544 0.0560	11.0 9.6 7.9 6.4 5.2 4.2	1.663
0.20 0.225 0.25 0.275 0.3 0.325	0.0574 0.0586 0.0594 0.0599 0.0600	3.3 2.3 1.4 0.7 0	0.741 0.644 0.568 0.505 0.452
0.35 0.375 0.4	0.0595 0.0588 0.0580	-1.17 -1.68 -2.13	0.368
0.425 0.45 0.475	0.0569 0.0558 0.0544	-2.55 -2.93 -3.29	
0.5 0.55 0.6	0.0529 0.0495 0.0456	-3.61 -4.19 -4.70	0.218 0.165
0.65 0.7 0.75	0.0413 0.0366 0.0315	-5.14 -5.56 -5.94	0.1 38
0.8 0.85	0.0262	-6.32 -6.70	0.131
0.95	0.0080 0.0080 0.0013	-7.53 -8.02	0.169

 θ = Surface slope, degrees

$$\rho$$
 = Surface curvature = c/R

Leading edge radius: $R_0/c = 1/\rho_0 = 0.0158$

.

TABLE 2/

- 7 -TARLE <u>2</u>

<u>NPI 9615</u>	ORDINATES
-----------------	-----------

θ	ρ	<u>x</u> c	<u>7</u> c	θ	ρ	x c	y c
θ 90 50 45 40 35 32.5 30 28 26 24 22 0 18 76 54 26 24 22 0 18 76 55 54 26 24 22 0 18 76 55 55 54 55 55 55 55 55 55 55 55 55 55	P 53.1 53.1 53.1 32.5 18 11 9 7.8 6.9 6.2 5.6 5.0 4.4 3.76 3.49 3.22 2.95 2.68 2.95 2.68 2.95 2.68 2.95 2.68 2.95 2.68 2.95 2.60 1.735 1.60 1.479 1.085 0.96 0.96 0.96 0.752 0.637 0.637	$ \frac{x}{c} $	$\frac{1}{2}$ c -0.01366 -0.00155 +0.00001 0.00268 0.00649 0.00893 0.0163 0.01392 0.01633 0.01883 0.02140 0.02407 0.02545 0.02687 0.02687 0.02687 0.02980 0.03131 0.0306 0.0365 0.03476 0.03698 0.03612 0.03698 0.03612 0.03698 0.03612 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03698 0.03786 0.03698 0.03698 0.03786 0.03698 0.03698 0.03786 0.03698 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03698 0.03786 0.03528 0.03528 0.03528 0.03528 0.03528 0.035528 0.035528 0.035528 0.035528 0.035528 0.03555 0.04271 0.05499 0.05565 0.0564 0.05565 0.0564 0.0565	θ -6.320 -6.702 -7.098 -7.525 -7.750 -8.020 -90 -80.5 -71 -63.5 -31.5 -31.5 -31.5 -31.5 -31.5 -31.5 -32.5 -11.5 -35.5 -15.5 -15.5 -15.5 -7.5 -5.5	ρ LOWER 2.5 2.0 1.6 1.15 0.80 0.55 0.43 0.417 0.417 er surfac 13 e radius:	$\frac{x}{c}$ 0.8117 0.8588 0.9059 0.9529 0.9765 1.0000 SURFACE 0 0.0002 0.0008 0.0019 0.0033 0.0056 0.0033 0.0056 0.0089 0.0130 0.0130 0.0130 0.0130 0.0130 0.0290 0.03535 0.03884 0.0236 0.0290 0.03535 0.03884 0.04330 0.0290 0.03555 0.1098 0.15269 0.17355 0.19444 0.25715 0.27806 0.29899 0.31990 0.34090 e, with θ	y c 0.0247 0.0193 0.0136 0.0076 0.0075 0.0013 -0.01366 -0.01366 -0.01600 -0.01810 -0.02080 -0.02300 -0.02300 -0.02300 -0.02300 -0.02300 -0.02540 -0.03010 -0.03245 -0.03245 -0.03540 -0.03540 -0.03986 -0.03781 -0.03986 -0.03781 -0.03986 -0.04143 -0.04547 -0.04736 -0.04547 -0.04736 -0.04547 -0.04736 -0.04547 -0.04736 -0.04547 -0.04547 -0.04547 -0.04547 -0.04547 -0.04547 -0.04547 -0.05568 -0.05568 -0.05568 -0.05568 -0.05568 -0.05650 + ve. y - ve. c
0.68 0 -0.618 -1.680 -2.133		0.3409 0.3642 0.4115 0.4351	0.0564 0.0565 0.0564 0.0554 0.0546	Leading edg with centr Profile is surface	e radius: e at x/c circular	Ro/c = 1/p = 0.01883, 1 for 1.0° of a	$p_{00} = 0.01883,$ q/c = -0.0137 arc on upper
-2.95 -3.611 -4.192 -4.696 -5.143 -5.557 -5.943		0.5292 0.5763 0.6234 0.6704 0.7176 0.7646	0.0498 0.0466 0.0430 0.0389 0.0345 0.0297	et X/c = C	ns smooth 0.28333 on = 0.3409	the upper s	surface r surface

- 8 -TABLE 3

<u>NPL 9615</u>

M		0.30			0.35		0.40		
α°	CL	C _D	Cm	С _Г	с _р	С _т	C _L	с _р	C _m
-2 -2 -1 -1 -1 -1 -2 -1 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	-0.236 -0.185 -0.134 -0.083	0.0096 0.0096 0.0097 0.0099	-0.0111 -0.0098 -0.0090 -0.0085	-0.243 -0.191 -0.139 -0.087	0.0099 0.0099 0.0099 0.0100	-0.0081 -0.0080 -0.0080 -0.0081	-0.250 -0.197 -0.143 -0.090	୦.୦1୦2 ୦.୦1୦ ୦.୦1୦1 ୦.୦1୦2	-0.0076 -0.0079 -0.0081 -0.0083
0 1 1 1 2 2	-0.032 0.019 0.070 0.121 0.172	0.0104 0.0104 0.0106 0.0107 0.0107	-0.0081 -0.0078 -0.0075 -0.0075 -0.0075	-0.035 0.018 0.071 0.123 0.175	0.0102 0.0103 0.0104 0.0104 0.0103	-0.0082 -0.0082 -0.0080 -0.0080 -0.0080	-0.037 0.017 0.071 0.125 0.179	0.0103 0.0103 0.0103 0.0102 0.0102	-0.0084 -0.0084 -0.0084 -0.0083 -0.0083
2½ 3 3½ 4 4 ^½	0.223 0.274 0.326 0.377 0.429	0.0107 0.0106 0.0105 0.0105 0.0104	-0.0075 -0.0076 -0.0077 -0.0078 -0.0079	0,228 0,281 0,334 0,387 0,440	0.0104 0.0104 0.0105 0.0105 0.0105 0.0106	-0.0080 -0.0081 -0.0081 -0.0081 -0.0081	0.233 0.288 0.342 0.397 0.451	0.0102 0.0103 0.0105 0.0106 0.0108	-0.0082 -0.0082 -0.0082 -0.0082 -0.0081
5 52 6 6 7	0.480 0.531 0.583 0.635 0.687	0.0103 0.0100 0.0098 0.0096 0.0097	-0.0078 -0.0061 -0.0048 -0.0054 -0.0070	0.493 0.546 0.599 0.652 0.706	0.0106 0.0105 0.0102 0.0101 0.0101 0.0100	-0.0081 -0.0080 -0.0078 -0.0066 -0.0048	0.506 0.561 0.615 0.670 0.725	0.0110 0.0112 0.0113 0.0109 0.0105	-0.0081 -0.0081 -0.0081 -0.0070 -0.0045
7½ 8 8½ 9 91	0.738 0.790 0.841 0.891 0.939	0.0100 0.0105 0.0115 0.0127 0.0127	-0.0078 -0.0077 -0.0064 -0.0051 -0.0037	0.759 0.812 0.864 0.915 0.963	0.0102 0.0106 0.0116 0.0128 0.0143	-0.0048 -0.0051 -0.0052 -0.0046 -0.0031	0.780 0.834 0.888 0.940 0.988	0.0107 0.012 0.0119 0.0129 0.0125	-0.0040 -0.0041 -0.0046 -0.0039 -0.0018
10 10코 11 11 <u>코</u> 11코 12	0.986 1.031 1.074 1.114 1.149	0.0154 0.0168 0.0183 0.0199 0.0219	-0.0021 -0.0006 0.0010 0.0027 0.0046	1.009 1.053 1.096 1.134 1.166	0.0157 0.0172 0.0187 0.0207 0.0232	-0.0014 0.0006 0.0027 0.0050 0.0076	1.032 1.073 1.113 1.139 1.154	0.0161 6.0179 0.7199 0.0224 0.0261	0.0006 0.0034 0.0064 0.0096 0.0129
12 2 13 13 <u>2</u> 14	1.180 1.207 1.223	0.0244 0.0273 0.0307	0.0068 0.0095 0.0094	1 •1 91 1 •205	0.0262 0.0 2 98	0.0102 0.0112	1.162		
						·····			

TABLE 3 (Contd)/

- 9 -<u>TABLE 3 (CONTD</u>)

i.

NPL 9615

,

м		0.45			0.50			0.55		
α°	CL	с _р	C m	С _Г	с _р	C _m	с _г	CD	Cm	
-2 -1 ¹ 2 -1 -12	-0.257 -0.202 -0.147 -0.092	0.0106 0.0104 0.0103 0.0103	-0.0080 -0.0082 -0.0085 -0.0087	-0.264 -0.208 -0.151 -0.094	0.0109 0.0106 0.0105 0.0104	-0.0086 -0.0788 -0.0089 -0.0090	-0.271 -0.213 -0.155 -0.096	0.0112 0.0108 0.0105 0.0105	-0.0097 -0.0096 -0.0095 -0.0094	
0 1 1 1 2	-0.037 0.018 0.073 0.129 0.184	0.0103 0.0103 0.0102 0.0102 0.0102 0.0102	-0.0088 -0.0087 -0.0087 -0.0086 -0.0085	-0.037 0.019 0.076 0.133 0.190	0.0104 0.0103 0.0103 0.0103 0.0103	-0.0090 -0.0090 -0.0090 -0.0088 -0.0087	-0,038 0,021 0,080 0,139 0,198	0.0105 0.0104 0.0103 0.0103 0.0103	-0.0094 -0.0094 -0.0093 -0.0091 -0.0089	
2 ¹ / ₂ 3 3 ¹ / ₂ 4 4 ¹ / ₂	0.240 0.296 0.351 0.407 0.463	0.0102 0.0103 0.0105 0.0106 0.0108	-0.0084 -0.0083 -0.0083 -0.0082 -0.0080	0.247 0.304 0.361 0.419 0.476	0.0102 0.0103 0.0105 0.0107 0.0108	-0.0086 -0.0085 -0.0083 -0.0081 -0.0078	0,258 0,317 0,376 0,436 0,496	0.0103 0.0103 0.0105 0.0107 0.0109	-0.0087 -0.0085 -0.0083 -0.0080 -0.0076	
5 5½ 6 6½ 7	0.520 0.576 0.632 0.689 0.745	0.0110 0.0113 0.0116 0.0120 0.0122	-0.0078 -0.0077 -0.0075 -0.0062 -0.0047	0.534 0.592 0.650 0.708 0.767	0.0110 0.0113 0.0117 0.0121 0.0126	-0.0075 -0.0071 -0.0064 -0.0054 -0.0044	0.557 0.619 0.682 0.744 0.805	0.0111 0.011 5 0.0119 0.0124 0.0130	-0.0071 -0.0064 -0.0054 -0.0040 -0.0021	
7 1 8 81 9 9 <u>1</u> 9	0.801 0.857 0.912 0.965 1.013	0.0123 0.0123 0.0126 0.0133 0.0147	-0.0039 -0.0037 -0.0026 -0.0007 0.0022	0.825 0.883 0.941 0.999 1.046	0.0130 0.0134 0.0140 0.0150 0.0169	-0.0033 -0.0014 0.0016 0.0049 0.0083	0.865 0.924 0.982 1.038 1.068	0.0140 0.0163 0.0201 0.0241	0.0003 0.0034 0.0070 0.0110 0.0143	
$ \begin{array}{c} 10 \\ 10\frac{1}{2} \\ 11 \\ 11\frac{1}{2} \\ 12 \end{array} $	1.055 1.089 1.116 1.132 1.132	0.0169 0.0194 0.0225	0.0055 0.0093 0.01 30 0.01 68 0.01 58	1.079 1.098 1.105	0.0203 0.0245 0.0310	0.0116 0.0159 0.0186	1.078		C.01 57	
$ \begin{array}{c c} 12\frac{1}{2} \\ 13 \\ 13\frac{1}{2} \\ 14 \end{array} $										

TABLE 3 (Contd)/

- 10 -TABLE 3 (CONTD)

<u>NPL 9615</u>

M		0.60		0.65			0.70		
αΦ	CL	с _р	C _m	С _Г	с _л	C _m	с _г	с ^р	C m
-2 -1 ¹ 2 -1 -1	-0.279 -0.220 -0.160 -0.099	0.0115 0.0110 0.0106 0.0105	-0.0116 -0.0106 -0.0102 -0.0100	-0.290 -0.228 -0.165 -0.101	0.0123 0.0118 0.0112 0.0107	-0.0142 -0.0118 -0.0110 -0.0106	-0.320 -0.241 -0.170 -0.103	0.0153 0.0129 0.0118 0.0112	-0.0179 -0.0133 -0.0120 -0.0115
0 1 1 1 2 2	-0.038 0.023 0.084 0.145 0.207	0.0105 0.0104 0.0103 0.0103 0.0103	-0.0098 -0.0097 -0.0095 -0.0093 -0.0091	-0.037 0.026 0.089 0.153 0.217	0.0106 0.0105 0.0104 0.0104 0.0104	-0.0103 -0.0100 -0.0097 -0.0095 -0.0093	-0.036 0.030 0.096 0.164 0.235	0.0108 0.0106 0.010L 0.010L 0.0104 0.0105	-0.0110 -0.0,06 -0.0102 -0.0099 -0.0094
2 ¹ / ₂ 3 3 ¹ / ₂ 4 4 4	0.270 0.332 0.394 0.456 0.520	0.0103 0.0103 0.0105 0.0108 0.0110	-0.0088 -0.0086 -0.0083 -0.0080 -0.0075	0.284 0.351 0.419 0.488 0.559	0.0104 0.0104 0.0105 0.0110 0.0117	-0.0089 -0.0085 -0.0079 -0.0067 -0.0051	0.308 0.385 0.465 0.546 0.623	0.0106 0.0108 0.0120 0.0169 0.0240	-0.0089 -0.0082 -0.0076 -0.0079 -0.0096
5 5 1 6 6 <u>1</u> 7	0.585 0.652 0.721 0.792 0.861	0.0113 0.0118 0.0126 0.0146 0.0184	-0.0066 -0.0051 -0.0031 -0.0004 0.0027	0.633 0.712 0.794 0.849 0.876	0.0134 0.0169 0.0227	-0.0034 -0.0023 -0.0017 -0.0016 -0.0025	0.691 0.716 0.719	0.0320	-0.0133 -0.0177 -0.0219
7½ 8 8½ 9 9½	0.927 0.987 1.010	0.02144 0.030 7	0.0055 0.0072	0,890					
$ \begin{array}{c c} 10 \\ 10\frac{1}{2} \\ 11 \\ 11\frac{1}{2} \\ 12 \\ \end{array} $									
12 ¹ / ₂ 13 13 ¹ / ₂ 14									

TABLE 3 (Contd)/

- 11 -TABLE 3 (CONCL)

ì

NPL 9615

м		0.75			0.75 0.80				0,85	
α°	с _г	с ^р	C _m	C ^L	с _р	С _т	с ^г	с ^р	Сш	
	-0.392 -0.298 -0.207 -0.117	0.0166 0.0137 0.0123 0.0118	-0.0208 -0.0199 -0.0171 -0.0133	-0.375 -0.317 -0.241 -0.145	0.0364 0.0154 0.0140 0.0140	-0.0036 -0.0070 -0.0124 -0.0160	-0.129 -0.100 -0.083 -0.071		-0.0754 -0.0692 -0.0553 -0.0334	
0 1 1 ¹ /2 2	-0.035 0.042 0.118 0.195 0.273	0.0113 0.0111 0.0110 0.0114 0.0128	-0.0118 -0.0112 -0.0111 -0.0113 -0.0113	-0.019 0.082 0.163 0.228 0.274	0.0148 0.0165 0.0190 0.0234 0.0317	-0.0194 -0.0234 -0.0281 -0.0337 -0.0366	-0.063 -0.058 -0.055		-0.0112 +0.0102 0.0316	
$2\frac{1}{2} \\ 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ 4$	0.356 0.448 0.494 0.517 0.520	0.0169 0.0241	-0.0136 -0.0216 -0.0270 -0.0293 -0.0302	0.297 0.308		-0.0354 -0.0306	-			
5 5 ¹ 6 6 ¹ 7	0.521		-0.0296							
7 1 8 8 <u>1</u> 9 9 <u>1</u> 9 <u>1</u>									,	
$ \begin{array}{c} 10\\ 10\frac{1}{2}\\ 11\\ 11\frac{1}{2}\\ 12\\ 12\\ \end{array} $										
12½ 13 13½ 14										

TABLE 4/

.

- 12 -TABLE 4

NACA 0012

M	0.30				0.35			0.40		
a®	С _L	с _р	C ^m	CL	C _D	C _m	с ^г	с _р	C _m	
2 T 7 1/2										
0 1 1 1 ¹ 2	0.0 0.050 0.101 0.152 0.204	0.0103 0.0103 0.0103 0.0103 0.0103 0.0104	0.0004 0.0004 0.0004 0.0005 0.0007	0.0 0.051 0.103 0.158 0.208	0.0103 0.0103 0.0103 0.0103 0.0103 0.0104	0.0005 0.0005 0.0005 0.0006 0.0007	0.0 0.053 0.106 0.160 0.213	0.0103 0.0103 0.0103 0.0103 0.0103 0.0104	0.0006 0.0006 0.0007 0.0008 0.0009	
$2\frac{1}{2}$ 3 $3\frac{1}{2}$ 4 $4\frac{1}{2}$	0.255 0. 306 0. 358 0.409 0.460	0.0104 0.0106 0.0107 0.0109 0.0109	0.0009 0.0012 0.0015 0.0019 0.0025	0.260 0.312 0.366 0.419 0.472	0.0104 0.0106 0.0107 0.0109 0.0111	0.0010 0.0013 0.0016 0.0020 0.0026	0.266 0.320 0.375 0.430 0.486	0.0104 0.0106 0.0108 0.0110 0.0112	0.0012 0.0014 0.0017 0.0021 0.0028	
5 5 ¹ 6 6 ¹ 7	0.508 0.555 0.602 0.656 0.709	0.0111 0.0111 0.0111 0.0112 0.0112	0.0033 0.0041 0.0048 0.0056 0.0063	0.523 0.568 0.616 0.667 0.722	0.0113 0.0114 0.0114 0.0114 0.0114 0.0116	0.0034 0.0042 0.0050 0.0059 0.0067	0.538 0.585 0.630 0.684 0.740	0.0115 0.0116 0.0117 0.0117 0.0117 0.0118	0.0035 0.0045 0.0056 0.0066 0.0076	
7 ¹ / ₂ 8 8 ¹ / ₂ 9 9 ¹ / ₂	0.765 0.819 0.874 0.928 0.979	0.0122 0.0133 0.0147 0.0162 0.0177	0.0070 0.0077 0.0085 0.0091 0.0099	0.777 0.834 0.888 0.940 0.988	0.0124 0.0135 0.0150 0.0165 0.0181	0.0075 0.0084 0.0092 0.0099 0.0112	0.796 0.852 0.904 0.955 0.998	0.0126 0.0138 0.0153 0.0170 0.0191	0.0087 0.0098 0.0109 0.0123 0.0138	
10 10 ¹ 11 11 ¹ 12	1.020 1.056 1.090 1.120 1.144	0.0193 0.0212 0.0233 0.0259 0.0294	0.0107 0.0116 0.0125 0.0135 0.0149	1.024 1.056 1.087 1.106 1.000	0,0200	0.0126 0.0146 0.0169	1.033 1.060 1.080	0.0218	0.0159 0.0185 0.0204	
12] 13 1 <u>3</u> 13] 14										

•

TABLE 4 (Conta)/

- 13 -TABLE 4 (CONTD)

NACA 0012

7

۰.

•

•

M		0.45			0,50			0.55		
α°	с _г	C _D	C _m	с ^г	с _р	с _т	CL	с _р	C m	
-2 -2 -1 ¹ 2 -1 -1 -1 -2										
0 1 1 1 ¹ 2	0.0 0.054 0.108 0.164 0.218	0.0102 0.0102 0.0102 0.0102 0.0102 0.0103	0.0007 0.0007 0.0009 0.0010 0.0012	0.0 0.056 0.112 0.167 0.225	0.0104 0.0104 0.0104 0.0102 0.0102	0.0008 0.0009 0.0011 0.0013 0.0016	0.0 0.058 0.116 0.174 0.234	0.0100 0.0100 0.0101 0.0102 0.0103	0.0009 0.0011 0.0014 0.0017 0.0021	
2 ¹ / ₂ 3 31/2 4 4	0.273 0.330 0.387 0.443 0.500	0.0104 0.0107 0.0109 0.0111 0.0114	0.0014 0.0017 0.0019 0.0024 0.0030	0.283 0.342 0.399 0.458 0.518	0.0104 0.0107 0.0110 0.0113 0.0116	0.0019 0.0022 0.0026 0.0030 0.0037	0.295 0.356 0.416 0.478 0.540	0.0105 0.0107 0.0110 0.0113 0.0117	0.0026 0.0030 0.0035 0.0045 0.0054	
5 5 <u>1</u> 6 6 <u>1</u> 7	0.557 0.604 0.652 0.706 0. 76 1	0.0116 0.0118 0.0120 0.0122 0.0122	0.0039 0.0050 0.0063 0.0077 0.0092	0.578 0.631 0.684 0.736 0.790	0.0120 0.0124 0.0128 0.0132 0.0132	0.0045 0.0059 0.0077 0.0098 0.0119	0.602 0.662 0.723 0.783 0.8)+0	0.0123 0.0130 0.0139 0.0154 0.0174	0.0068 0.0090 0.0114 0.0141 0.0169	
7½ 8 8½ 9 9½	0.816 0.871 0.924 0.973 1.004	0.0133 0.0146 0.0166 0.0192	0.0106 0.0120 0.0139 0.0162 0.0190	0.848 0.899 0.943 0.967 0.935	0.0151 0.0174 0.0216 0.0300	0.0142 0.0167 0.0197 0.0232 0.0111	0.891 0.938 0.900 0.844	0.0 20 5 0.0260 0.0384	0.0200 0.0225 0.0164 -0.0022	
10 10½ 11 11½ 12	1.013		0.0228	0.845		-0.01 <u>34</u>				
12½ 13 13½ 14	-					1				
					1	1				

TABLE 4 (Contd)/

- 14 -

TABLE 4 (CONTD)

NACA 0012

M		0,60			0.65			0.70		
α°	с ^г	C _D	С _т	С _L	C _D	C _m	с ^г	C _D	C _m	
-2 -1 ¹ /2 -1 -1										
0 1 1 1 2 2	0.0 0.060 0.120 0.182 0.245	0.0100 0.0100 0.0101 0.0102 0.0103	0.0010 0.0013 0.0017 0.0022 0.0028	0.0 0.063 0.128 0.193 0.260	0.0100 0.0101 0.0102 0.0103 0.0104	0.0011 0.0016 0.0021 0.0027 0.0036	0.0 0.068 0.138 0.213 0.288	0.0101 0.0102 0.0103 0.0104 0.0106	0.0012 0.0019 0.0025 0.0034 0.0044	
2 ¹ / ₂ 3 3 ¹ / ₂ 4 4	0.309 0.373 0.439 0.504 0.569	0.0106 0.0108 0.0110 0.0114 0.0119	0.0034 0.0041 0.0052 0.0064 0.0081	0.328 0.397 0.470 0.542 0.616	0.0107 0.0111 0.0116 0.0123 0.0151	0.0046 0.0058 0.0072 0.0085 0.0099	0.366 0.442 0.517 0.593 0.648	0.0114 0.0135 0.0175 0.0245	0.0055 0.0068 0.00 7 5 0.0068 0.0041	
5 5 ² 6 6 ¹ 7	0.634 0.700 0.764 0.826 0.882	0.0127 0.0150 0.0184 0.(230 0.0293	0.0104 0.0131 0.0158 0.0190 0.0217	0.691 0.752 0.796 0.805 0.780	0.0209 0.0275 0.0356 0.0475 0.0679	0.0116 0.0135 0.0146 0.0102 0.0014	0.672 0.667 0.657		0.0004 -0.0046 -0.0095	
712 8 812 9 912	0.876 0.836	0.0391	0.0178 0.0048							
$ \begin{array}{c} 10 \\ 10^{\frac{1}{2}} \\ 11 \\ 11^{\frac{1}{2}} \\ 12 \end{array} $										
12½ 13 13½ 13½										

- 15 -

TABLE 4 (CONCL)

NACA 0012

м		0.75		0.80			0.85		
α°	C _L	C _D	Cm	CL	C D	C _m	CL	с _р	C _m
-2 -1 -1 -1 -1 -1									
0 1 1 1 2 2	0.001 0.080 0.160 0.244 0.328	0.0104 C.0107 0.0110 0.0118 0.0170	0.0015 0.0024 0.0031 0.0022 -0.0004	0.005 0.00 0.201 0.265 0.275	0.0176 0.0200 0.0245 0.0370	0.0018 -0.0054 -0.0120 -0.0169 -0.0208	0.013 0.020 0.020		-0.0009 +0.014 0.040
2 ¹ / ₂ 3 3 ¹ / ₂ 4 4	0.408 0.482 0.500 0.500		-0.0037 -0.0078 -0.0121 -0.0166						
5 5 ¹ 2 6 6 ¹ 2 7									
7 ¹ 2 8 8 ¹ 2 9 9 ¹ 2		· ·							
10 10 <u>1</u> 11 11 <u>1</u> 12		i							
$ \begin{array}{c c} 12\frac{1}{2} \\ 13 \\ 13\frac{1}{2} \\ 14 \\ 14 \end{array} $									

.

.

.

,

<u>30657</u> FIG 2

30657 FIG. 3

30657 FIG.4

30657 FIG 5

;

.

1

Variation of $C_m c_4$ with α and M for NPL 9615

<u>30657</u> FIG.6

Variation of C_{L} with ∞ and M for NACA 0012

30657 FIG.7

-

<u>30657</u> FIG-8

Pressure distributions, $\alpha = -2^{\circ}$ NPL 9615

Lower surface

NPL 9615 Pressure distributions, $\alpha = -1^{\circ}$

. :

Lower surface

.

NPL 9615 Pressure distributions, $\alpha = 2^{\circ}$

<u>30657</u> FIG.9 f

30 657

FIG.9g & h

<u>30657</u> FIG.9 i sj

30657 FIG.9 k + L

l NPL 9615 Pressure distributions, $\alpha = 9^{\circ}$

30657 FIG.9m

30657 FIG.9n & 0

0

•

NPL 9615 Pressure distributions, $\alpha = 12^{\circ}$

FIG 9p aq.

<u>30657</u> FIG.10 c ± d

30657 FIG 10 e 4 f

ì

;

<u>30657</u> FIG.IO i 4 j

30657 FIG.10 k .1

<u>30657</u> FIG.10 m

ç

<u>30 65 7</u> FIG. 14

ì

`

M = 0.6

<u>30 65</u>7 FIG.<u>I 5</u>

<u>30657</u> FI G. 16

Comparison of the variation of the quarter-chord pitching moment with

Mach number

<u>30657</u> <u>FIG. 17</u>

<u>Comparison of variation of the zero-lift quarter-chord pitching</u> <u>moment coefficient with Mach number</u> ARC CP No.1261 November, 1968 Gregory, N. and Wilby, P. G. NPL 9615 AND

K4 9

NPL 9615 AND NACA 0012 -A COMPARISON OF AERODYNAMIC DATA

Ordinates, surface slopes and curvatures are listed for the two aerofoils together with a detailed tabulation of lift, drag and pitching moment data obtained at Mach numbers between 0.3 and 0.85 in the NPL 36 in. \times 14 in. transonic tunnel. The aerodynamic characteristics and all the pressure distribution are plotted, with some comparisons. ARC CP No.1261 November, 1968 Gregory, N. and Wilby, P. G.

NPL 9615 AND NACA 0012 -A COMPARISON OF AERODYNAMIC DATA

Ordinates, surface slopes and curvatures are listed for the two aerofoils together with a detailed tabulation of lift, drag and pitching moment data obtained at Mach numbers between 0.3 and 0.85 in the NPL 36 in. \times 14 in. transonic tunnel. The aerodynamic characteristics and all the pressure distribution are plotted, with some comparisons.

ARC CP No.1261 November, 1968 Gregory, N. and Wilby, P. G.

NPL 9615 AND NACA 0012 -A COMPARISON OF AERODYNAMIC DATA

Ordinates, surface slopes and curvatures are listed for the two aerofoils together with a detailed tabulation of lift, drag and pitching moment data obtained at Mach numbers between 0.3 and 0.85 in the NPL 36 in. \times 14 in. transonic tunnel. The aerodynamic characteristics and all the pressure distribution are plotted, with some comparisons.

_

,

,

© Crown copyright 1973

HER MAJESTY'S STATIONERY OFFICE

Government Bookshops

49 High Holborn, London WC1V 6HB 13a Castle Street, Edinburgh EH2 3AR 109 St Mary Street, Cardiff CF1 1JW Brazennose Street, Manchester M60 8AS 50 Fairfax Street, Bristol BS1 3DE 258 Broad Street, Birmingham B1 2HE 80 Chuchester Street, Belfast BT1 4JY

Government publications are also available through booksellers

1

,

,

