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SUMMARY 

A two dimensional parachute model has been developed to compute various 

characteristics of the steady descent of a parachute system. 

The model demonstrates similar characteristics to those shown from both 

qualitative and quantitative measurements on full-scale parachutes. 

The model is in a form suitable for investigating the effect of parachute 

system parameters and experimentally measured aerodynamic characteristics on 

the stability of a descent - in particular the relationship between oscillation 

and gliding. 

The model is also suitable for Investigating the effect of wind on 

parachute oscillation using measured wind profiles. 

* Replaces RAE Technical Report 73040 - ARC 34612 
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I INTRODUCTION 

Various authors I,2,3,4 have developed nonlinear equations to model the 

behaviour of parachutes during descent. These equations have been used chiefly 

to establish stability criteria for parachute parameters. Ludwig and Heins 

solve their particular model for a personnel parachute. 

Parachutes often undergo apendulum type oscillation. From this observa- 

tion, a useful approach-in studying parachute behaviour would be to bring out 

the pendulum type motion in the modelling equations. This procedure does not 

appear to have been adopted by previous authors. 

Furthermore to examine the characteristics of a parachute during descent 

it would appear logical to confine the complexity of the model parameters within 

the bounds that these parameters are known. 

With these points in view a parachute model has now been developed to 

examine : 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

The influence of wind on the parachute with wind as: 

(a) gust (step function) 

6) gradient (ramp function with time and height). 

The influence of rigging line length and store mass on: 

(4 stability 

(b) oscillation frequency. 

The influence of store drag on: 

(a) stability (damping) 

6) oscillation frequency. 

Gliding and oscillation. 

The effect of gliding and oscillation on the mean descent velocity. 

Vertical velocity fluctuations as a result of oscillation. 

The linearised oscillation theory in relation to the nonlinear theory. 

The stability and oscillation of a gliding parachute in comparison to a 

nongliding parachute. 

The model could be extended to examine coning and wind effects in three 

dimensions. 



2 TWO DIMENSIONAL PARACHUTE MODEL 

2.1 Initial assumptions 

The parachute model is sketched in Fig.]. The assumptions made in 
deriving this model were:- 

(1) The parachute store mass, Ms, the canopy mass, Mc, and the aerodynamic 

added mass, M a' csn be represented by point masses. 

(2) The added mass depends only on the scale of the canopy. . 

. 

(3) The added mass and the canopy mass points are coincident. 

(4) The canopy mass and store mass lie on the parachute axis a fixed distance 
apart, L. 

(5) An aerodynamic force acts on the canopy through the centre of the canopy 
mass. This force, with axial component, FA and normal component, FN, 
is dependent only on the velocity vector. 

Implicit in this assumption, aerodynamic moments are neglected. 

(6) Aerodynamic forces on the store are neglected. 

2.2 Derivation of'the system equations 

The parachute model has been restricted to two dimensions for the present c 
study. The variables shown in Fig.1 are used in the analysis below. 

The motion may be divided into motion about the centre of mass and motion 
of the centre of mass. 

The motion about the centre of mass is: 

I d28 
cm dt2 

- + MsgLs sin tl - McgLc sin 8 - FNLc = 0 , (1) 

where I cm = MsL; + (M, + Ma)L$ 

Lc and L s may be eliminated knowing the position of the centre of mass: 

Lc = ms/(Ms + MC + Ma) , 

and 

L s = L(Mc+ Ma)/(Ms + Mc + Ma) . 



Hence Icm becomes: 

I cm 
= Ms(Ma + Mc)L2/(Ms + MC + Ma) 

and equation (I) reduces to: 

2 + [+I sin e - L(MaF: Mc) = ' ' 

The equations tracing the motion of the centre of mass are: 

Mg - FA cm '3 + FN sin 8 , 

and 
2 

M' Q = - FA sin e - FN cos 6 . 
dt* 

(2) 

(3) 

(4) 

where M = Ms + M c 
M'=M+M a' 

The aerodynamic forces on the canopy are usually written in the form: 

and 
the axial force, FA = CAjpAU2 (5) 

the normal force, FN = C&AU* (6) 

where CA and % are functions of the flow incidence, a 
A is the area appropriate to the coefficients CA,% 

P is the air density, and 
U the velocity of the canopy relative to the air flow. 

The complete model equations to be solved are from above: 

$ = - [L(I +gMc,Ma)] sin e - CN [2,,Mr+ Mc,lu2 

$ = [$F] - CA [!+I U* cos e + $ [$I U* sin e 

(7) 

(8) 



PA U2 sin 0 - C$ 2~’ II 1 u2 cos 9 

uy = [~]#][~]... e -vy 

Uz = [~]+~][$]si*8 -Vz 

a+e = -1 uz tan ij- . 
[I Y 

(9) 

(10) 

(11) 

(12) 

Equations (10) and (II) give the y,z components of the flow velocity, 

u. The terms V ,V 
Y = 

are the y,z. components of a wind vector. 

2.3 Solution of the system equations 

2.3.1 Parameter values 

Equations (7) to (12). while nonlinear appear quite stable under the 
Runge Kutta numerical solution method. 

To test the modelling equations , parameters akin to a personnel parachute 

were selected as some experimental data on oscillations was available for 

comparison. 

The values of the parameters chosen were: 

Ma,Ms: 91 kg , 

M: c 7kg , 

L: 8.4 m ) 

and 

PA: 91.5 kg/m . 

The aerodynamic added mass, Ma, is difficult to determine. Lester' has 
shown theoretically that the added mass is not necessarily independent of flow 
direction. However, due to difficulties in measuring, the added mass of the 
canopy is generally 2.3.4 assumed constant. 
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Heinrich6 gave the added mass of a flat parachute as: 

(0.25 + $R’* 

where R is the mouth radius of the inflated canopy. 

For the present example, Ma calculated from the above formula is 122 kg. 

Ludwig and Heins4 assumed the apparent mass of the personnel parachute to 

be of the order of the mass of the load. This latter assumption which follows 

an earlier suggestion by Von Karman, does not differ markedly from the Heinrich 

result and was adopted for the example calculations. 

Axial and normal force coefficients were taken from work by Heinrlch and 

Haak5 and are reproduced in Fig.2. (These results are also available in Ref.6.) 

While these coefficients were measured on small scale parachutes they were 

thought representative of man carrying parachutes and have been used by other 

authors for stability calculations 2,3,4 . 

No wind function was inserted into the example calculations. 

An approximate estimate of the descent velocity was used as a starting 

value. To initiate oscillations two starting angles of tl were used; 0.25(14') 

and 0.60(34'). 

2.3.2 Results 

The results of the two example calculations are presented in Fig.3. The 

limited number of cycles shown illustrate the trend of the results. 

Points noted from these trial calculations were: 

(1) The horizontal velocity component of the canopy was an order of 

amplitude less than that of the store. This result is borne out from observa- 

tion of personnel or larger parachutes where the parachute system appears to 

rotate about a point in the canopy. 

(2) The frequency of oscillation is close to that given by a linearised 

version of equation (J), (derived in Appendix A): 

03) 
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Ludwig and Heins give a formula for the frequency of oscillation derived 

empirically from their calculations. Their formula was also of the simple 

pendulum type. 

The 54 
term, equation (7), is in general small compared to the sin 0 

term. Further, sin 0 may be approximated to 6 with little effect on the 

frequency of oscillation - a second order adjustment on this linearisation 

increases the period by a factor (I + 6’/16). For a 30’ amplitude oscillation, 

quite usual in parachute descents, this second order adjustment is 1.7%. 

For the two example calculations the frequencies of oscillation were: 

e (t-0) = 0.6(34’) 

frequency 0.165 Hz (period 6.05 s) 

e (t=0) = 0.25(14’) 

frequency 0.170 Hz (period 5.9 s) . 

The frequency of oscillation from equation (13) is: 

(f (I + $f/2r . (14) 

Substituting the values used in the example calculations in the expression 

(14) gives a frequency of 0.166 Hz. 

(3) The frequency of oscillation was very close to that of the personnel 

parachute which the model was chosen to represent, Fig.4. However, this result 

only really implies a correct choice of L. The error in this choice of L is 

not critical as the frequency is proportional to L -4 . 

(4) The two example calculations show that there is little damping in 

the modelling equations though the large amplitude oscillation does show a 

greater proportional reduction in amplitude with time. The form of the equations, 

in particular the Ch curve with the statically unstable zero oscillation 

position, leads one to suspect that a limit cycle may exist. 

(5) Some glide was associated with each calculated descent. The glide 

velocity was 0.7 m for the 0.6 starting angle but continued to increase for the 

small starting angle. 
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. 

A statically stable glide position occurs at 20' (C, curve, Fig.2). With 
the zero position statically unstable, there is probably some relationship 
between glide angle and oscillation - parachutes with large oscillation showing 
little tendency to glide. This may account for the large range in descent 
velocities of parachutes near impact. 

(6) The amplitude and phase of the descent velocity oscillations with 
parachute oscillations agree well with those measured in actual parachute 
descents', Fig.4. The parachute oscillation induces the descent velocity 
fluctuation at twice its own frequency in a similar fashion to the vertical 
velocity fluctuations of a pendulum. 

(7) The mean descent velocity differs slightly between the two example 
calculations even though the systems are similar. The higher oscillation causes 
an apparently lower drag coefficient. 

3 DISCUSSION 

The two dimensional analysis appears quite realistic in a comparison with 
a man carrying parachute. 

The problem with using this or any parachute model lies in choosing 
suitable parameters to model the actual situation. In particular the parameters 

Ma and CN have had little experimental examination. 

The equations involving the oscillation are dominated by the simple 
pendulum type equation: 

In any comparison with a parachute system, this motion and the normal 
variation in parachute characteristics masks the effect of parametric changes; 

Mc'Ma is generally small and L appears only as the half power in the frequency 
equation. 

Nevertheless the only way of introducing a wind function is through the 
nonlinear terms involving the uncertain parameters. 

It is shown in Appendix A that the canopy movement is dependent on the 
ratio MC/Ma. This ratio increases with decrease in scale. In practice with 

large scale parachutes, the canopy often does appear to have a centre of rotation 
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near the canopy. However for small scale, where M&Ma is no longer small. the 

mode of oscillation changes. 

The model results in Fig.3 bear out the linear analysis. The oscillations 

in the horizontal velocity component of the canopy and store are in phase with 

the derivative of the angle 8. Further, for the case with the smaller starting 

angle, the ratio of the amplitudes of the oscillations in the horizontal velocity 

of the canopy and store lie within 15% of that estimated from the linearised 

equations of Appendix A. 

Ludwig and Heins neglect the canopy mass and therefore get little 

horizontal oscillatory motion in the canopy. 

The assumed position of the centre of pressure can be relinquished by 

using the measured aerodynamic moments as well as the normal and axial forces. 

The moment term is added into equation (1). The normal force in that equation 

is now multiplied by the distance the centre of mass and the point about which 

the aerodynamic forces were measured rather than the assumed centre of pressure. 

The equations relating the motion of the centre of mass of the system remain 

unchanged. However in view of both the small size of the moment term and the 

assumptions made regarding the aerodynamic added mass it was not felt necessary 

to include the moment term in the initial study. 
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(1) 

(7-j 

(3) 

CONCLUSIONS 

A parachute model has been developed to exhibit the dominant pendulum 

type motion of parachutes. It demonstrates similar characteristics to 

those shown for both qualitative and quantitative measurement on full 

scale parachutes. 

The model is in a form suitable for investigating the effect of parachute 

system parameters and experimentally measured aerodynamic characteristics 

on the stability of a descent - in particular the relationship between 

oscillation and gliding. 

The model is suitable for investigating the effect of wind on parachute 

oscillation using measured wind profiles. 

. 
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Appendix A 

LINEARISED ANALYSIS 

The influence of the canopy mass to added mass ratm, MC/M 
a' can be 

seen in the following linearised analysis. 

We assume: 

(1) The angle of oscillation is small and II constant so that sin 8 5 8, 

and Mg = CAA&, 

(2) CA is constant, and 

(3) lz& = 0. 

Then equations (7) and (9) become: 

and 

sine . 

Combrning these equations to eliminate -g sin 0 we get: 

L = $[$(I+$)~ . 
dt2 

For vertical descent this may be integrated to give: 

y = +(I+$] . 

Horizontal canopy movement equals: 

y - Lc s1n 0 e y - LcO 
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Similarly the store movement equals: 

M 
BL I+6 . ( ) a 

Appendix 

These equations imply that the horizontal motion of the canopy and store 

is heavily dependent on the canopy mass to added mass ratio. 
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SYMBOLS 

area appropriate to the coefficients cA and C N 
aerodynamic force coefficient associated with F 

A 
aerodynamic force coefficient associated with FN 

aerodynamic force component along the parachute axis 

aerodynamic force component normal to the parachute axis 

acceleration due to gravity 

inertia of the parachute system about the centre of mass (including the 
effect of the aerodynamic added mass) 

Mc + M s, parachute canopy plus store mass 

Ma + Mc + M 
s 

aerodynamic added mass 

canopy mass 

store mass 

canopy centroid to store distance 

canopy centroid to centre of mass distance 

store to centre of mass distance 

inflated canopy mouth radius 

time 

velocity of the canopy relative to the air 

velocity components of U in the y and z directions 

wind velocity components in the y and z. directions 

the stationary horizontal and vertical axes respectively with z 
positive downwards. (The parachute system is assumed to move only in 
the y,z plane.) 

inclination of the air flow to the canopy measured from the parachute 
axis 

inclination of the parachute axis to the vertical 

density of air flow 

A 

cA 

cN 

FA 

FN 
g 

I cm 

M 

M' 

Ma 

Mc 

Ms 
L 

L 
c 

L 

RS 

a 

e 
P 
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