

C.P. No.

<u>_</u>

ć

LIBRARY LARCRAFT ESTABLISHMENT BEDFORD.

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Fatigue Endurance, Crack Sensitivity and Nucleation Characteristics of Structural Elements in Four Aluminium-Copper Alloys

by

F. E. Kiddle

Structures Dept., R.A.E., Farnborough

LONDON: HER MAJESTY'S STATIONERY OFFICE

1974

PRICE £1.40 NET

ō

FATIGUE ENDURANCE, CRACK SENSITIVITY AND NUCLEATION CHARACTERISTICS OF STRUCTURAL ELEMENTS IN FOUR ALUMINIUM-COPPER ALLOYS

by

F. E. Kiddle

SUMMARY

Four aluminium-copper alloys in the form of notched, lug and joint specimens were tested under constant amplitude loading at ambient temperature. While there are certain differences in fatigue performance between materials, particularly in the mean endurance and scatter of notched specimens, there is little difference between the materials in terms of the minimum fatigue endurances observed. The performance of the different types of specimen are compared and conclusions are reached on the effect of fretting. The patterns of nucleation on the fatigue fracture surfaces shows that scatter in endurance is associated with the number of discrete sites of crack nucleation and that in all alloys there is a transition from single to multiple crack nucleation at a value of local stress amplitude related to the static strength. Study of fatigue crack areas at failure indicate that crack sensitivity was similar in three alloys and lower in the fourth.

* Replaces RAE Technical Report 72107 ~ ARC 34195

CONTENTS

A

		Page
1	INTRODUCTION	3
2	MATERIALS AND SPECIMENS	3
3	FATIGUE TESTS	5
4	DISCUSSION	6
	4.1 Outline	6
	4.2 Fatigue endurance	6
	4.3 Crack nucleation	10
	4.4 Area of fatigue crack at failure	15
5	CONCLUSIONS	16
Table	s 1-19	18-50
Refer	ences	51-52
Illus	trations	Figures 1-34
Detac	hable abstract cards	-

Conversions: $1000 \text{ lb}(f)/\text{in}^2 = 6.894 \text{ MN m}^{-2} = 0.689 \text{ Hb}$

I INTRODUCTION

.

This paper discusses the fatigue behaviour of four aluminium-copper alloys in the form of notched, lug, and joint specimens tested under constant amplitude loading at ambient temperature. The tests were conducted to provide a basis for an investigation of the effects of heat on fatigue of structural elements, some results of which have been published¹. The present analysis, in addition to establishing the general pattern of fatigue behaviour at ambient temperature against which the effects of heat can be assessed, has shown some basic similarities in the structural behaviour of the different alloys, which are of more general interest.

The fatigue behaviour of the different alloys over a range of alternating stress are first compared in terms of fatigue endurance and it is shown that although all the alloys behave similarly when tested in the form of lug and joint specimens, there are considerable differences when in the form of notched specimens although the differences are not consistent for different stress concentrations and stress levels. However, if the alloys are compared on the basis of the minimum observed endurance, there is little difference between the alloys in any type of specimen. This is taken to indicate that endurance tends to have an extreme value distribution and that the alloys differ only in the magnitude of the scatter. Using the curves of minimum endurance the comparative behaviour of the different types of specimen is discussed. Examination of the fracture surface for the number of discrete origins of crack nucleation (or damage nuclei) and the size of the fatigue crack at failure has made it possible to compare the crack nucleation and crack sensitivity characteristics of the four alloys. The number of damage nuclei is found to be associated with fatigue stress, scatter in endurance, and material and it is established that in all the alloys there is change in the pattern of failure at a value of local stress amplitude related to the static strength. The comparison of the crack sensitivities of the four alloys shows that one alloy tends to tolerate larger fatigue cracks at failure than the other three alloys, which behave similarly.

2 MATERIALS AND SPECIMENS

Four aluminium-copper alloys were tested which had been subjected to precipitation heat-treatment nominally to maximum ultimate strength: A1 6% Cu (Hiduminium 54), DTD 5014, 2L65 and 2024-T81. The materials were obtained

in the form of 12ft lengths of extruded bar of rectangular section, the Al 6% Cu being supplied by one manufacturer, the remaining materials by another. The main volume of testing was on DTD 5014 material. Table 1 gives the chemical composition of each alloy and Table 2 summarises the static tensile properties determined by tests on 113 of the 119 bars used. Each type of material was taken entirely from one melt and the extruded bars were selected so that the relatively coarse grain at the surface of the bars was shallow enough to ensure its elimination during the machining of specimens. The material was tested ultrasonically for flaws: those greater than 0.1 in were comparatively rare and were avoided in the extraction of specimens. Each bar was identified by a three digit number, the first digit signifying the material (each material was allocated two numbers, one for notched specimens and the other for lug and joint specimens) and the two remaining digits the bar number of that material. Nineteen fatigue specimens were extracted from each bar and each was identified by a five digit number, the first three digits being the bar identification number and the last two defining the position of the specimen in the bar relative to the leading end of the bar during extrusion.

Four types of fatigue specimen were used: two forms of notched specimen, a lug, and a joint. The two types of notched specimen with central holes shown in Figs.1(a) and 1(b) have theoretical stress concentrations of 2.3 and 3.4 times the average stress on the net section; for brevity they will be referred to as the 2.3 notch and the 3.4 notch. These specimens were loaded axially through lug ends by round pins on which flats were machined with the object of preventing premature failure by improving the fatigue performance of the lug.

The lug specimen in Fig.2 has two identical test sections. It was loaded axially by round pins of clearance fit $(0.0016 \pm 0.0010 \text{ in})$ and has a theoretical stress concentration of approximately 3.1.

The joint specimen shown in Fig.3 utilises the lug specimen as a centre plate. S96 steel sideplates are clamped to the centre plate by bolts which were tightened on assembly until they had extended a given amount. Extension of the bolt was determined by measuring the relative movement of 0.188in diameter steel balls set in the end faces of the bolt. An extension of 0.0020 in was applied in all cases which is estimated to give a core stress of 83000 $1b/in^2$, equivalent to 60% UTS; this is considered to be representative of the general level of

clamping in aircraft construction. The accuracy of the extension was generally $\pm 5\%$. During assembly of the joint specimen, including the bolt tightening, the components were held in a jig to achieve accurate alignment. On the assembled joint it was found that clamping pressure was transmitted from the side plate to the face of the lug over a clearly defined annular area of 0.6 in² around the hole corresponding closely to the size of the washers used with the bolt; the average clamping pressure over this area was 30000 lb/in². The outer ends of the side plates were clamped to the end fittings of the fatigue machine.

All specimen components were thoroughly degreased with an organic solvent before assembly and all test sections were dry during testing.

3 FATIGUE TESTS

All fatigue testing was at ambient temperature in fluctuating tension (0 < R < 1) of constant amplitude at a frequency of 33 c/s. A range of stress levels was chosen to give endurances in the range 10^5 to 2×10^7 cycles. For any given S-N curve, the mean stress was kept constant. In general the mean stress was also kept constant for each particular type of specimen, irrespective of material, except when testing Al 6% Cu, when non-standard mean stresses were used for three types of specimen. All stresses quoted are based on the cross-sectional area in the region of fatigue failure.

After failure, the fracture surfaces of the specimens were examined for two features - the number of discrete positions on the surface from which fatigue cracks emanated (damage nuclei) as indicated in Fig.4, and the areas of the fatigue crack surfaces. Fig.4 shows the disposition of the nuclei; however the surface markings by which they were identified do not show as clearly in the photograph as they do by direct observation under the microscope.

The fatigue cracks in the joint specimen nucleated at many points over a circular arc of fretting damage corresponding to the boundary of the clamping area (see unbroken ends of joint specimens illustrated in Fig.5). The consequent complexity and variability of the pattern of cracking made it impracticable to present information on crack area and number of nuclei for this type of specimen. This complexity in the pattern of cracking is shown in Fig.5 where two typical but quite different examples of patterns of failure of the joint specimen are illustrated. For comparison, an example of the consistent fracture surface of a lug specimen is also shown. It was found that the complexity and variability of the pattern of cracking in the joint specimens showed no consistent trend with endurance or stress level.

The fatigue crack surface on the notched and lug specimens consisted generally of two separate areas, one on each side of the central hole; these two surfaces were treated separately in assessing area and numbers of nuclei. Tables 3 to 18 give details of the endurances, fatigue crack areas and number of damage nuclei.

4 DISCUSSION

4.1 Outline

In the following discussion the relative fatigue endurance of the four alloys, in the various specimen configurations is first considered (section 4.2.1). Such consideration necessarily requires examination of scatter in endurance and the case is developed in section 4.2.2 for comparing the endurances on the basis of minimum lives, at each given stress level, rather than by comparing mean endurances. A comparison is then made of the differences in behaviour of the four specimen configurations (section 4.2.3).

Under section 4.3, the crack nucleation characteristics are discussed in more detail. Initially (section 4.3.1) the significance is discussed of the numbers of fatigue damage nuclei observed on the fracture surfaces as an indication of the way in which damage develops. This discussion is extended in section 4.3.2 and a pattern of behaviour is deduced which associates the number of damage nuclei with the fatigue alternating stress level and with the scatter in endurance at a particular stress level. In section 4.3.3 it is shown that the transition from single to multi origin damage nucleation in the notched specimens is related to the tensile properties of the material, and may be associated with the onset of reversed plastic cycling at the stress concentration. Finally, the significance of the fatigue crack area at failure in determining the crack sensitivity of the four alloys is discussed briefly in section 4.4.

4.2 Fatigue endurance

4.2.1 In considering how to present the information on fatigue endurance it was anticipated that four figures would be given, each one applying to a particular type of specimen and showing the S-N curves for the four materials, so that the influence of material could readily be seen. It was also intended that, for the sake of clarity, the endurance of each individual test specimen (see Tables 3 to 18) would not be plotted - each S-N curve being based on a faired line through the log mean endurance at each stress level concerned. This approach has been adopted satisfactorily for all types of specimens in three of the materials, 2L65, A1 6% Cu and DTD 5014 alloys, for which the associated scatter in individual results, though differing between the three materials, was not unusual. These results are given for the 2.3 notch and 3.4 notch, in Figs.6 and 8. However, certain difficulties arose when presenting the results from the tests of the notched specimens in the fourth material, 2024-T81, in which the scatter was much greater. It was felt that, for these particular types of specimen, the foregoing approach would be unsatisfactory since the magnitude and nature of the scatter was such that the shape of the S-N curve could not be defined with the same degree of confidence as for the other materials and specimens. Accordingly, the individual test results for the 2.3 and 3.4 notched specimen in 2024-T81 are plotted in Figs.7 and 9 and no S-N curves are drawn.

The foregoing problem did not arise with the lug and joint specimens in 2024-T81 since the scatter was not exceptional and S-N curves could be drawn. Such curves for the lug and joint specimens are included, with those for the other three types of material, in Figs.10 and 11.

A study of the comparisons of the fatigue behaviour of the materials in Figs.6 to 11 shows differences in behaviour between the four alloys, which vary over the stress range. These differences do not show a consistent pattern for the different types of specimens tested and in fact for a given type of specimen vary over the stress range.

4.2.2 From Tables 3 to 10 it may be seen that the scatter in endurance differs appreciably with material and consequently a different picture is obtained when alloys are compared on the basis of S-N curves drawn through the lowest endurances observed at each stress level. The S-N curves of minimum endurance for all four alloys are compared for the two types of notched specimens in Figs.12 and 13 respectively, and it is seen that the differences between alloys are considerably less than was shown by comparison of the mean S-N curves. If the endurance distribution at all stress levels were log normal it could be expected that minimum endurances would become progressively lower as more specimens were tested. However, examination of the minimum S-N curve for the 2.3 notch in DTD 5014 material (Fig.14) shows that the minimum endurance at each stress level fits closely to a smooth curve despite large differences in the number of specimens tested at different stress levels.

Although this may not be significant at the high stress levels where the scatter is small, it is a strong indication that the distributions of endurance are not log-normal at the lower stresses where the magnitude of scatter is large. In Fig.15, the distributions of endurance, at high and low stress levels, are shown for all types of specimen tested in DTD 5014 material. This shows that for the notched specimens there is a marked difference between the shape of the distribution curves at high and low alternating stress levels; from plots of probability versus life it has been found that the distribution is approximately log-normal at high stress but that it is decidedly skewed at low stress suggestive of an extreme value distribution. In view of this it is of interest to consider the relationship between mean and minimum S-N curves in terms of standard deviation for a typical example of a notched specimen. Fig.16 shows that minimum endurance is only slightly more than one standard deviation below the mean over most of the stress range, including the highest stresses tested and rather less than one standard deviation at the lowest stress tested. This is a further indication that the distribution tends to be extremal at low stresses. It is concluded that the four alloys in notched form have very similar minimum S-N performances, that the scatter is suggestive of an extreme value distribution at low stresses, and that the alloys differ in the magnitude of the scatter.

It is generally accepted that scatter is associated with the early stages of the fatigue life leading to the initiation of cracks near the surface, rather than with the later stages of the life during which the crack propagates through the cross section². This topic will be discussed generally in section 4.3 which deals with observations of the fracture surface; it is however relevant to the following discussion of the performance of lug and joint specimens which differ from that of the notched specimens particularly in that fretting tends to shorten the initiation phase of the life by rapidly producing surface damage. As a consequence of fretting, therefore, it might be expected that the endurances of both lug and joint specimens would show less scatter than the endurances of notched specimens. This is shown to be so (Tables 11 to 18), especially at low stresses. The S-N diagrams of mean endurance for the lug specimen (Fig.10) and the joint specimen (Fig.11) show little difference between the alloys, which in view of the relative short initiation phase, suggests no great differences in crack propagation characteristics. In Fig.10 the S-N curves for lug specimens of three of the alloys are virtually identical; the difference between these

three curves and that for Al 6% Cu is possibly associated with the lower mean stress used for the latter. For joint specimens (Fig.11), all alloys tend to behave similarly, including the Al 6% Cu despite the different mean stress employed. It would appear therefore that the fatigue performance of the bolted joint is insensitive to the composition of the Al-Cu alloys tested. A similar conclusion was reached by Heywood³ for large multi-bolt joints in comparing Al-Cu and Al-Zn alloys. However, it would appear that this result is not necessarily applicable to all high strength aluminium alloys, as the results of tests⁴ on joint specimens similar to those used in the present work but with thicker side plates showed a marked difference between 2L65 and an experimental alloy Al 5% Mg 4% Zn 1% Mn alloy. As a consequence of the low scatter in endurance of lug and joint specimens a comparison of the minimum S-N curves (Figs.17 and 18) does not affect the conclusions reached above.

4.2.3 It has been seen that differences between materials are small for all types of specimen if the minimum S-N curve is used as a basis for comparison. It is possible therefore to make an overall assessment of the relative behaviour of the four types of specimen by comparing S-N bands of minimum endurance containing all materials. It is seen in Fig.19 that these bands are quite narrow: ±25% on endurance for notched specimens and less for lug and joint specimens. The superiority of the 2.3 notch over the 3.4 notch at the same nominal stress is associated with slower crack initiation due to the smaller local value of alternating stress, it being presumed that the crack propagation phases are similar. It is deduced from this that the convergence between bands with decreasing stress is an inducation that a decreasing proportion of endurance is spent in crack initiation. The performance of the lug specimen $(K_{+} = 3.1)$ can be assessed in relation to the notched specimen if one may disregard differences in geometry and load transfer; on this basis an approximate idea of the effect of fretting on the lug specimen is that it reduces life by factors ranging from 4 at the higher stresses to 7 at the lower stresses. The larger effect of fretting at low stresses may seem surprising in view of the previous deduction that in notched specimens a smaller proportion of the life is spent in initiation at the lower stresses. However, this indicates that fretting is more effective at shortening the crack initiation phase at low amplitudes; this is in line with observations made by Schijve and Jacobs⁵. The performance of the joint specimen, despite clear evidence of damage initiation by fretting, is comparable with that of the notched specimens at low stresses and is superior at the higher stresses. It is difficult to assess the degree of stress concentration from theoretical considerations, but comparison

of its fatigue strength with that of the lug specimen (again neglecting obvious differences in geometry and loading actions) suggests, on average, a stress concentration factor of about 1.4. A similar value was deduced in other work⁶ using similar specimens.

4.3 Crack nucleation

Having compared the fatigue behaviour of the alloys and the types of specimen on the basis of endurance, we will now examine further aspects of comparative behaviour by studying the evidence of the pattern of crack nucleation from observations of the fracture surfaces.

4.3.1 As described in an earlier report¹, it was found possible to recognise on the fracture surface the discrete positions at the notch from which fatigue cracks emanated (Fig.4) and which were termed damage nuclei; observation of the variation in the numbers and positions of nuclei indicated the way in which damage developed. This proved useful in the development of a basic model by Stagg' for the discussion of scatter in fatigue. It is postulated that the positions of nuclei are dictated by the existence of chance defects in both the microstructure of the material and the surface finish of the specimen, and the orientation of these defects in relation to the applied stress. These chance defects are distributed across the test section of the specimen and cracks nucleate at different defects sequentially. For nominally identical specimens there will be scatter in the fatigue life due to the different distribution of these sites and their level of sensitivity i.e. different sites will require different levels of stress and time under fluctuating stress for the nucleation of a crack. Thus the total number of nuclei which develop will depend on the fatigue stress level as this dictates the number of sites which are capable of developing into damage nuclei. However the total number of damage nuclei to develop will also depend on the speed at which cracks spread from the earliest nuclei to appear. If crack growth is slow compared with crack nucleation there is an opportunity for a large number of nuclei to develop; if cracking is comparatively fast the crack growing from the first nucleus may spread across the test section before other nuclei appear. Later in this section it will be shown that in fact it is possible to associate the number of damage nuclei with stress, scatter in endurance and material.

Before discussing the observations on damage nuclei it is necessary to consider the significance of the numbers of nuclei which are present on the fatigue crack surfaces on each side of the test section: these surfaces will be referred to as the major and minor fatigue crack areas according to their relative size. It will be assumed that the earliest nuclei led to the growth of the major crack and are a more significant measure of the onset of cracking than the nuclei in the minor area whose subsequent appearance would be hastened by the already growing major crack. In the following discussion of damage nuclei, therefore, only those in the major area will be considered.

4.3.2 First, consider variation in the number of nuclei with alternating stress for nominally identical specimens. Fig.20, for the 3.4 notch in DTD 5014 material, is typical of the trend for notched specimens in all alloys. At the lowest stress giving failure there is invariably one nucleus. As stress increases there is an increasing tendency for more than one nucleus to appear on the fracture surface; the average number of nuclei increases continuously with stress amplitude and at the same time scatter in the number of nuclei increases. For lug specimens the trend is similar but due to the influence of pin-bending on the bearing of the pin in the hole, the corners of the hole are the most highly stressed regions and therefore two nuclei often occur.

What is the significance of the increasing numbers of nuclei as alternating stress is increased and endurance reduces? When alternating stress is increased it would be expected that crack initiation and propagation would speed up. An increase in the number of nuclei with alternating stress implies that crack initiation speeds up more than crack propagation because, as was discussed earlier, for a large number of nuclei to appear crack growth must be slow compared with crack nucleation. The implication is therefore that nuclei are developing with increasing rapidity and with a consequent shortening of the nucleation phase which contributes to the reduction in endurance. In addition to the effect on mean endurance, it can be expected that increasing numbers of nuclei will be associated with reduced scatter in endurance for the following reasons. The greater the number of potential sites of nucleation, the less scatter there will be in the time under fluctuating stress for the first nucleus to develop. Also there will be less scatter in the growth of the crack when large numbers of nuclei appear as the mode of cracking will be more consistent. In Fig.21, the estimated standard deviation of log endurance has been plotted against the average number of nuclei for notched and lug specimens. The mean trend shows that as the average number of nuclei increases from one to two, scatter in endurance reduces to a low value and remains constant at higher numbers. It might be supposed that scatter would continue to fall as the number of nuclei increased but another factor, which tends to oppose this, is the increased scatter in numbers of nuclei as the mean number increases (see Fig.20). Although we have seen that increasing numbers of nuclei are associated with reduced endurances, once a few nuclei are present the generation of further nuclei cannot be expected materially to affect the fatigue endurance. This is illustrated in Fig.22 which is a typical example of the influence of the scatter in numbers of nuclei on the endurance at a particular stress level. This shows sufficient correlation between numbers of nuclei and endurance to account for some of the scatter in endurance. The shape of the average curve supports the argument that the earliest nuclei have the greatest influence on endurance.

As stated in section 3, it was not practicable to present information on crack area and numbers of nuclei for the joint specimen, but in general, it was observed that the fatigue crack initiated from many damaged nuclei. The values of standard deviation for joint specimens in Tables 15 to 18 are similar for all materials and stress levels; this would be expected for failures from many nuclei as was seen in Fig.21 for notched and lug specimens. On average the scatter for joints is larger than for lugs, possibly due to variability in the pattern of failure.

4.3.3 In the foregoing discussion it has been seen that with increasing alternating stress there is an increase in the average number of nuclei and that the transition from single to multiple nuclei is accompanied by a marked reduction in the scatter in endurance. This transition in the mode of failure has been noted in various materials by a number of investigators. Work by Williams and Taylor⁸ on steels, brass and aluminium alloys, tested in rotating bending, indicated that a clearly defined transition in the mode of failure was associated with a discontinuity in the S-N curve. The transition stress was thought by Williams and Taylor to be significant in representing the fatigue limit of the core material; this is higher than the conventional fatigue limit which is governed by surface conditions. A similar association between the discontinuity and transition in the mode of failure can be observed in the work of Marco and Starkey⁹ on an aluminium-zinc alloy and SAE 4340 steel alloy tested in rotating bending. Also, differences in the distribution of endurance at stresses above and below the transition have been noted by Cicci¹⁰ and Swanson¹¹ for maraging steel and aluminium alloy respectively. Swanson, using axial loading, found that the transition occurred over a wide range of stress unlike the well-defined transition observed in the tests using rotating bending described above. These observations by other investigators viewed in

conjunction with those of the present work indicate that transition in mode of failure is an important characteristic of fatigue behaviour and may provide a further basis for comparing the fatigue performance of different materials. The transition from single to multiple nuclei observed in the present investigation occurred over a wide range of stress, like that observed by Swanson. The number of specimens is sufficiently large to provide quite accurate curves of the change in average numbers of nuclei with alternating stress (Figs.23 to 25) and in the following paragraph a criterion is suggested which facilitates the comparison of the transition in the different alloys.

When considering earlier the variations in standard deviation and the average number of damage nuclei, it was seen that as the average number of nuclei increased from 1 to 2, scatter in endurance reduced to a low value and remained virtually constant at higher numbers (Fig.21). Thus, in increasing from one to two nuclei, there is a change in the distribution of the endurances as noted by Cicci¹⁰ and Swanson¹¹. Referring again to Fig.21 it would seem appropriate to regard the transition stress as that value of the alternating stress for which, on average, two nuclei are present on the fracture surface. For notched specimens, values of the transition stress were obtained from the curves of Figs. 23 and 24 and are given in Table 19. This criterion is inapplicable to lug specimens which often exhibit two nuclei at the lowest stresses used (see Fig.25) due to the influence of pin-bending on the bearing of the pin in the hole.

The transition stress was found by Williams and Taylor⁸ to be proportional to the conventional 'fatigue limit' (fatigue strength at 10⁷ cycles) of the material and they suggest that the transition stress is a measure of the fatigue limit of the core material. If this is so, it might be expected that both the conventional fatigue limit and the transition stress are associated with the tensile properties of the material. In Fig.26, the values of transition stress from Table 19 are plotted against the UTS of the materials. The plotted points agree reasonably well with lines representing a constant ratio between the calculated local stress amplitude at the root of the notch and the UTS of the material; the values of this ratio are 0.48 for the 2.3 notch and 0.39 for the 3.4 notch. A similar correlation was obtained with proof stress (Fig.27) and, as is shown later, this may point to a physical explanation of the mechanism governing the transition.

2

Correlation was also attempted between UTS and the fatigue limits for the three alloys whose fatigue limit could be estimated from the mean S-N curves of Figs.6 and 8. In this case the values of the ratio between the calculated local stress amplitude and the UTS of the alloy were about 0.21 for both types of notch in the three alloys. It may therefore be concluded that both the conventional fatigue limit and the transition stress are associated with the tensile properties of a material.

Mention has been made of the work of Williams and Taylor⁸ which suggested that for plain specimens there is a simple relationship between the fatigue limit and the transition stress. They stated that this relationship could be extended to notch specimens; in this case the ratio between the two was thought to be equal to the stress concentration factor, K_t . However, the largest value of K_t reported which gave close agreement with this relationship was 2.0. Using the results reported here, the transition/fatigue limit ratio was calculated to be 2.28 for the 2.3 notch and 1.86 for the 3.4 notch. It is therefore concluded that the simple relationship between the conventional fatigue limit and the transition stress as suggested by Williams and Taylor is not generally true for all values of stress concentrations.

A more convincing explanation of the transition from single to multiple nucleation and its correlation with the tensile properties of the material may lie in the association of the transition with the onset of reversed plastic yielding at the root of the notch. Edwards¹³ has shown that after tensile yield, local compressive yielding occurs at a stress concentration when the local stress has reduced to approximately zero during the subsequent unloading and while the net stress is still tensile. It has also been found that the greater the extent of the tensile yielding, the less the local stress reduces during subsequent unloading before compressive yield commences. Therefore, in the present tests in which the local stress cycle is constrained at its upper end by tensile yield, it can be expected that reversed plastic cycling will occur at a local stress range approximately equal to the value of the tensile yield stress, i.e. an amplitude of about half the yield stress. The actual ratios of transition stress to 0.1% proof stress averaged for the four materials were 0.56 for 2.3 notch and 0.45 for the 3.4 notch (see Fig.27) which are not too far from the expected value but which are different for the two values of stress concentration. However this difference can be explained

qualitatively on the basis that the 3.4 notch experienced a greater tensile yield strain and therefore the reversed yielding occurred at an earlier stage of the unloading.

4.4 Area of fatigue crack at failure

÷

A comparison of the sensitivity to cracks of the notched and lug specimens in the different alloys is possible in terms of the proportion of the fracture surface which was cracked by fatigue at final failure. The test section of a specimen consists of equal areas on each side of a hole (Fig.4); in general, fatigue cracks will grow on both sides of the hole though not necessarily symmetrically, and it can be seen that the degree of symmetry depends on the stress level in the test. The fatigue crack areas at failure are designated, according to their relative size, the major fatigue crack area and minor fatigue crack area. The first nucleus to develop leads to earlier crack development on one half of the test section and it is assumed that this half develops into the major fatigue crack area.

The variation in the fatigue crack areas at a given fatigue stress is similar for all four alloys; typical examples are shown in Fig.28 for a 2.3 notch and a lug, and illustrate the striking differences between the two types of specimen. For notched specimens, the major and minor areas vary considerably, the tendency being for both the areas to influence the final failure. By constrast, on the lug specimen the major area tends to be constant, the minor area varying considerably and apparently having little influence on the final failure. This difference in the failure characteristics of the notched and lug specimens is reflected in the size of the fatigue crack area at final failure which for the lug is a much larger percentage of the original area than for the notch at the same peak value of net stress. The large variation in major and minor areas at failure in the notch specimens is largely due to the irregularity of the crack front. Failure is caused by a combination of the loss in cross sectional area due to the fatigue crack and the maximum length and position of the fatigue crack from the notch surface. Fatigue crack areas in lug specimens are more regular in shape than in notched specimens and consequently they vary less in size. They also tend to be larger due to the particular loading conditions; Cartwright and Spencer 14 have shown that the residual static strength of a cracked element is larger for the same size crack when the element is loaded from inside the hole (i.e. lug specimen) than when it is loaded away from the hole (i.e. notched

specimen). Thus on the basis of fracture mechanics it would be expected that for the same static strength, the fatigue crack area would be larger for a lug than for a notch specimen.

Some differences between the materials are found in the average variation in the major, minor and total fatigue crack areas with the peak stress of the fatigue loading cycle (Figs.29 to 34). In general, with increasing stress there is a decrease in major area and an increase in minor area, resulting in increasing symmetry of failure about the notch. The increasing magnitude of the minor area with stress sometimes results in an increase in total area. In general, Al 6% Cu tends to have a larger fatigue crack at failure than the other three alloys, which all behave similarly.

The general relationship between residual static strength and fatigue crack area is the subject of a report 15 on further work in this programme.

5 CONCLUSIONS

A comparison has been made of the fatigue performance of four aluminiumcopper alloys in the form of notched, lug and joint specimens loaded in fluctuating tension at constant amplitude. The following conclusions were drawn:-

(a) Differences between the alloys were appreciable when comparing the mean endurances of the notched specimens but were not appreciable for lug or joint specimens. However, differences between alloys were small for all types of specimen if minimum fatigue endurances were considered.

(b) For notched specimens, the magnitude of the scatter differed in the four alloys and the scatter was suggestive of an extreme value distribution at low stresses. For the lug and joint specimens, scatter was comparatively small. (c) Comparison of the performance of the four types of structural elements tested, gave an approximate indication that fretting in the lug specimen effectively reduced life by factors ranging from 4 at the higher stresses to 7 at the lower stresses, and that the stress concentration in the joint was equivalent to a K_t of about 1.4

(d) The average number of damage nuclei which occurred on the fatigue crack surface increased with alternating stress level for all alloys. At a given alternating stress, endurance tended to vary inversely with the number of damaged nuclei. (e) Scatter in endurance was associated with the average number of nuclei. As this number increased from one to two, scatter in endurance reduced to a relatively low value and at higher numbers of nuclei the scatter remained constant.

24

(f) For each type of notched specimen, the local stress amplitude at which there was transition from single to multiple cracking was proportional to the tensile strength of the material. A similar correlation was obtained with local stress amplitude at the fatigue limit; this relationship was the same for both types of notched specimen. It was considered that this transition could correspond with the onset of reversed plastic cycling at the root of the notch.

(g) A comparison of the crack sensitivity of the four alloys showed that one alloy tended to tolerate larger fatigue cracks at failure than the other three alloys, which behaved similarly.

Tal	51	e	1
		-	_

	DTD 5014	2L65	2024-T81	A1 6% Cu						
Element	Р	Percentage by weight								
Cu	2.33	4.45	4.27	6.02						
Mg	1.64	0.75	1.60	0.24						
Si	0.15	0.73	0.18	0.12						
Fe	1.07	0.38	0.31	0.29						
Mn	0.08	0.48	0.56	0.23						
Zn	0.09	0.15	0.13	0.04						
Ni	1.28	-	-	0.01						
Ti	0.03	0.05	0.04	0.15						
Cr	-	0.13	-	-						
A1	Remainder	Remainder	Remainder	Remainder						

CHEMICAL COMPOSITIONS

Tab:	le	2
_	_	-

Material	No. of specimens tested	Mean 0.1% P.S. 1b/in ²	Estimated standard deviation of 0.1% P.S.	Mean U.T.S. 1b/in ²	Estimated standard deviation of U.T.S.
DTD 5014	84	55350	1160	62830	837
2L65	18	63660	2010	72130	1800
2024-T81	18	70110	2690	77530	1590
Al 6% Cu	13	54430	1660	66390	1200

SUMMARY OF STATIC TENSILE PROPERTIES

Ta	Ъ	1	е	3
	-			_

FATIGUE TEST RESULTS -

NOTCH $K_t = 2.3$ DTD 5014

·	I	Major fa	tigue	Minor f	atigue		
l I		crack		cra	ick	Estimated	
Specimen No.	Endurance (N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of ^{log} 10 ^N	
16601 16605 16610 16615 16619 18201 18215	0.398 0.581 0.300 0.497 0.377 0.357 0.307	15 15 26 25 29 17 68	1c+2 2c 1 2c+3 1c+2 9 9	13 3 1 16 9 13 2	1c+2 2c 2c+1 5 2c 2c+11 2c+14	0.105	
18216	0.296	52	2c+12	17	lc		
11701 11705 11710 11715 11719 12301 12305 12310 12315 12319 13701 13705 13710 13715 13710 13715 13719 14301 14305 14310 14315 14319 14601 14605 14609	$\begin{array}{c} 0.701\\ 0.552\\ 0.649\\ 0.664\\ 0.432\\ 0.705\\ 0.728\\ 0.600\\ 0.694\\ 0.754\\ 0.701\\ 0.676\\ 0.671\\ 0.549\\ 0.683\\ 0.720\\ 0.817\\ 0.809\\ 0.427\\ 0.640\\ 0.651\\ 0.503\\ 0.823\\ \end{array}$	36 34 40 37 31 35 50 41 65 52 43 35 42 36 59 39 45 43 41 42 37 48 38	2c+1 2c 1c+1 1c 1c 1c 2c 2c+1 1c 2c 2c+1 1c 2c 2c 1c 2c 1c+3 2c 2c 1c+2 1c+4 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c 2c	17 1 1 16 1 8 23 0 1 17 11 6 22 1 47 22 25 9 4 2 8 14 0	1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c	0.083	
	Specimen No. 16601 16605 16610 16615 16619 18201 18215 18216 11701 1705 1710 1775 1710 1775 1710 12305 12310 1235 12310 12315 12319 13705 13710 13705 13710 1375 13710 14305 14310 14315 14319 14601 14605 14609	Specimen No.Endurance (N)166010.398166050.581166100.300166150.497166190.377182010.357182150.307182160.296117010.70117050.552117100.649117150.664117190.432123010.705123050.728123100.600123150.694123190.754137050.676137100.67113750.549137190.683143010.720143150.427143190.640146050.503146090.823	Specimen No.Major fa cracSpecimen No. 10^{5} cyclesArea on half the net section π 166010.39815 16605166050.58115 16610166150.49725 16619166150.49725 16619182010.35717 18215182160.29652117010.70136 1170517750.55234 117101790.43231 12301123050.72850 12310123100.60041 12315137010.701 0.70143 13705137100.676 0.67635 13710137150.549 0.81736 13719143010.720 0.81739 14301143150.427 0.42741 4315146050.503 0.82338	Specimen No.Major fatigue crackSpecimen No. 10^5 cyclesArea on half the net section \mathbb{X} Number* of damage nuclei16601 16605 16610 16615 16619 182150.398 0.300 26 0.300 26 11 c+2 2 2c 16619 0.377 29 1c+2 18201 0.357 17 9 182151 c+2 2 2c+3 16619 0.377 17 9 1821518216 11705 0.552 11710 0.664 11715 0.664 11719 0.432 112301 0.705 12305 0.728 12305 0.728 12305 0.728 12305 0.728 12315 0.694 12315 0.6676 13701 0.701 143 1c 123715 0.676 13710 0.671 142 12 12319 0.754 12309 10.701 143 1c 13705 0.676 135 1c 12309 1.2315 0.694 13710 0.671 143 1c 13705 0.676 135 1c 12319 0.754 122 12 13710 0.671 143 1c 13715 0.640 142 1c 13719 0.683 10.817 143 10.720 111	Specimen No.Major fatigue crackMinor i crackSpecimen No. (N) 10^5 cyclesArea on half the net section \mathbb{X} Number* of damage nucleiArea on half the net section \mathbb{X} 16601 16605 16610 16615 16619 16619 18201 182150.398 0.357 0.30715 2C 2C+3 16 16 6 11c+2 13 13 13 13 13 162151c+2 9 13 13 13 13 13 13 1621518216 11701 11705 0.552 11710 11715 0.6644 11719 0.432 11710 0.649 11715 0.6644 11719 0.432 11710 0.6644 11719 0.432 111 11715 0.6644 11719 0.432 111 11715 0.6644 11719 0.432 111 11715 0.6644 11719 0.432 111 11715 0.6644 1111 12301 0.705 10.705 10.728 10.1c+1 111 11705 10.600 112315 0.676 1352 1c 12319 0.754 122 1c 1171 13701 10.701 143 1c 11 11715 13701 10.701 143 1c 111 13705 10.676 135 1c 12319 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 10.720 139 111 12305 10.683 159 1c 14301 10.720 139 11.1c+1 111 1242 14301 10.720 137 122 14310 10.720 139 11.1c+1 111 1242 14319 10.640 143 122 14310 10.720 139 114315 10.427 141 11c+2 14 14601 10.651 137 12c 14 14601 10.651 137 12c 14 14601 10.651 137 	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

.

Table 3 (continued)

Average stress			Major fatigue crack		Minor fatıgue crack		Estimated
on net area 1b/1n ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N
18000 ± 14000	14619	0.614	32	20	3	10	
10000 1 14000	15101	0.621	7/	20			
41	15105	0.619	74	20	2		
	15110	0.019	58	10+1			
	15115	0.491	4.2	10+1	1		
11	15119	0.650	42	10	1	10	
n	15401	0.030	32		5]
**	15401	0.015	56	20	2	20	
n	15/09	0.680	60	10	5	20	
11	15415	0.000	52			0	
n	15419	0.701	41	20	14	20	
	17101	0.644	61	2c+1	21		
	17105	0.524	42	2c+1	21	10+1	
11	17110	0.603	42	2c+2			
11	17116	0.424	45	2012	7	20	
11	17119	0.706	65	10+1		10+2	
11	17402	0.865	48	10+1	i i	0	
11	17406	0 406	45	10	1		
	17410	0.891	57		28		
n	17415	0.804	46	20	20	20	
n	17419	0.918	59	2c+1	9	20	
11	17901	0.604	35	2c+1	35	10	
11	17905	0.625	51	10	10	20	
11	17910	0.698	49	20	42	20	
11	17915	0.400	48	2c+1	1	20	
11	17919	0.567	40	2c	12	20	
	18202	0.859	17	1c+1	3	1c+1	
1 11	18205	0.900	52	2c+1	35	1c+1	
1	18701	0.536	15	1c	8	3	1
11	18705	0.586	29	3	8	l lc	
11	18710	0.539	27	1c+1	20	1	
	18715	0.570	22	1c+1	14	3	
11	18719	0.601	26	1c+2	1	1c	[
	19001	0.644	57	1c+2	1	1	
11	19005	0.734	56	lc+1	12	lc+1	
5 11	19010	0.613	60	3	13	lc+1	ŀ

Table 3 (continued)

Average stress			Major cr	fatigue ack	Minor f cra	fatigue ack	Estimated
on net area lb/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of ^{log} 10 ^N
18000 ± 14000 " " " " " " " " " " " " " " " " " "	19015 19019 19201 19205 19210 19215 19219	0.770 0.552 0.733 0.594 0.639 0.534 0.580	40 65 20 22 2 6 23 22	1 1c+4 1c+1 1c+1 1c+2 1c+4 2c+8	9 32 1 3 24 17 12	1c 2c+3 2 1c 1c+2 8	
18000 ± 13000	18208	0.722	66	1c+3	19	2c+1	
18000 ± 12000 " " " "	12313 15106 16206 18203 18218 19002	1.10 0.887 4.63 1.21 0.622 1.29	56 47 60 19 36 48	2c 1c 1 1c 1c 1	0 12 0 8 5 0	0 2c 0 1 1c+2 0	0.297
18000 ± 11000	18212	0.974	40	1c+2	39	1c	
18000 ± 10000 " " " "	12302 15118 16218 17118 18206 18209	1.45 0.941 1.51 1.30 2.35 4.47	48 57 43 48 48 48 32	1c 1c 1c 1c 1c 1c	0 0 1 15 0	0 0 1c 1c 0	0.238
18000 ± 9000 "" "" "" "" "" "" ""	10601 10602 10605 10610 10615 10618 11201 11205 11207 11210 11211	61.5UB 1.90 1.81 1.82 1.63 1.85 1.36 2.34 2.04 3.59 1.49	- 37 40 33 39 34 38 44 39 38 44	- 1c 1c 1c 1c 2c 1c 1c 1c 1c	- 1 0 0 0 1 0 0 2 0	- 1c 0 0 0 1c 0 1c 0	0.119**

UB = Unbroken

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

** Standard deviation calculated using J.S. Lariviere's method¹².

Average stress		Endurance	Major fatigue crack		Minor fatigue crack		Estimated
on net area 1b/in ²	Specimen No.	(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N
18000 ± 9000 "" " " " " " " " " " " " " " " " " "	11215 11219 13201 13205 13210 13215 13219 16201 16205 16210 16215 16219 16701 16705 16710 16715 16718 16719 17001 17006 17010 17015 17019 18207 18211	$\begin{array}{c} 2.11\\ 1.18\\ 2.03\\ 1.64\\ 1.95\\ 1.70\\ 2.34\\ 1.75\\ 2.08\\ 1.95\\ 2.31\\ 1.66\\ 1.55\\ 2.26\\ 1.28\\ 1.74\\ 2.13\\ 28.40B\\ 2.34\\ 2.07\\ 2.14\\ 2.28\\ 1.34\\ 3.00\\ 3.41\\ 3.00\\ 3.41\\ \end{array}$	37 36 37 42 35 47 42 48 39 38 37 55 43 43 45 40 38 - 34 39 37 40 35 29 35	1c 1c 1c 1c 1c 1c 1c 1c 1c 1c	0 2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	0 1c 0 1c 0 0 1c 0 1c 0 1c 0 1c 0 1c 0	
18000 ± 8000 " " " " "	12306 15113 15402 17106 18204 18213	1.62 1.64 1.80 2.08 207 ^{UB} 65.9	38 46 45 41 - 35	1c 1c 1c 1c - 1c		0 0 0 - 0	0.886**
18000 ± 7000 " " " "	12318 16202 17902 17906 18210 19006	3.73 5.78 2.61 3.19 205UB 143 ^{UB}	62 44 41 47 -	1c 1c 1c - -	0 0 25 36 - -	0 1c 2c -	

Table 3 (continued)

UB = Unbroken

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

** Standard deviation calculated using J.S. Lariviere's method¹².

Ţ

Table 3	(concluded)

.

÷

~

×

.....

Average stress	Specimen No.	Endurance	Major fatigue crack		Minor fatigue crack		Estimated standard
on net area 1b/in		(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of log ₁₀ N
18000 ± 6500	17913	4.01	50	Ic	1	lc	
18000 ± 6000 "	17102 17918	5.89 3.54	50 49	1c 1c	0 0	0 0	

FATIGUE TEST RESULTS -

NOTCH $K_t = 2.3$ 2L65

Average stress		T- 1	Major fa crae	atigue :k	Minor f cra	fatigue ack	Estimated
on net area 1b/in	Specimen No. 10 ⁵	Endurance 5 ^(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N
18000 ± 16000 "" " " " " " " " "	20103 21001 21005 21010 21015 21019 21101 21105 21110 21115 21119	0.529 0.581 0.536 0.575 0.618 0.657 0.582 0.413 0.545 0.542 0.603	60 54 38 43 45 46 57 45 42 58 67	1c+1 2c 1c 2c 1c 3 1c+2 1c 1c+3 1c+1	1 7 1 0 1 16 1 0 12 0	2c 1c 2c 1 1c 1 1c 1c+1 0 2c 0	0.052
18000 ± 15000	20112	0.808	42	lc	20	1c	_
18000 ± 14000 "	20102 20113	0.888 0.540	43 41	1c 1c	1	lc lc	
18000 ± 13000	20114 21102	0.901 1.10	43 48	1c 1	0 11	0 1c+1	-
18000 ± 12000 "" "" "" "" "" "" "" ""	20101 20116 21701 21705 21710 21715 21719 22202 22207 22207 22211 22215 22218	1.32 1.02 1.01 1.20 1.53 1.44 2.55 2.77 1.82 2.91 2.22 2.62	41 42 40 42 38 43 37 34 44 52 36 45	1c 1c 1c 1c 1c 1c 1c 1c 1c 1c 1c	0 3 0 0 0 0 0 0 1 0 18 0	0 1 0 0 0 0 0 1 c 0 1 c 0	0.174
18000 ± 11000 "	20115 21107	0.832 1.16	45 48	lc lc	9 0	lc 0	-

Table 4 (concluded)

Average stress		Technologia	Major d cra	Eatigue ack	Minor f	atigue ack	Estimated
on net area ₂ 1b/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N
18000 ± 10000 "	20105 20117 21702	2.57 0.916 1.77	56 41 42	1c 1c 1c	0 0 0	0 0 0	0.227
18000 ± 9000 "	20118 20119 21113 21707	79.3 ^{UB} 1.75 19.5 2.85	- 49 53 46	- 1c 1c 1c	- 0 0 0	- 0 0 0	-
18000 ± 8000 " " " " " " " "	20104 21118 22101 22105 22110 22115 22118 22201 22205 22210	2.76 3.50 5.54 4.67 3.50 6.16 5.22 17.7 31.2 190 ^{UB}	42 41 48 43 44 55 51 47 - -	1c 1 1c 1c 1c 1c 1c 1c 1c -	1 0 37 0 0 2 4 2 - -	1e 0 1c 0 1c 1c 1c 1c -	0.324**
18000 ± 7000 "	20107 21713 21718 22217	52.5 ^{UB} 4.15 10.8 204 ^{UB}	- 46 47 -	- 1c 1c -	- 0 1 -	- 0 2 -	-
18000 ± 6000	20106	156 ^{UB}	-	-	-	-	

UB = Unbroken.

з

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

** Standard deviation calculated using J.S. Lariviere's method¹².

Table 5

٤

z

۲

FATIGUE TEST RESULTS -

NOTCH $K_t = 2.3 \quad 2024 - T81$

Average stress		Endurance 5 ^(N) 10 ⁵ cycles s	Major d cra	Eatigue ack	Minor cra	fatigue ack	Estimated	
on net area ₂ 1b/in	Specimen No.		Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N	
18000 ± 16000 "	30101 30105	0.484 0.554	39 46	lc 1c+4	2 23	lc lc+2	0.169	
11	30110	0.439	62	2c	1	2	1	
ft	30115	0.450	45	2c+1	1	lc		
n	30119	0.575	38	lc	12	2c		
U .	30905	0.684	40	2c	13	lc		
II D	31405	0.835	32	lc	0	0		
11	31410	1.19	49	2c	0	0		
11	31413	1.33	33	le	0	0		
11	31419	0.782	33	lc	0	0		
18000 ± 15000	30913	0.565	43	le	1	lc	_	
18000 ± 14000	30106	0.882	34	lc	12	1c	0.380	
ti L	30903	0.978	47	lc	0	0		
Ħ	31806	8.79	38	lc	0	0 .		
11	31807	2.32	42	lc	16	lc		
"	31810	2.39	34	1c	0	0		
11 	31815	2.40	50	1	0	0		
	31818	1.95	37	lc	0	0		
n 	32003	1.72	36	lc	0	0		
17	32010	9.01	35	lc	0	0		
ft	32015	2.02	39	lc	0	0		
"	32019	3.39	45	lc	0	0		
18000 ± 13000	30914	1.04	35	lc	0	o	_	
"	30919	0.742	53	lc	1	lc		
18000 ± 12000 "	30102 30901 31418	1.48	42 46	1 1c	0	0 1c 0	-	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31905	26 7	42	10		Ŏ		
"	32006	122 ^{UB}	-	-	-	-		
18000 ± 11000	30915 30918 31402	1.27 0.922	42 47 48	1c 1c	0	0 0 0	0.694	
ι "	31402	17.0	48	1 1	0			

UB = Unbroken.

Minor fatigue Major fatigue crack crack Estimated Average stress standard Endurance Specimen Area Area on net 10⁵ cycles deviation Number* Number* area₂ No. on half on half of of of the net the net 1b/in² \log_{10}^{N} damage damage section section nuclei nuclei % 72 18000 ± 10000 30113 3.61 43 0 2c 0 11 1.55 56.1^{UB} 30902 49 lc 1 1c 11 32002 _ ---------0.542 18000 ± 9000 30118 1.94 47 14 lc 1c 30916 2.13 48 1c 0 0 30917 17.6 43 0 lc 0 18000 ± 8000 30906 2.64 56 10 2c lc -26.2^{UB} 32005 -----_ _ 18000 ± 7000 30904 4.78 53 lc 0 0 -**6**000 30907 6.12 55 lc+4 18000 ± 1c 1 -120^{UB} ----18000 ± 5000 30912 -------------

Table 5 (concluded)

UB = Unbroken

a

3

Table 6

FATIGUE TEST RESULTS -

NOTCH K_t = 2.3 A1 6% Cu

			Major cr	fatıgue a c k	Minor cr	fatigue ack	Estimated
on net area 1b/in	Specimen No.	Endurance 5 ^(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N
18000 ± 15000 "	40301 40702 40716	0.382 0.403 0.546	63 45 53	4 3 1	12 13 36	2 2 1c+5	0.084
18000 ± 14000 "" "" "" "" "" "" "" ""	40105 40110 40203 40209 40306 40307 40804 40901 41009 41010 41013 41015 41113 41015 41113 41114 41208 41212	$\begin{array}{c} 1.06\\ 0.555\\ 0.525\\ 0.741\\ 0.751\\ 0.747\\ 0.582\\ 0.648\\ 0.512\\ 0.404\\ 0.352\\ 0.593\\ 0.358\\ 0.363\\ 0.378\\ 0.358\end{array}$	58 65 59 36 65 72 51 44 41 43 49 38 50 30 47 52	1c+2 1c+3 4 1c+1 1c 1c+2 3 4 1 4 6 1c+3 3 2 1c+3 5	6 55 9 27 8 4 47 42 38 34 17 35 18 17 34 28	1 1 1 1 3 2 3 2 2 3 3 2 2 3 3 2 2 5	0.144
18000 ± 13000 "	40101 40217 40917	0.740 0.604 1.07	71 60 67	1 1 1	11 0 7	1 0 1	0.126
18000 ± 11000 "' "	40216 40318 40819 40916	3.94 2.39 1.79 1.27	80 59 65 70	1 1 1c 1	14 0 4 0	1 0 1 0	0.280
18000 ± 9000 " "	40316 40317 40902 40904	46.4 32.2 1.84 2.06	69 70 77 78	1 1 1c 1c	0 0 1 9	0 0 1 1	0.752
18000 ± 7000	40319	197 ^{UB}	-	-	-	-	-

UB = Unbroken

Table 7

FATIGUE TESTS RESULTS -

NOTCH K = 3.4 DTD 5014 t

Average stress		Endurance (N) 10 ⁵ cycles	Major d cra	fatigue ack	Minor f	Tatigue ack	Estimated
on net area 1b/in ²	Specimen No.		Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Numbe r* of damage nucle1	deviation of ^{log} 10 ^N
18000 ± 10,000 "" " "	17302 17310 17315 18302 19118	0.492 0.431 0.515 0.378 0.430	52 62 49 43 65	1c+15 2c+30 1c+12 1c+15 1c+12	42 49 48 38 54	1c+9 2c+27 17 1c+12 1c+11	0.053
18000 ± 9000 "" "" "" "" "" "" "" "" "" "" "" ""	11901 11905 11910 11915 11919 12203 12207 12801 12805 12810 12815 12819 14201 14205 14210 14215 14219 17301	0.537 0.481 0.583 0.571 0.464 0.662 0.621 0.619 0.501 0.535 0.483 0.492 0.628 0.554 0.464 0.563 0.614 0.866	57 40 48 58 50 50 41 58 52 50 46 41 59 41 41 52 48 40	1c+8 1c+6 2c+6 1c+7 11 5 4 8 1c+11 1c+12 2c+11 2c+13 1c+10 2c+13 16 12 5 1c+7	47 16 34 44 27 37 18 34 38 45 37 35 38 40 17 29 33 35	8 1c+9 1c+4 1c+9 8 5 2c+8 2c+8 2c+13 1c+14 2c+11 1c+6 6 9 1c+7 1c+3 1c+7	0.068
18000 ± 8000 "	10201 10205 10210 10215	0.945 0.782 0.735 1.12	63 52 55 59	1c+5 1c+4 4 6	5 37 31 25	1c+10 5 2 1c+10	0.090

Table 7	(continued)

	A			Major f cra	atigue .ck	Minor cr	fatigue ack	Estimated
	Average stress on net area lb/in	Specimen No.	Endur <i>a</i> nce 5 ^(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of ^{log} 10 ^N
	18000 + 8000	10219	0.987	61	1c+4	25	lc+3	
	10000 1 0000	10801	1 18	45	1c+7	8	9	
	11	10805	1 11	37	1c+3	36	3	
	H	10810	1.10	33	10+3	30	1c+1	ľ
ļ	п	10815	1.44	40		11	9	
	11	10819	1.24	44	1c+2	24	10+3	
	11	11301	1.22	54	2c+3	38	2c+6	
	n	11305	1.27	71	2c+3	24	1c+9	
	11	11310	1.36	48	2c+6	39	2c+10	
	11	11315	1.34	70	2c+3	2	1c+5	
ľ	*1	11319	1.03	43	lc	37	2c+2	
	11	12204	1.45	41	1c+1	29	1c+4	
	11	12219	1.11	44	1	29	1c+1	
	11	13301	1.18	62	4	41	1c+7	l
	11	13305	1.35	46	1c+3	5	1c+3	
	35	13310	1.46	39	2	9	1	
	11	13315	1.19	40	1c+2	30	2c+4	
	11	13319	0.911	49	1c+5	5	2c+6	
	11	15001	1.74	41	2	21	1c	
	tt	15005	1.17	44	1c+1	19	1c+5	
	11	15011	1.01	49	1c+2	32	1	
	17	15015	1.06	55	2c+2	2	8	
	H.	15018	1.14	33	2c	27	1c+2	
	11	15901	1.12	43	le	36	2c	}
	ŤŤ	15905	1.08	59	2c	21	lc	
	tī .	15910	1.06	45	lc	31	lc	
	17	15915	1.08	75	2c+3	6	1c+1	
		15919	1.10	42	lc	9	2	
		16501	0.760	54	19	21	16	
		16505	1.09	42	1	25	1c+5	
	17	16510	0.849	63	12	30	1c+9	
	п п	16515	1.03	61	2c+8	54	12	
		16519	1.11	60 5 (2c+9		1c+2	
		16801	1.28	54	IC+4	19	10+6	
		16805	1.78	38	20	14	2c+6	1
	I '' .	1 16810) 1. 58 '	' 63	lc+2	1 56	1 6	1

			Major f cra	atigue ick	Minor d cra	fatigue ack •	Estimated
Average stress on net area ₂ lb/in ²	Specimen No.	Endurance 5 ^(N) 10 cycles	Area on half the net section %	Number* of damage nucle1	Area on half the net section %	Number* of damage nuclei	standard deviation of ^{log} 10 ^N
18000 ± 8000	16815	1.37	48	lc+1	30	2c+4	
n	16819	1.33	39	lc	39	3	
	16901	0.935	36	1c+9	30	1c+6	
n	16905	0.904	61	1c+4	33	1c+3	
	16910	0.773	46	5	16	1c+15	
	16915	0.695	59	10	44	1c+8	
u	16919	1.18	73	2c+7	16	9	
11	17201	1.24	61	2c+6	49	2c+5	
11	17205	1.07	43	2c	31	1c+1	
	17210	1.46	63	1c+2	2	10	
11	17215	1.03	43	3	30	2	:
11	17219	1.27	40	lc	39	lc	
11	17303	1.19	32	1c+1	23	1c+1	
11	18301	1.72	39	lc	38	1	
11	18305	1.28	41	1c	33	1c	
11	18310	1.25	47	2c	44	2	
	18315	1.27	46	1c+1	12	10	
11	18319	1.24	45	5	11	1c+1	
11	19101	1.00	63	2c+6	48	2c+9	
"	19105	0.995	39	1c+3	33	2c+9	
11	19110	0.979	53	1c+3	28	1c+2	1
11	19115	0.878	47	1c+2	34	1c+3	
	19119	1.13	66	1c+8	24	1c+5	
11	19501	0.647	70	1c+11	20	18	
11	19505	1.09	72	1c+7	1	4	
"	19510	0.950	46	9	42	1c+12	
11	19515	0.992	53	2c+12	19	6	
"	19519	1.11	55	10	9	7	
18000 ± 7000	12217	1.90	63	1c+1	0	0	0.064
11	12218	1.55	44	1	2	2	1
11	17304	2.17	44	2c	0	0	
11	18318	1.56	45	1c	38	1c	
11	19102	1.93	50	lc+6	46	1c+3	1
11	19113	2.14	41	1c+1	2	3	

Table 7 (continued)

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

Average stress		Pnduranaa	Major fatigue crack		Minor fatigue crack		Estimated -standard
on net area 1b/in ²	Specimen No.	5(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of log ₁₀ N
18000 ± 6000 " " " "	12205 12212 17305 17311 18313 19106	3.16 3.25 9.00 2.44 2.03 2.99	40 50 55 41 49 44	1c 1c 1c 1c 1c 1c	0 6 3 39 41 17	0 1 1 1 1c 1c	0.225
18000 ± 5500	17306	2.96	43	lc	1	lc+2	
18000 ± 5000 " " " " " " " " " " " " " " " " " "	14701 14705 14711 14715 14718 15501 15502 15505 15507 15510 15514 15519 17312 17313 17801 17802 17805 17806 17810	4.87 3.80 4.38 5.52 5.31 17.5 4.73 8.81 4.42 11.2 4.34 4.20 4.74 4.81 7.63 28.2 4.58 5.24 6.13 21.2UB	45 38 52 55 47 44 45 42 42 49 52 42 81 55 59 19 42 52 47	IC IC IC IC IC IC IC IC IC IC IC IC IC I	2 31 47 1 3 1 1 29 1 1 30 0 16 0 1 0 1 38 -	3 1c 4 3 2 1c+2 1c+1 1c 1c+2 1c+2 1c+2 1c+2 1c+3 0 1c+3 0 1c+4 0 1c+2 1c	0.337*
11 11 11 11 11 11 11 11 11 11 11 11 11	17811 17815 17818 17819 18601 18605 18610 18615 18618 18619 19401 19405	212 ^{UB} 28.1 68.5 16.3 4.23 4.94 5.54 6.07 5.51 102 ^{UB} 11.2 5.12	- 46 46 44 43 51 43 57 - 48 50	- 1c 1c 1c 1c 1c 1c 1c 1c 1c	- 1 0 1 1 6 1 3 - 1	- 1c+1 2 0 1c 1c 1 1c+2 1c+2 1c+2 - 4 1	

Table 7 (continued)

UB = Unbroken

^{*} e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

^{**} Standard deviation calculated using J.S. Lariviere's method¹².

Average stress on net area2 lb/in	Specimen No.	Endurance (N) 10 ⁵ cycles	Major f cra	atigue ick	Minor fatigue crack		Estimated
			Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of ^{log} 10 ^N
18000 ± 5000 "	19410 19415 19419	3.77 4.26 3.33	49 49 49	1c 1c 1c	29 1c 34	1c 1c 1c	
18000 ± 4000 "" "" "	15002 15007 17307 18306 18607 18613	228 ^{UB} 9.95 8.73 168 _{UB} 235 _{UB} 206 ^{UB}	- 50 59 46 -	- 1c 1c - -	- 0 1 1 -	- 0 1c+1 1 -	
18000 ± 3500	11913	210 ^{UB}	-	-			
18000 ± 3000	17308	200 ^{UB}	-	-	-		

Table 7 (concluded)

Table	8
successive statements where the second statements where th	_

FATIGUE TEST RESULTS -

 $\underbrace{\text{NOTCH } K_t = 3.4 \text{ } 2L65}_{t}$

Average stress			Major ci	fatigue ack	Minor c:	fatigue cack	Estimated
on net area ₂ 1b/in ²	Specimen No.	Specimen No. 5 ^(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of ^{log} 10 ^N
18000 ± 11000 "	20205 20216 21902	0.422 0.387 0.509	42 51 44	7 6 9	39 18 37	12 10 5	0.061
18000 ± 10000 "" "" "" "" "" "" "" ""	21501 21502 21505 21506 21510 21515 21519 21901 21905 21910 21915 21919	0.466 0.450 0.386 0.531 0.466 0.443 0.465 0.678 0.678 0.567 0.668 0.662 0.696	41 43 68 42 50 45 56 70 46 51 43 67	18 1c+20 1c+13 1c+14 12 4 15 2c+11 8 4 1c+5 5	25 43 25 34 40 32 49 47 36 42 32 54	1 c+14 1 c+18 14 10 18 6 1 c+23 8 8 4 9 8	0.088
18000 ± 9000 " "	20201 20214 21818 21906	0.925 0.569 1.41 1.41	56 54 55 46	1c+1 11 1 1c	4 39 24 7	5 8 2 5	0.187
18000 ± 8000 "	20219 21513 21918	1.31 0.749 1.62	49 45 44	2c 1 1c	5 13 32	lc+1 lc+2 lc	0.170
18000 ± 7500 "" "" "" ""	20901 20905 20910 20915 20919 21401 21405	1.47 2.18 1.30 1.10 2.00 3.23 2.97	62 50 42 39 41 52 50	2 1c 3 1 1c 1c 1c	20 26 32 33 2 1 3	1c+2 1c+2 1 2 6 2 3	0.147
Average stress		T	Major cr	fatigue ack	Minor f cra	atigue ack	Estimated
--	--	---	--	---	--	---	---
on net Spea area 1b/in	Specimen No. No. No. Specimen No.		Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of ^{log} 10 ^N
18000 ± 7500 " " " " " "	21410 21415 21419 21802 21805 21810 21815 21819	3.95 1.88 2.19 1.71 4.36 2.21 1.63 2.03	49 51 53 53 54 49 44 47	1c 1c 2 1c 1c 1c 1c 2c	3 1 6 0 2 1 1 2	1 1c 4 0 2 1c+1 1c+4 2	
18000 ± 7000 " " "	20202 20215 20902 20906 21913	0.931 1.44 4.85 2.19 12.8	52 51 59 48 48	3 1 1c 1c 1c	8 3 2 3 1	1c 3 10 1c+3 2	0.451
18000 ± 6000 " " " " " "	20203 20211 20218 20913 20918 21518 21813	3.03 8.63 212 ^{UB} 2.39 3.56 2.77 12.4	58 52 - 41 50 50 52	2c 4 - 1c 1c 1c 2	0 1 	0 1c+2 - 1c 1c+4 1c 1c	0.360**
18000 ± 5000 " " " "	20206 20212 20213 20217 21418	4.40 71.7 94.4 260 ^{UB} 252	49 51 57 - -	1c 4 6 -	1 1 14 -	1 2 5 - -	_
18000 ± 4000	20204	82.2 ^{UB}	-	-	-	-	-

Table 8 (concluded)

UB = Unbroken

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore.

**Standard deviation calculated using J.S. Lariviere's method¹².

FATIGUE TEST RESULTS -

NOTCH $K_t = 3.4 2024 - TSI$

Average stress on net area 1b/in ²	Specimen No.	Endurance 5 ^(N) 10 ⁵ cycles	Major : cra Area on half the net section %	fatigue ack Number* of damage nuclei	Minor to cra Area on half the net section %	Eatigue ack Number* of damage nuclei	Estimated standard deviation of log ₁₀ N
18000 ± 12000 "	30612 30613 31118	0.269 0.262 0.353	46 48 39	15 12 1c+2	19 38 22	1c+15 13 1c+6	0.072
18000 ± 11000 "	30614 30615	0.374 0.360	52 43	12 15	25 11	8 3	-
18000 ± 10000 "" "" "" "" "" "" "" "" "" ""	30605 31101 31105 31109 31115 31119 31301 31305 31313 31315 31319	1.08 0.655 0.836 1.46 1.03 0.607 0.686 0.817 0.659 1.06 0.606	41 46 56 46 57 74 50 49 53 54	1c 1c+4 6 1 1c 2c+4 6 4 7 2 8	37 27 15 2 6 56 57 40 19 1 35	1c+1 1c+2 1c+4 3 1c 1c+10 1c+5 2c+5 6 8 1c+4	0.126
18000 ± 9000 "	30601 30616 30617	0.988 0.908 0.877	68 37 79	1c+4 1c+1 1	0 34 2	0 1c 1	0.027
18000 ± 8500 " " " " " " " " "	31602 31605 31610 31615 31619 31701 31705 31710 31715 31719	2.19 2.27 1.29 1.48 1.50 2.52 0.901 3.59 1.33 0.824	46 43 42 47 45 52 50 50 48 49	le le le le le l le le le le	1 1 4 3 2 3 26 1 4 0	4 6 3 1c+5 1c+4 7 1c 3 5 1	0.202

Average stress on net Specimen area No. 1b/in		D 1	Major cr	fatigue ack	Minor : cr:	Estimated	
	10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of ^{log} 10 ^N	
18000 ± 8000	30604	1.33	79	1	2	1c+1	0.123
11	30618	2.58	48	1c	2	2	
11 II	30619	1.55	45	1c	31	Ic	
11	31613	1.76	40	lc	1	3	
18000 + 7500	30606	18.1	46	1	0	0	0,759**
10000 1 7000	30607	2.13	62	1	Ő	Ō	
tt	31302	1.84	46	le	4	6	
79	31601	120UB	-	_		_	
tt .	31606	29.7	50	1c	10	4	ļ
"	31618	1.81	57	1	1	1	
18000 ± 7000	30602 30603	27.6 ^{UB} 44.4	- 49	- 1c	- 1	- 1c+9	-

Table 9 (concluded)

UB = Unbroken.

* e.g. 2c+3 means that there were 5 nuclei, one at each corner of the hole and three along the bore. **Standard deviation calculated using J.S. Lariviere's method¹².

Tab1e 10

FATIGUE TEST RESULTS -

NOTCH K = 3.4 A1 6% Cu

Average stress		Endurance	Major cr	fatigue ack	Minor fatıgue crack		Estimated
on net S area ₂ lb/in	Specimen No.	(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of ^{log} 10 ^N
13100 ± 10000	40404 40414 40511 40516 40601 40603 40616 40619 40706 40710 40806 40710 40806 40811 40907 40913 41002 41003 41116 41119 41202	1.55 1.38 0.879 0.874 0.658 0.933 1.30 1.40 1.02 1.56 1.40 0.900 1.37 1.51 0.846 0.653 0.480 0.870 0.656	61 55 70 54 58 56 63 67 70 61 58 54 69 60 66 47 47 61 54	2 2 1c+3 1c+2 5 1c+6 1c+1 5 2c+1 2c 2c+1 2 2c+1 2 1c+1 1c+1 1c+5 1c+4 5 2 1c+2	14 32 17 35 52 34 16 59 46 20 58 40 18 53 51 44 44 41 34	1 1 2 1 3 1 1 1 2 1 2 1 2 1 2 3 1 2 3 1 2 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	0.153
13100 ± 7000 "	40518 41117 41219	2.30 2.69 2.51	73 85 67	2c 1c 1c+1	0 34 64	0 1 1c+2	0.034
13100 ± 5000 "	40501 40617 41017	10.2 6.26 5.35	86 86 82	lc lc lc	14 12 34	1 1 1c	0.146
13100 ± 4000 "" "	40402 40417 40503 41118	8.90 14.2 10.1 98.3	90 86 84 86	lc lc lc lc	16 16 39 18	t 1 1c+1 1	0.486
13100 ± 3000	40502 41004	1010 ^{UB} 16.0	- 88	- 1c	- 17	- 1	-

÷

UB = Unbroken.

FATIGUE TEST RESULTS -

LUG SPECIMEN DTD 5014

Average stress			Major : cra	fatigue ack	Minor f cra	atigue ack	Estimated
on net Specin area ₂ No. 1b/in	Specimen No.	pecimen Endurance No. 10 ⁵ cycles		Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of ^{log} 10 ^N
15000 ± 6150 "" "" "" "" "" "" "" "" "" "" "" "" ""	50501 50505 50510 50515 50519 52001 52005 52010 52015 52019 53101 53105 53110 53115 53119 53803 53815 58401 58405 58410 58415 58419	0.967 0.765 0.871 0.796 0.804 0.564 0.509 0.599 0.638 0.811 0.727 0.754 0.673 0.779 0.817 0.561 0.624 0.554 0.556 0.516	86 78 74 83 79 80 73 76 79 73 80 82 80 76 78 70 80 77 82 78 70	6 8 1c+7 2c+5 1c+5 16 1c+6 1c+7 1c+6 8 6 12 8 8 1c+4 6 16 7 10 1c+9 6 6	62 44 74 65 71 60 58 41 54 57 63 55 59 62 45 53 64 70 66 62 70 70	7 6 1c+7 1c+5 3 10 9 6 1c+6 7 6 1c+6 1c+9 9 2 7 1c+14 2 1c+8 11 5 12	0.083
15000 ± 5110 "	53804 53817	1.02 0.943	79 74	1c+5 1c+6	53 68	2c+4 5	
15000 ± 5000 " "	50402 50411 50416 53102	1.14 0.980 1.08 1.12	83 76 78 70	3 1c+6 5 1c+3	54 67 75 68	1c+7 1c+6 5 1c+7	0.029
15000 ± 4090	53805 53818	2.88 9.54	78 80	4 1c+5	62 60	1c+1 2c	
15000 ± 4000 "	50403 50418 53107 53113	2.37 1.71 1.92 1.72	80 78 75 82	4 1c+1 2 1c+2	62 65 68 34	4 6 1c+4 1c+1	0.066

Table	11	(continued)

Average stress	Specimen	Endurance -	Major ci	Major fatigue crack		tigue k	Estimated
area ₂ No 1b/in	No. 10 ^{5 (N)} vycles		Area on half the net section Z	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	deviation of ^{log} 10 ^N
15000 ± 3075	53801	9.06	84	1	21	2	
15000 ± 3000 " " "	50405 50409 50412 50507 51513	4.86 4.52 3.86 3.45 5.10	79 78 79 76 81	3 3 2 1 2	44 69 42 68 58	2 2 1c+1 2 2	0.071
15000 ± 2045	50518 51502 51505 51510 51515 51518 52901 52905 52910 52915 52919 53807 53808 53816 55201 55205 55210 55215 55210 55215 55210 55601 55601 55605 55610 55615 55619 58101 58105 58110 58115	$\begin{array}{c} 20.0\\ 21.6\\ 23.3\\ 19.4\\ 18.7\\ 20.2\\ 16.3\\ 14.8\\ 11.1\\ 24.6\\ 25.0\\ 49.1\\ 31.1\\ 24.3\\ 16.7\\ 16.5\\ 13.5\\ 11.8\\ 15.1\\ 12.4\\ 7.67\\ 14.5\\ 14.4\\ 15.9\\ 11.2\\ 15.4\\ 16.2\\ 14.4 \end{array}$	82 81 83 79 85 85 83 82 79 86 77 87 82 74 80 81 76 76 81 79 83 80 80 82 83 76 76 73	1 1 4 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	58 32 44 53 5 25 38 36 17 49 34 49 18 39 55 33 25 35 48 16 1 67 40 45 34 33 65 40	1c 1c+1 1c+3 4 1c 5 1c+1 1c+3 1c+1 1c+2 2 1c+2 1c+2 1c+2 1c+6 1c 1 1c+1 3 7 3 6 2c 1c+2 2 1c+2 1 2 1c+1	0.157

•

¢

Average stress		Endurance	Major fatigue crack		Minor fatigue crack		Estimated
on net Specimen area No. lb/in		5 ^(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of ^{log} 10 ^N
15000 ± 2000	51819	16.6	83	lc+3	20	1	
15000 ± 1708	53806	38.9	84	1c+1	5	lc	
15000 ± 1500 " " "	50406 50408 50414 50513 51507 52902	64.4 31.1 30.0 31.2 36.4 31.2	84 84 83 79 85 83.	1c+1 1c+1 1 1 1c 2	5 8 1 68 4 1	1c+2 1c 4 2 1c+1 2c	0.128

FATIGUE TEST RESULTS -

LUG SPECIMEN 2L65

Average stress		Fndurance	Major cr	fatigue ack	Minor cr	fatigue ack	Estimated
on het area 1b/in ²	Specimen No.	5 (N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N
15000 ± 9000	61216	0.422	90	1c+6	67	1c+6	-
15000 ± 8000 "	61217 61602 61606	0.422 0.439 0.275	82 80 80	7 1c+7 3	56 50 33	8 10 11	0.113
15000 ± 7000	61218	0.668	78	1c+4	65	1c+9	-
15000 ± 6000 "' "' "' "'	61213 61601 61605 61610 61615 61619	0.810 0.757 0.484 0.618 0.583 0.636	78 82 80 80 78 86	6 12 1c+1 6 1c+5 4	67 63 46 65 71 18	6 6 1c+1 7 1c+4 1c+1	0.070
15000 ± 5000	61219	1.05	84	6	71	5	-
15000 ± 4000	61214 61618	3.09 1.43	80 81	1 1c	63 58	1 2	-
15000 ± 3500 "" "" "" "" "" "" ""	60401 60402 60405 60410 60415 60419 61301 61305 61310 61315 61319	3.56 3.27 4.41 4.10 2.10 2.47 2.67 2.61 1.94 1.96 2.48	83 84 83 80 82 80 84 79 83 82 83	4 1c+1 2 5 3 1c 1c 1c 1c 1c 1c+2 1c	40 38 3 50 3 50 28 61 60 38 39	4 5 3 2 3 1 1c+1 1c 1c+2 2c+1	0.128
15000 ± 2500 "	61215 61613	25.8 6.67	83 82	3 1 c	29 63	3 1c+1	-

Table 12 (concluded)

Average stress		Endurance	Major fatigue crack		Minor : cra	Fatigue ack	Estimated	
on net area ₂ lb/in ²	Specimen No.	(N) 10 ⁵ cycles	Area on half the net section %	Number* of damage nuclei	Area on half the net section %	Number* of damage nuclei	standard deviation of log ₁₀ N	
15000 ±2000 "" "	60413 60418 61207 61210	19.0 17.2 21.8 20.2	80 84 83 84	3 1 4 1c+3	63 42 37 1	3 1 5 1	0.044	
15000 ± 1500 "	61307 61313 61318	25.9 34.6 21.8	83 83 82	1c 1c 5	48 52 10	lc+1 1c 1	0.101	

* e.g. 2c+1 means that there were three nuclei, one at each corner of the hole and one along the bore.

.

.

.

FATIGUE TEST RESULTS -LUG SPECIMEN 2024-T81

Average stress on net area ₂ 1b/in	Specimen No.	Endurance 5 ^(N) 10 ⁵ cycl <i>e</i> s	Major cr. Area on half the net section %	fatigue ack Number* of damage nuclei	Minor for a cra Area on half the net section %	Fatigue ack Number* of damage nuclei	Estimated standard deviation of log ₁₀ N
15000 ± 9000	70716	0.307	80	lc+4	68	10	_
15000 ± 8000 "	70216 70217	0.420 0.423	89 78	6 3	60 48	1c+4 2c+7	-
15000 ± 7000	70215	0.620	79	2	65	4	-
15000 ± 6000 " " " "	70713 71201 71205 71210 71213 71219	0.698 0.663 0.744 0.651 0.636 0.597	83 77 83 82 86 80	1c 3 7 1c+5 1c+1 5	17 53 60 56 75 67	1c+5 1c+2 1c+3 1c+6 7 1c+5	0.076
15000 ± 5000 "	70214 70218	0.864 0.870	87 80	1c+2 1c+1	32 75	1c+5 1c+6	-
15000 ± 4000 "	70714 71218	1.46 1.56	78 78	lc lc	39 60	2c+1 4	_
15000 ± 3500 " " "	70701 70705 70710 70717 70719	2.56 3.32 2.77 2.31 3.53	81 84 82 82 81	1c 1c 1c 1c	46 8 8 13 14	2c+2 1c 2c+1 1c+3 2c+2	0.077
15000 ± 3000 "	70213 70219	5.61 7.28	83 87	1c 3	19 30	2c+1 3	-
15000 ± 2000 "	70715 71202 71206	12.9 22.0 12.2	85 83 84	lc+1 lc+1 1	70 68 78	lc+1 lc+2 2	0.141

FATIGUE TEST RESULTS -

LUG SPECIMEN A1 6% Cu

Average stress on net area ₂ 1b/in	Specimen No.	Endurance 5 ^(N) 10 cycles	Major cra Area on half the net section	fatigue ack Number* of damage nuclei	Minor cra Area on half the net section	fatigue ack Number* of damage nuclei	Estimated standard deviation of ^{log} 10 ^N
12000 ± 9000	80610	0.471	-	_	-	-	-
12000 ± 7000 " " " " " " "	80103 80105 80119 80403 80502 80514 80604 80611	1.19 1.06 0.924 1.12 1.17 1.12 0.953 0.938	81 83 69 74 73 73 69 69	2c+2 1 1c+1 1c 1c+2 1c+2 1c+2 2c+2 2	61 57 47 67 53 68 62 56	1c+1 2c 1c+1 1c+3 1c+1 1c 1c+2 1	0.045
12000 ± 3100	80117 80405	5.73 8.17	84 88	lc lc	41 78	1c 3	-
12000 ± 3000	80613	3.88	89	1c	40	1c	-
12000 ± 2000 """"""""""""""""""""""""""""""""""	80118 80314 80402 80416 80509 80512 80603 80606 80205	24.1 23.7 18.4 19.2 17.3 21.0 15.9 14.9	88 90 89 - 85 88 88 88	1c 1c 1c 1c 1c 1c 1c 1c	40 43 22 44 - 65 0 38	1c+1 1c 1 - 1c 0 1c	0.076
12000 ± 1300	80205	42.4	85	1c	0	0	
12000 ± 700	80419	234 ^{UB}	_	-	-	-	_

UB = Unbroken.

×.,

*

FATIGUE TEST RESULTS -JOINT SPECIMEN DTD 5014

Average stress on gross area lb/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Estimated standard deviation of log ₁₀ N
15000 ± 12080 "" "" "" "" "" "" "" "" "" ""	51101 51105 51110 51115 53401 53405 53410 53415 53418 53507 53512 53513	1.63 1.22 0.899 1.56 1.78 6.01 6.36 2.94 1.10 1.11 1.45 1.50	0.278
15000 ± 10000	53502	3.13	-
15000 ± 8960 "" "" "" "" "" "" "" "" "" "" ""	51102 51113 52509 54002 54006 54010 54015 54019 54501 54505 54510 54515 54519 54902 54902 54905 54910 54915 54919 59301 59307 59310 59315 59319	$\begin{array}{c} 2.86\\ 2.86\\ 2.92\\ 3.04\\ 2.66\\ 2.95\\ 1.92\\ 3.00\\ 2.97\\ 2.82\\ 3.76\\ 4.64\\ 3.45\\ 4.11\\ 3.55\\ 3.61\\ 4.41\\ 3.07\\ 3.24\\ 2.47\\ 2.48\\ 3.24\\ 1.74\end{array}$	0.100

Table 15 (concluded)

ą.

.

		· · · · · · · · · · · · · · · · · · ·	······································
Average stress on gross area 1b/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Estimated standard deviation of ^{log} l0 ^N
15000 ± 7920	53503	4.59	_
15000 ± 7000	50907	5,24	0.161
0	53417	4.30	
11	54407	5.29	
15000 ± 6040	53504	9.01	-
15000 ± 6000	54018	6.06	-
15000 ± 5000	53509 54513	13.6	-
		0.11	
15000 ± 4580	53514	13.6	-
"	53515	13.6	-
15000 + 4190	50902	20.0	0.164
19000 - 4190	50905	11.4	
11	50910	16.7	
11	50915	14.4	
11	50919	17.7	
11	51401	9.62	
91	51405	21.6	
11	51410	17.0	
11	51415	22.3	
11	51419	13.3	
11	52501	10.1	
n	52505	8.87	
0	52510	10.2	
	52515	11.9	
41	52519	8.00	
0	53518	23.0	
11	53519	21.2	
ti	54401	32.1	1
11	54405	9.60	1
ti	54410	16.0	
11	54415	20.7	
f1	54419	19.6	· · · · · · · · · · · · · · · · · · ·
15000 ± 3960	53506	37.0	_
15000 ± 3000	51407 54013	42.8	-
15000 ± 2920	53510	120	-
1		the second se	the second s

FATIGUE TEST RESULTS -

JOINT SPECIMEN 2L65

Average stress on gross area lb/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Estimated standard deviation of log ₁₀ N
15000 ± 11000	61205	2.90	-
15000 ± 10000 " " " "	60501 60602 60607 60610 60615 60619	3.38 1.95 2.28 1.29 2.26 2.76	0.142
15000 ± 9000	61201	2.45	-
15000 ± 7000	61204	5.60	-
15000 ± 6000	61206	6.67	-
15000 ± 5000 " " " " "	60502 60505 60510 60515 60519 60601 60605 61208	8.80 8.12 8.47 7.05 7.09 9.08 6.49 6.03	0.065
15000 ± 3000 "	60513 60613	39.1 26.0	-

FATIGUE TEST RESULTS -JOINT SPECIMEN 2024-T81

Average stress on gross area lb/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Estimated standard deviation of log₁₀N
15000 ± 11000	70203	1.52	_
15000 ± 10000 " " "	70401 70405 70410 70415 70419	2.20 1.97 2.15 2.38 1.38	0.093
15000 ± 9000	70201	3.03	_
15000 ± 8000	70204	2.28	_
15000 ± 7000 "	70205 70513	3.82 4.98	-
15000 ± 6000	70206	5.79	-
15000 ± 5000 " " " " " " " "	70207 70501 70505 70510 70515 70519 71001 71005 71010 71015 71019	7.74 7.79 8.21 7.47 7.45 4.16 8.53 8.92 10.6 11.9 7.91	0.114
15000 ± 4000	70208	15.3	-
15000 ± 3000 "	70502 70506 70518	28.6 19.4 33.0	0.119
15000 ± 2000	71013	238 ^{UB}	_

٩.

-

•

.

Average stress on gross area 1b/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Estimated standard deviation of log ₁₀ N
10980 ± 9 760 "	80201 80216	2.68 1.80	-
10980 ± 6710	80211 80213	3.08 4.89	-
10980 ± 4270	80209 80217	11.2 17.5	_
10980 <u>+</u> 3050 " " " " " " " " "	80202 80203 80309 80311 80409 80413 80504 80505 80506 80506 80511 80518	19.5 27.5 45.9 35.4 52.1 37.5 15.9 44.5 23.8 27.7 18.5	0.174

FATIGUE TEST RESULTS -JOINT SPECIMEN A1 6% Cu

Table 19

TRANSITION STRESS FROM SINGLE TO MULTIPLE NUCLEI

Material	Mean UTS 1b/in ²	Transition stress lb/in ²		
		2.3 notch	3.4 notch	
DTD 5014 2L65 2024-T81 A1 6% Cu	62830 72130 77530 66390	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	18000 ± 6700 18000 ± 8200 18000 ± 9000 13100 ± 7900	

REFERENCES

No.	Author	<u>Title, etc</u> .
1	J.R. Heath-Smith F.E. Kiddle	Influence of ageing and creep on fatigue of structural elements in an Al 6% Cu alloy. RAE Technical Report 67093 (ARC 29543) (1967)
2	M.S. Hunter W.G. Fricke	Fatigue crack propagation in aluminium alloys. Proc. A.S.T.M., Vol 56, 1038-1050 (1956)
3	R.B. Heywood	Correlated fatigue data for aircraft structural joints. ARC CP No.227 (1955)
4	A.W. Cardrick	Comparative fatigue performance of pinned-lug and clamped-lug specimens in BS-2L65 and an experimental Al 5% Mg 4% Zn 1% Mn alloy under constant and variable amplitude loading. Unpublished MOD(PE) material
5	J. Schijve F.A. Jacobs	The fatigue strength of aluminium alloy lugs. NLL-TN M2024 (1957)
6	W.T. Kirkby P.R. Edwards	Cumulative fatigue damage studies of pinned-lug and clamped-lug structural elements in aluminium alloy. RAE Technical Report 69182 (ARC 31669) (1969)
7	A.M. Stagg	An investigation of the scatter in constant amplitude fatigue test results of aluminium alloys 2024 and 7075. ARC CP No.1093 (1969)
8	T.R.G. Williams C.J. Taylor	Significance of the discontinuity in the S-N fatigue curve to high strain fatigue. In International Conference of Thermal and High Strain Fatigue. The Metals and Metallurgy Trust (1967)
9	S.M. Marco W.L. Starkey	A concept of fatigue damage. Trans ASME, May 1954, pp.617-632

REFERENCES (concluded)

÷

<u>No.</u>	Author	Title, etc.
10	F. Cicci	An investigation of the statistical
		distribution of constant amplitude fatigue
		endurances for a maraging steel.
		UTIAS Technical Note 73 (1964)
11	S.R. Swanson	An investigation of the fatigue of aluminium
		alloy due to random loading.
		UTIA Report 84 (1963)
12	J.S. Lariviere	Calculation of the operating life of helicopter
		blades.
		Note STA/VT No.165
13	P.R. Edwards	An experimental study of the stress histories at
		stress concentrations in aluminium alloy speci-
		mens under variable amplitude loading sequences.
		RAE Technical Report 70004 (ARC 32233) (1970)
14	D.J. Cartwright	Investigation in the field of fracture mechanics
	G.C. Spencer	University of Southampton (August 1969)
15	F.E. Kiddle	The residual static strength of fatigue cracked
		lug specimens of four aluminium-copper alloys.
		RAE Technical Report 73084 (1973)

Fig.lasb Notched specimens

loin Parallel

b Notch $K_t = 3.4$

Edges of holes at test section sharp and free from burrs

Surface finish:- 8 to 16 micro inches

8 to 16 micro-inches

а — ж

Fig. 2 Lug specimen

۰ I

£.

٠

• c

۴.

4

٠

٠

Fig.3 Joint specimen

a. $K_t=3.4$ —small number of damage nuclei

b. K_t=3.4 large number of damage nuclei

c. Lug

Fig.4. Appearance of fracture surfaces showing positions of damage nuclei

c. Joint (failure away from hole)

Fig.5. Typical fractures on lug and joint specimens

Fig 6 Variation of mean endurance with alternating stress for 2.3 notch in three materials

2 K

84

*

• •

¥

4

Fig. 7 Variation of endurance with alternating stress for 2.3 notch, 2024-T81 material

Fig. 8 Variation of mean endurance with alternating stress for 3.4 notch in three materials

•

×

.

.

.

• r

.

٠

• •

Fig.9 Variation of endurance with alternating stress for 3.4 notch, 2024-T81 material

• •

* 5

t i

1 b

*

٠

¢

.

1

1

.

1 x

.

Fig. 13 Variation of minimum endurance with alternating stress for 3.4 notch

2.3 notch in DTD 5014 material Fig.14 Variation of minimum endurance with alternating stress for the

Fig.15 Distribution of endurances of specimens in DTD 5014 material

Fig.16 Relationship of mean and mininum endurance curves in terms of standard deviation for the 2.3 notch in DTD 5014 material

¢

4

•

۱<u></u>

•

.

٠

Fig.18 Variation of minimum endurance with alternating stress for joint specimen

6

ı é

Fig.20 Variation of number of damage nuclei in fatigue crack area with alternating stress for 3.4 notch in DTD 5014 material

×

۴

Ł

e

*

x

5

•

٠

Fig. 21 Correlation of scatter in fatigue endurance (N) with average number of damage nuclei for 2.3 notch, 3.4 notch and lug

Fig.22 Variation of endurance with number of damage nuclei for a particular stress condition

Mean stress 18000 1b/in² all materials

•

٠

.

× 6

te

.

L

h,

.

*

Fig. 26 Correlation of transition stress level for notched specimen with ultimate tensile strength

.

.

Correlation specimen with 0.1% tensile proof stress ្ម transition .

ŧ

Fig.28 Typical variations of major and minor fatigue crack areas for notched and lug specimens

4

Fig. 29 Variation of major fatigue crack area with peak stress for $2 \cdot 3$ notch

Fig. 30 Variation of minor and total fatigue crack areas with peak stress for 2.3 notch

Fig. 31 Variation of major fatigue crack area with peak stress for 3.4 notch

Fig. 32 Variation of minor and total fatigue crack areas with alternating stress for 3.4 notch

Fig. 33 Variation of major fatigue crack area with peak stress for lug specimen

Fig. 34 Variation of minor and total fatigue crack areas with peak stress for lug specimen

> Printed in England for Her Majesty's Stationerv Office by the Royal Aurcraft Establishment, Farnborough Dd 505716 K4 8/73

ARC CP No 1259 May 1972	669 715.3 539 431
Kuddle, F E	539 219,2 539 4.013,3 620 115 842
FATIGUE ENDURANCE, CRACK SENSITIVITY AND NUCLEATION CHARACTERISTICS OF STRUCTURAL ELEMENTS IN FOUR ALLIMINUM-COPPER ALLOYS	621.886.4 621 882

Four aluminium-copper alloys in the form of notched, lug and joint specimens were tested under constant amplitude loading at ambient temperature. While there are certain differences in fatigue performance between materials, particularly in the mean endurance and scatter of notched specimens, there is little difference between the materials in terms of the minimum fatigue endurances observed. The performance of the different types of specimen are compared and conclusions are reached on the effect of fretting. The patterns of nucleation on the fatigue fracture surfaces shows that scatter in endurance is associated with the number of discrete sites of crack nucleation and that in all alloys there is a transition from single to multiple crack nucleation at a value of local stress amplitude related to the static strength. Study of fatigue crack areas at failure indicate that crack sensitivity was similar in three alloys and lower in the fourth.

ARC CP No.1259	669 715 3	ARC CP No.1259	669 715.3
May 1972	539 431	May 1972	539,431
	539 219 2		539 219 2
Kiddle, F. E	539 4.013.3	Kiddle, F. E	539 4 013 3
	620 115 842		620 115 842
FATIGUE ENDURANCE, CRACK SENSITIVITY AND	621 886,4	FATIGUE ENDURANCE, CRACK SENSITIVITY AND	621 886 4
NUCLEATION CHARACTERISTICS OF STRUCTURAL	621 882	NUCLEATION CHARACTERISTICS OF STRUCTURAL	621,882
ELEMENTS IN FOUR ALUMINIUM-COPPER ALLOYS		ELEMENTS IN FOUR ALUMINIUM-COPPER ALLOYS	

Four alumnium-copper alloys in the form of notched, lug and joint specimens were tested under constant amplitude loading at ambient temperature While there are certain differences in fatigue performance between materials, particularly in the mean endurance and scatter of notched specimens, there is little difference between the materials in terms of the minimum fatigue endurances observed The performance of the different types of specimen are compared and conclusions are reached on the effect of fretting The patterns of nucleation on the fatigue fracture surfaces shows that scatter in endurance is associated with the number of discrete sites of crack nucleation and that in all alloys there is a transition from single to multiple crack nucleation at a value of local stress amplitude related to the static strength. Study of fatigue crack areas at failure indicate that crack sensitivity was similar in three alloys and lower in the fourth Four aluminium-copper alloys in the form of notched, lug and joint specimens were tested under constant amplitude loading at imbient temperature. While there are certain differences in fatigue performance between materials, particularly in the mean endurance and scatter of notched specimens, there is little difference between the materials in terms of the minimum fatigue endurances observed. The performance of the different types of specimen are compared and conclusions are reached on the effect of fretting. The patterns of nucleation on the fatigue fracture surfaces shows that scatter in endurance is associated with the number of discrete sites of crack nucleation and that in all alloys there is a transition from single to multiple crack nucleation at a value of local stress amplitude related to the static strength. Study of fatigue crack areas at failure indicate that crack sensitivity was similar in three alloys and lower in the fourth

DETACHABLE ABSTRACT CARDS

DETACHABLE ABSTRACT CARDS

Cut here _ _

•

۲ 5 • * 5

Crown copyright

.

Т

1974

Published by HER MAJESTY'S STATIONERY OFFICE

To be purchased from 49 High Holborn, London WC1V 6HB 13a Castle Street, Edinburgh EH2 3AR 41 The Hayes, Cardiff CF1 1JW Brazennose Street, Manchester M60 8AS Southey House, Wine Street, Bristol BS1 2BQ 258 Broad Street, Birmingham B1 2HE 80 Chichester Street, Belfast BT1 4JY or through booksellers

•

C.P. No. 1259

SBN 11 470817 7