

# PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE 

AERONAUTICAL RESEARCH COUNCIL<br>CURRENT PAPERS

# Aerodynamic Data for the BAC 221 up to a Mach Number of 0.955 as Measured in Wind Tunnel Tests 

by<br>Dorothy M. Holford<br>Structures Dept., R.A.E., Farnborough

LONDON: HER MAJESTY'S STATIONERY OFFICE
1972

# AERODYNAMIC DATA FOR THE BAC 221 UP TO A MACH NUMBER OF 0.955 <br> as measured tn wind-Tunnel tests <br> by <br> Dorothy M. Ho1ford 


#### Abstract

SUMMARY The results of various wind-tunnel tests have been used to produce a set of aerodynamic data for the BAC 221 at Mach numbers from 0.2 to 0.955 . The data have been reduced to the reference condition used by BAC, viz. $S=448 \mathrm{sq} \mathrm{ft}$ and a CG position 154 in forward of the datum, on the body datum. Data for both clean and approach configurations are presented.


[^0]Page
$2.1 C_{L}(\alpha, \eta, M)$
$2.2 C_{D}\left(C_{L}^{2}, \eta, M\right)$
$2.3 \quad C_{m}(\alpha, n, M)$
$2.4 \mathrm{C}_{\mathrm{m}}$ (M)7
LATERAL DATA ..... 7
$3.1 C_{Y}\left(\alpha, R, K_{F}, M\right)$ ..... 8
3.1.1 Rigid alreraft ..... 8
3.1.2 Fin contribution ..... 8
$3.2 \mathrm{C}_{\ell}\left(\alpha, \beta, \mathrm{K}_{\mathrm{F}}, \mathrm{M}\right)$ ..... 8
3.2.1 Rigid aircraft ..... 8
3.2.2 Fin contribution ..... 9
$3.3 \mathrm{C}_{\mathrm{n}}\left(\alpha, \beta, \mathrm{K}_{\mathrm{F}}, \mathrm{M}\right)$ ..... 9
3.3.1 Rigid aircraft ..... 9
3.3.2 Fin contribution ..... 9
4 LATERAL OSCILLATORY DERIVATIVES ..... 9
4.1 Yaw rate derivatives ..... 10
$4.1 .1 \quad \ell_{r}\left(\alpha, K_{F}, M\right)$ ..... 11
4.1.2 $\mathrm{n}_{\mathrm{r}}\left(\alpha, \mathrm{K}_{\mathrm{F}}, \mathrm{M}\right)$ ..... 11
4.2 Roll rate derivatives ..... 12
$4.2 .1 \quad \ell_{p}(\alpha, M)$ ..... 12
$4.2 .2 n_{p}(\alpha, M)$ ..... 12
5 AILERON POWERS ..... 12
$5.1 \frac{\partial C_{\ell}}{\partial \xi}(\alpha, M)$ and $\frac{\partial C_{n}}{\partial \xi}(\alpha, M)$ ..... 12
$5.2 \frac{\partial \mathrm{C}_{\mathrm{m}}}{\partial \xi}(\alpha, M)$ and $\frac{\partial \mathrm{C}}{\mathrm{L}}(\alpha, M)$ ..... 12
6 RUDDER POWERS ..... 13
$6.1 \frac{\partial C_{\ell}}{\partial \zeta}, \frac{\partial C_{n}}{\partial \zeta}$ and $\frac{\partial C_{Y}}{\partial \zeta}$ for the rigid aircraft ..... 13
7 AEROELASTIC FIN AND RUDDER EFFICIENCY ..... 13
Page
CONTROL HINGE MOMENTS13
13
8.1 Filevator hinge moment
14
8.2 Aileron hinge moment
14
8.3 Rudder hinge moment
15-33
Table 1-20
34
Symbols, Definitions of Derivatives and Reference Dimensions
References ..... 36
Illustrations Figures 1-31

- Detachable abstract cards

The need for a critical look at the aeruynamic data available for the BAC 221 became apparent when Structures Deprituent RAE undertook to do the necessary calculations for the Phase II autostabiliser clearance. Phase II 1nvolves flying the aircraft with an high authority autostabiliser which is a single-channel device. The presence clearance is to a Mach number of 0.95 .

The present Report is concerned with the production of the set of aerodynamic data which will be used for response and load calculations. Results of the wind-tunnel tests reported in Refs. 1 to 5 have been used to produce aerodynamic data for the BAC 221 for Mach numbers from 0.2 to 0.955 . The tabulated data used to produce Ref. 2 were made available to the author.

The large range of flight conditions to be investigated means that aerodynamic data are required over a wide range of incidence and sideslip. For low Mach numbers the range of incidence is $0^{\circ}$ to $24^{\circ}$ while at $\mathrm{M}=0.95$ it is $0^{\circ}$ to $16^{\circ}$. Lateral data are required over the sideslip range $|\beta| \leqslant 8^{\circ}$. Over this range some of the aerodynamic coefficients vary in a high1y non-linear way. In particular, the lownspeed behaviour of $C_{n}$ indicates that there is a range of incrdences for which the aircraft should be statically unstable and this is to a large extent borne out by flight tests. Taking account of these non-linearities makes the classical derivative approach impossible since the value of the derivative obtained depends on the range chosen for the independent variable. However, the derivative approach has been retaned where possible and the derivatives are then functions of incidence and Mach number.

The coefficients or derivatives are known at various combinations of their independent variables and in the response calculations a scheme of multivariate interpolation will be used to calculate the coefficient (or derıvative) at the desired combination of the independent variables. For interpolation in $n$ variables, numerical values of the coefficient are required at the end points of an $n$-dimensional element. The end points chosen in a particular variable depend upon the variation of the coefficient with that variable.

The data to be used in the calculations are given in tabular form; these were produced by smoothing raw wind-tunnel data and interpolating and extrapolating where necessary. The data are also presented graphically
together with the appropriate wind-tunnel results. Considerable extrapoldtion has been necessary to produce data at the incidences required for high Mach numbers.

The data presented are referred to aerodynamic body axes with the exception of the oscallatory derivatives which are referred to datum body axes. In the reduction of data, the reference area has been taken as 448 sq ft , the chord as 21 ft and the span as 25 ft . The data apply to a CG position 154 in forward of datum, on the body datum. The ailerons have a $2^{\circ}$ up-rig and all control angles are measured in a plane normal to the hinge line.

Data are given for both clean and approach configurations. The approach configuration has a nose droop of $8^{\circ}$ and the undercarriage is lowered.

## 2 LONGITUDINAL DATA

Low-speed wind-tunnel results ${ }^{1}$ are available for elevator angles within the range $-10^{\circ}$ to $10^{\circ}$. At higher Mach numbers data ${ }^{3}$ are available for $\eta=2^{\circ}, 0^{\circ},-2^{\circ}$ and $-4^{\circ}$. The data are tabulated for two elevator angles $-10^{\circ}$ and $+10^{\circ}$, and were produced by linear extrapolation of the smoothed data, shown in the figures, appropriate to $n=0^{\circ}$ and $-10^{\circ}$ for $M=0,0.4$ and $n=0^{\circ}$ and $-4^{\circ}$ for the higher Mach numbers.

## $2.1 \quad C_{L}(a, n, M)$

The smoothed values, of $C_{L}$ are tabulated in Table 1 for $n= \pm 10^{\circ}$ for the Mach numbers $0,0.4,0.7,0.8,0.937$ and 0.955 . Fig. 1 shows the lowspeed ( $M=0,0.4$ ) $C_{L}$ v. $\alpha$ for $\eta=0^{\circ}$ and $-10^{\circ}$ for both clean and approach configurations. The wind-tunnel results ${ }^{1}$ are also shown on the figure.
$C_{L}$ v. a curves for $M=0.7,0.8,0.937,0.955$ are shown in Figs. 2 $\left(n=0^{\circ}\right)$ and $3\left(n=-4^{\circ}\right)$. The wind-tunnel results shown are reported in part (1) of Ref.3.
$2.2 \quad C_{D}\left(C_{L}^{2}, n, M\right)$
$C_{D}$ is tabulated in Table 2 for $n=+10^{\circ}$ and two values of $C_{L}^{2}, 0$ and 2, for the same Mach numbers as $C_{L} . C_{D}$ is assumed to be linear with $C_{L}^{2}$. Fig. 4 compares the low-speed data from Table 2 with wind-tunnel data ${ }^{1}$ for $\eta=0^{\circ}$ and $10^{\circ}$ for both clean and approach configurations. Fig. 5 shows $C_{D} v . C_{L}^{2}$ for $n=0^{\circ}$ and $-4^{\circ}$ for the Mach numbers $0.7,0.8,0.937$ and 0.955 . The wind-tunnel results shown are reported in part (ii) of Ref.3.

## $2.3 \quad \mathrm{C}_{\mathrm{m}}(\alpha, \eta, M)$

$C_{m}$ is tabulated in Table 3 for $\eta= \pm 10^{\circ}$ for the same Mach numbers as $C_{L}$. Fig. 6 shows the low speed $C_{m}$ v. $\alpha$ for $\eta=0^{\circ}$ and $-10^{\circ}$. Wind-tunnel data ${ }^{1}$ are also shown on the figure.
$C_{m}$ v. $\alpha$ curves for $M=0.7,0.8,0.937$ and 0.955 are shown in Figs. 7
( $\eta=0^{\circ}$ ) and $8\left(\eta=-4^{\circ}\right)$. The wind-tunnel results shown are reported in part (i) of Ref.3. From Figs. 7 and 8 it can be seen that considerable extrapolation was necessary to provide data for the higher incidences. From the available wind-tunnel data ${ }^{3}$ it $1 s$ evident that $C_{m}$ changes markedly as the Mach number increases. As far as possible the extrapolation has taken into account the trends predicted by the wind-tunnel results but the values of $C_{m}$ assumed for high incidence are not as reliable as those of $C_{L}$ and $C_{D}$.


The analytical expression relating $C_{m_{q}}$ with Mach number, $M$ is chosen to be

$$
\mathrm{C}_{\mathrm{m}}=-0.3936-0.032 \mathrm{M}
$$

Data given in Ref. 6 were found to be in error by a factor of 2 and the above expression approximates the corrected data as shown in Fig.9.
3 LATERAL DATA
. $C_{Y}, C_{\ell}$ and $C_{n}$ are taken to be functions of $\alpha, \beta, K_{F}$ and $M$, where $K_{F}$ is the quasi-static aeroelastic fin efficiency. The smoothed values of $C_{Y}, C_{\ell}$ and $C_{n}$ are assumed to be odd functions of $\beta$ and are tabulated for positive $\beta$ in Tables 4,5 and 6 . Data are given for two values of $K_{F}:-K_{F}=1$ giving the value of the particular coefficient for the whole aircraft with a rigid fin and $K_{F}=0$ giving the value for the aircraft without a fin. The value of the particular coefficient for the alrcraft with a flexible fin is given by

$$
\mathrm{C}_{\mathrm{K}_{\mathrm{F}}}=0+\mathrm{K}_{\mathrm{F}}\left(\mathrm{C}_{\mathrm{K}_{\mathrm{F}}=1}-\mathrm{C}_{\mathrm{K}_{\mathrm{F}}=0}\right)
$$

The fin contributions for clean and approach configurations are assumed to be identical. The elevator contributions to $C_{Y}, C_{\ell}$ and $C_{n}$ are assumed to be zero.

Low-speed wind-tunnel data are avallable from Refs. 1 and 2. At higher Mach numbeŕs the lateral data ${ }^{7}$ supplied by BAC have been used together with more recent wind-tunnel data ${ }^{3}$. At low-speeds $C_{n} v, \beta$ and $C_{\ell} v . \beta$ are markedly non-linear with $\beta$ at incidences above about $18^{\circ}$. At high Mach numbers wind-tunnel data ${ }^{3}$ are available up to $\alpha=8^{\circ}$ and the coefficients are linear with $B$. It is assumed that $C_{n}, C_{\ell}$ and $C_{Y}$ are 1inear with $B$ at incidences up to $18^{\circ}$ for all Mach numbers. Graphical data are presented in coefficient form for low Mach numbers and derivative form for the higher Mach numbers. The data in the $t a b l e s$ are $1 n$ coefficient form for all Mach numbers.

## $3.1 \quad \mathrm{C}_{\mathrm{Y}}\left(\alpha, \beta, K_{F}, M\right)$

### 3.1.1 Rigid alrcraft

Low-speed $C_{Y}$ v. B is shown in Figs. 10 and 11 for the clean and approach conflgurations respectively, together with appropriate wind-tunnel data ${ }^{1,2}$. The flattening of $C_{Y}$ with $\beta$ at high angles of sidesiip shown in Fig. 10 for $\alpha=22^{\circ}$ is supported by results from Ref. 1 with a point at $\beta=9^{\circ}$.
$y_{v}$ for Mach numbers $0.6,0.8,0.9$ and 1.0 is shown in Fig.12. The data points shown in Fig. 12 are those obtained from BAC ${ }^{7}$, which do not differ significantly from results of more recent wind-tunnel tests as ARA ${ }^{3}$.

### 3.1.2 Fin contribution

$y_{v_{f i n}}$ is shown on Fig. 12 for Mach numbers $0,0.4,0.6,0.8,0.9$ and 1.0 . The data shown were supplied by $\mathrm{BAC}^{7}$ and agree fairly well with recent windtunnel tests ${ }^{2,3}$.

## $3.2 \quad \underline{C_{\ell}\left(\alpha, \beta, K_{F}, M\right)}$

### 3.2.1 Rigid aircraft

Low-speed $C_{\ell}$ v. B is shown in Figs. 13 and 14 for $c l e a n$ and approach configurations respectively, together with appropriate wind-tunnel data ${ }^{1,2}$.
$\ell_{v}$ for the Mach numbers $0.6,0.8,0.9$ and 1.0 is shown in Fig. 15 . This is based on the low-speed data ${ }^{1,2} \quad C_{\ell} v . \beta$ which are 1 inear with $\beta$ up to about $18^{\circ}$ of incidence and wind-tunnel results ${ }^{3}$ for the higher Mach numbers where data are available up to $\alpha=8^{\circ}$.

### 3.2.2 Fin contribution

${ }^{\ell} v_{\text {fin }}$ is shown in Fig. 15 for Mach numbers up to 1.0 . ${ }^{\ell} v_{v_{\text {fin }}}$ is based on the low-speed measurements ${ }^{2}$ for the approach configuration and a few measurements at low incidence and high Mach numbers ${ }^{3}$.

## $3.3 \quad C_{n}\left(\alpha, \beta, K_{F}, M\right)$

### 3.3.1 Rigid aircraft

Low-speed $C_{n}$ v. $\beta$ is shown in Figs. 16 and 17 for $c l e a n$ and approach configurations respectively. Wind-tunnel data ${ }^{1,2}$ are also shown in the figures.
$n_{v}$ for Mach numbers $0.6,0.8,0.9$ and 1.0 is shown in Fig.18. This is based on the data ${ }^{7}$ which had been used to produce data for the fin efficiency (section 7). These fin efficiency data are the only data available for this parameter and so it is logical to retain the $n_{v}$ used to produce them. However it is worth noting that the new wind-tunnel tests ${ }^{3}$ produce similar results over the incidence range $0^{\circ}$ to $8^{\circ}$.

### 3.3.2 Fin contribution

${ }^{n} v_{\text {fin }}$ is shown in Fig. 18 for all Mach numbers under consideration. The data are again based on the BAC data ${ }^{7}$. Data from low-speed wind-tunnel tests ${ }^{2}$ for the approach configuration are also shown on Fig.18; these tests produced a rather different result in the incidence range $10^{\circ}$ to $20^{\circ}$. The BAC data ${ }^{7}$ showed a recovery of $n_{v_{f i n}}$ between $\alpha=16^{\circ}$ and $18^{\circ}$ whereas the new data ${ }^{2}$ do not. In the extrapolation from $16^{\circ}$ to $24^{\circ}$ of incidence the recovery of ${ }^{n} v_{\text {fin }}$ has been ignored and the trend adopted is that shown by the wind-tunnel tests at Bedford ${ }^{2}$.

## 4 LATERAL OSCILLATORY DERIVATIVES

Recent wind-tunnel tests ${ }^{4,5}$ have measured these oscillatory derivatives in the form of $n_{r}-n_{\dot{v}} \cos \alpha, \ell_{r}-\ell_{\dot{v}} \cos \alpha, n_{p}+n_{\dot{v}} \sin \alpha$ and $\ell_{p}+\ell_{\dot{v}} \sin \alpha$. The results ${ }^{4,5}$ are given for a flight CG 161 in forward of the datum. $n_{\dot{v}}, \ell_{\dot{v}}$ are assumed to be small so that the quantities measured can be taken as $n_{r}, \ell_{r}$ etc. The data exhibit a certain amount of scatter compared with which the difference $1 n$ values of a derivative for CG positions of 161 in and 154 in (the reference $C G$ used in this report) is small.

Therefore the smoothed data are assumed to apply to a CG 154 in forward of the datum. The model used for these tests ${ }^{4,5}$ had a $3^{0}$ up-rig on the ailerons; however, $1 t$ is assumed that the results apply equally for the $2^{\circ}$ up-rig actually employed on the aircraft.

The low-speed wind-tunnel tests ${ }^{4}$ cover a wide range of incidence ( $\alpha=0^{\circ}$ to $26^{\circ}$ ) and three sideslip angles, $0^{\circ}$ and $\pm 5^{\circ}$. There is insufficient evidence to include a variation with $B$. The results are assumed to apply for both clean and approach configurations although only a model in the clean configuration was tested. The results ${ }^{4}$ were studied in conjunction with Ref. 8 and were found to be in agreement with the trends of the theoretical and experimental data reported therein.

At high Mach numbers measurements ${ }^{5}$ were made at $\alpha=0^{\circ}, 2^{\circ}$ and $4^{\circ}$ and in some cases exhibit a considerable amount of scatter. In smoothing these data account was taken of the more consistent data from the low-speed measurements ${ }^{4}$.

The varıations of the yaw-rate derivatives and roll-rate derivatives with Mach number, referred to datum body-axes, are shown in Figs. 19 and 20 respectively. The data at $M=0.18$ are from Ref. 4 while those at high Mach numbers are from Ref.5. With reference to Fig. 19 it can be seen that the high values at $\alpha=4^{\circ}$ and a Mach number of 1.0 have been 1 gnored. Data are required up to a Mach number of 0.955 and this steep rise is assumed to occur (if in fact it does so in reality) very close to a Mach number of 1.0 . Further, this rise is not found at $\alpha=0^{\circ}$ and $\alpha=2^{\circ}$.

From Fig. 20 it can be seen that the high-speed values of $n_{p}$ at $\alpha=0^{\circ}$ have been ignored. These parlicular values are extremely high compared with the rest of the data, viz, at $\alpha=2^{\circ}$ and $4^{\circ}$, which do not show such a variation with Mach number.

### 4.1 Yaw rate derivatives

$n_{r}$ and ${ }^{\ell_{r}}$ are functions of $\alpha, K_{F}$ and $M$ where $K_{F}$ is the quasistatic aeroelastic fin efficiency. Data are tabulated for two values of $K_{F}$, 0 and 1 , and data for the aircraft with a flexible fin $1 s$ found by a method analogous to that mentioned in section 3 .

## $4.1 .1 \quad \underbrace{}_{r}\left(\alpha, K_{F}, M\right)$

The data are tabulated in Table 7.

## (a) Rigid aircraft

The smoothed data from Fig. 19 together with the low-speed wind-tunnel results ${ }^{4}$ were used to produce the varration of $\ell_{r}$ with incidence and Mach number as shown in Fig. 21. The sharp drop in low-speed $\ell_{r}$ at about $20^{\circ}$ of incidence, although unexplained, may well be genuine since a similar variation was found with tests on a model of Concorde ${ }^{4}$. However the variation of $\ell_{r}$ with incidence does not take into account this drop in $\ell_{r}$. Extrapolation to high incidence at high Mach numbers was ach1eved by assuming ${ }^{\ell} r_{\text {finoff }}$ invariant with Mach number and using the epxression for ${ }^{\ell} r_{\text {fin }}$ given in section $4.1 .1(\mathrm{~b})$.

## (b) Fin contribution

The following expression is assumed for ${ }^{\ell} r_{\text {fin }}:-$

$$
\ell_{r_{f i n}}={ }^{n} v_{f i n} \times \frac{\ell_{v_{\text {fin }}}}{y_{v_{f i n}}}
$$

where all quantities are referred to body axes. ${ }^{\ell}{ }_{r_{\text {fin }}}$ is shown in Fig. 21 .

$$
4.1 .2 \quad \mathrm{n}_{\mathrm{r}}\left(\alpha, \mathrm{~K}_{\mathrm{F}}, \mathrm{M}\right)
$$

The data are tabulated in Table 8.

## (a) Rigid alrcraft

The smoothed lines of Fig. 19 are used to provide data from $0^{\circ}$ to $4^{\circ}$ of incidence. The variation of ${ }^{n_{r}}$ with incidence and Mach number is shown in Fig. 22 together with the low-speed wind-tunnel results ${ }^{4}$. The data for high Mach numbers were extrapolated to the required incidence by consideration of the fin effect (see section $4.1 .2(b)$ ), the low-speed values, and some data supplied by $\mathrm{BAC}^{7}$.
(b) Fin contribution

The following expression is assumed for ${ }^{n^{n}} r_{\text {fin }}$ :-

$$
n_{r_{f i n}}=\frac{n_{v_{\text {fin }}^{2}}}{y_{v_{f i n}}}
$$

where all quantities are referred to body axes. ${ }^{n} r_{\text {fin }}$ is shown in Fig. 22.

### 4.2 Roll rate derivatives

## $4.2 .1 \quad \ell_{\mathrm{p}}(\alpha, M)$

The variation of $\ell_{p}$ with incidence and Mach number is shown in Fug. 23 and tabulated in Table 9. The low-speed wind-tunnel results ${ }^{4}$ are also shown in Fig. 23. The smoothed data of Fig. 20 were used to give the value of $\ell_{p}$ at $\alpha=0^{\circ}, 2^{\circ}$ and $4^{\circ}$ for Mach numbers of 0.8 and 1.0. From these data it was evident that $\ell_{p}$ was linear with $\alpha$ over the range $0^{\circ}$ to $4^{\circ}$ and the linear relationship so produced was extrapolated to the higher incidences required.

$$
4.2 .2 \quad n_{p}(\alpha, M)
$$

The variation of $n_{p}$ with incidence and Mach number is shown in Fig. 23 and tabulated in Table 10 . The low-speed wind-tunnel results ${ }^{4}$ are also shown 1n Fig.23. The smoothed data of Fig. 20 were used to produce data at high Mach numbers and low incidence. Extrapolation to high incidence at Mach numbers 0.8 and 1.0 was achieved by keeping the $\wedge_{p}$ between the Mach numbers constant at the low-incidence value throughout the incidence range.

## 5 AILERON POWERS

$5.1 \frac{\partial C_{\ell}}{\frac{\partial \xi}{}(\alpha, M)}$ and $\frac{\partial C_{n}}{\partial \xi}(\alpha, M)$
$\frac{\partial C_{\ell}}{\partial \xi}$ and $\frac{\partial C_{n}}{\partial \xi}$ are tabulated in Tables 11 and 12 for both clean and approach configurations and are also shown graphically in Fig. 24 together with appropriate wind-tunnel data ${ }^{1,3}$. The data are given for an anti-symmetric alleron deflection.
$5.2 \frac{\partial C_{m}}{\partial \xi}(\alpha, M) \quad$ and $\frac{\partial C_{L}}{\partial \xi}(\alpha, M)$
A varlation of $\frac{\partial C_{m}}{\partial \xi}$ and $\frac{\partial C_{L}}{\partial \xi}$ with Mach number, for a single aileron deflection, at low incidence was obtained from $\mathrm{BAC}^{9}$. The variation of $\frac{\partial C_{m}}{\partial \xi}$ and $\frac{\partial C_{L}}{\partial \xi}$ with incidence and Mach number is shown in Fig. 25 and tabulated in Tables 13 and 14. Data for both clean and approach configurations are shown. The variation with $\alpha$, for any Mach number, was oblained from the variation of $\frac{\partial C_{\ell}}{\partial \xi}$ with $\alpha \cdot \frac{\partial C_{m}}{\partial \xi_{2}}\left(\right.$ or $\left.\frac{\partial C_{L}}{\partial \xi}\right)$ at a particular incidence was
found by factoring $\frac{\partial C_{m}}{\partial \xi}\left(\right.$ or $\left.\frac{\partial C_{L}}{\partial \xi}\right)$ at low incidence in the ratio of $\frac{\partial C_{2}}{\partial \xi}$ at that incidence to $\frac{\partial C_{\ell}}{\partial \xi_{1}}$ between $\alpha=0^{\circ}$ and $4^{\circ}$.

6 RUDDER POWERS
$6.1 \frac{\partial C_{\ell}}{\partial \zeta_{0}}, \frac{\partial C_{n}}{\partial C_{0}}$ and $\frac{\partial C_{Y}}{\partial r}$ for the rigid aircraft
$\frac{\partial C_{\ell}}{\partial \zeta_{0}}, \frac{\partial C_{n}}{\partial \Gamma_{0}}$ and $\frac{\partial C_{Y}}{\partial \zeta}$ are tabulated in Tables 15,16 and 17 and are also shown graphically in Fig. 26 together with the appropriate wind-tunnel data ${ }^{1,3}$. From Ref. 3 it can be seen that at high Mach numbers $\frac{\partial C_{n}}{\partial \zeta}$ is constant between $\alpha=0^{\circ}$ and $a=9^{\circ}$ and extrapolation to higher incidence 1 s based on the low-speed values. At $M=0.9$ and $0.94, \frac{\partial C_{n}}{\partial \zeta}=-0.0607$ whereas $\frac{\partial C_{n}}{\partial \zeta}$ at $M=1$ $1 \mathrm{~s}-0.0640$ (Ref.3). The data shown in Fig. 26 give $\frac{\partial C_{n}}{\partial \zeta}=-0.0615$ at $M=1.0$ and $\frac{\partial C_{n}}{\partial \zeta}=-0.0607$ at $M=0.9$ so that the interpolated $\frac{\partial C_{n}}{\partial \zeta}$ at $M=0.94$ shall be facrly close to the experiment result.

At high Mach numbers $\frac{\partial C_{Y}}{\partial \zeta}$ is given by Ref. 3 only at $\alpha=2.3^{\circ}$ and is assumed constant throughout the incidence range in accordance with the lowspeed results ${ }^{\text {] }}$.

## 7 AEROELASTIC FIN AND RUDDER EFFICIENCY

These data were supplied by $B A C^{6}$ and are reproduced here. The aeroelastic fin efficiency, $K_{F}$, is presented in $T a b l e 18$ and Fig. 27.

The deroelastic rudder efficiency, $K_{R}, \quad 15$ shown in Table 19 and Fig. 28. Thus the rudder powers for the flexible aircraft are derived from the rigid aircraft values by multiplying them by $K_{R}$.

## 8 CONTROL HINGE MOMENTS

The control hinge moment derivatives are tabulated in Table 20. These are based on data supplied by $B A C^{9,10 . ~ T h e ~ d a t a ~ i n ~ R e f . ~} 9$ are based on windtunnel results ${ }^{3}$ at ARA.
8.1 Elevator hinge moment
$\frac{\partial \mathrm{C}_{\mathrm{H} \eta}}{\partial \alpha}, \frac{\partial \mathrm{C}_{\mathrm{H} \eta}}{\partial \eta}$ and $\frac{\partial \mathrm{C}_{\mathrm{H}}}{\partial \mathrm{C}_{\mathrm{H}}}$ are shown in Fig. 29 and are taken from Ref.9.
The low-speed $\frac{\partial C_{H n}}{\partial \alpha}$ shown in Fig. 29 differs from that of Ref. 9 and is based on some flight test results on the Favey Delta $2^{11}$ which have been factored
to agree with ARA results ${ }^{3}$ at $M=0.7$. ARA results ${ }^{3}$ and factored Falrey Delta 2 results are shown on Fig. 29. The two data points shown at the same Mach number in $\frac{\partial \mathrm{C}_{\mathrm{H}}}{\partial n^{n}}$ correspond to measurements on the port and starboard elevators.
8.2 Alleron hinge moment
$\frac{\partial C_{H \xi}}{\partial x}, \frac{\partial C_{H \xi}}{\partial n}$ and $\frac{\partial C_{H \xi}}{\partial \xi}$ are shown in Fi.g. 30 and are taken from Ref.9. Wind-tunnel test results ${ }^{3}$ are also shown in the figure.
8.3 Rudder hinge moment
$\frac{\partial C_{H \zeta}}{\partial \beta}$ and $\frac{\partial C_{H \zeta}}{\partial \zeta}$ are shown in Fig. 31. These are reproduced from some data supplied by $B A C^{10}$, which were based on FD2 and early BAC 221 wind-tunnel tests. No new data are available.

Table 1
CLEAN CONFIGURATION

| $\alpha^{\circ}$ | $M=0,0.4$ |  | $M=0.7$ |  | $M=0.8$ |  | $M=0.937$ |  | $M=0.955$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n=-10^{\circ}$ | $n=10^{\circ}$ | $n=-10^{\circ}$ | $n=10^{\circ}$ | $r_{1}=-10^{\circ}$ | $n=10^{\circ}$ | $\eta=-10^{\circ}$ | $n_{1}=10^{\circ}$ | $n=-10^{\circ}$ | $n=1.00$ |
| 0 | -0.120 | 0.096 | -0.140 | 0.100 | -0.142 | 0.092 | -0.163 | 0.112 | -0.168 | 0.118 |
| 2 | -0.060 | 0.166 | -0.064 | 0.166 | -0.075 | 0.180 | -0.086 | 0.194 | -0.081 | 0.189 |
| 4 | 0.008 | 0.236 | 0.013 | 0.243 | 0.008 | 0.248 | -0.003 | 0.282 | 0.019 | 0.249 |
| 6 | 0.091 | 0.323 | 0.097 | 0.337 | 0.087 | 0.347 | 0082 | 0.387 | 0.108 | 0.348 |
| 8 | 0.178 | 0.412 | 0.182 | 5.448 | 0.175 | 0.455 | 0.187 | 0.482 | 0.198 | 0.472 |
| 10 | 0.265 | 0.507 | 0.271 | 0.561 | 0.270 | 0.570 | 0.301 | 0.571 | 0.294 | 0.614 |
| 12 | 0.356 | 0.600 | 0.362 | 0678 | 0.359 | 0.709 | 0.410 | 0.690 | 0.402 | 0.762 |
| 14 | 0.448 | 0.700 | 0.456 | 0.802 | 0.463 | 0.843 | 0.523 | 0.833 | 0.533 | 0.903 |
| 16 | 0.541 | 0.811 | 0.560 | 0.926 | 0.564 | 1.000 | 0.624 | 1.004 | 0.671 | 1061 |
| 18 | 0.639 | 0.917 | 0.670 | 1.050 | 0.656 | 1.186 |  |  |  |  |
| 20 | 0.738 | 1.028 |  |  |  |  |  |  |  |  |
| 22 | 0.820 | 1.144 |  |  |  |  |  |  |  |  |
| 24 | 0.870 | 1.240 |  |  |  |  |  |  |  |  |

approach configuration $\mathrm{C}_{\mathrm{L}}$

| $\alpha^{\circ}$ | $M=0,0.4$ |  |
| ---: | ---: | ---: |
|  | $\eta=-10^{\circ}$ | $\eta=10^{\circ}$ |
| 0 | -0.103 | 0.103 |
| 2 | -0.036 | 0.168 |
| 4 | 0.034 | 0.246 |
| 6 | 0.112 | 0.324 |
| 8 | 0.194 | 0.410 |
| 10 | 0.278 | 0.502 |
| 12 | 0 | 368 |
| 14 | 0.458 | 0.592 |
| 16 | 0.552 | 0.690 |
| 18 | 0.644 | 0.900 |
| 20 | 0.128 | 1.016 |
| 22 | 0.784 | 1.092 |
| 24 | 0.840 | 1.172 |

Table 2
CLEAN CONFIGURATION $C_{D}$

| $C_{L}^{2}$ | $M=0,0.4$ |  | $M=0.7$ |  | $M=0.8$ |  | $M=0.937$ | $M=0.955$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $n=-10^{\circ}$ | $n=10^{\circ}$ |
| 0 | 0.0230 | 0.0130 | 0.0198 | 0.0038 | 0.0195 | 0.0045 | 0.0226 | 0.0050 | 0.0236 | 0.0070 |
| 2 | 0.8924 | 0.5944 | 0.8280 | 0.7180 | 0.8921 | 0.6119 | 0.9234 | 0.5720 | 0.9178 | 0.5204 |

APPROACH CONFIGURATION CD

| $c_{L}^{2}$ | $M=0,0.4$ |  |
| :---: | :---: | :---: |
|  | $n=-10^{\circ}$ | $n=10^{\circ}$ |
| 0 | 0.0550 | 0.0430 |
| 2 | 0.9084 | 0.6496 |

Table 3
CLEAN CONFIGURATION $C_{m}$

| $a^{0}$ | $M=0,0.4$ |  | $M=0.7$ |  | $H=0.8$ |  | $\mathrm{M}=0.937$ |  | $M=0.955$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{T}-10^{\circ}$ | $n=10^{\circ}$ | $n=-10^{\circ}$ | $\mathrm{n}=10^{\circ}$ | $\eta=-10^{\circ}$ | $n=10^{\circ}$ | $n=-10^{\circ}$ | $n=10^{\circ}$ | $n=-10^{\circ}$ | $\mathrm{n}=10^{\circ}$ |
| 0 | 0.0420 | -0.0356 | 0.0491 | -0.0439 | 0.0534 | -0.0466 | 0.0726 | -0.0614 | 0.0791 | -0.0679 |
| 2 | 0.0408 | -0.0356 | 0.0479 | -0.0451 | 0.0515 | -0.0475 | 0.0709 | -0.0641 | 0.0713 | -0.0637 |
| 4 | 0.0396 | -0.0376 | 0.0494 | -0.0506 | 0.0579 | -0.0541 | 0.0701 | -0.0729 | 0.0650 | -0.0650 |
| 6 | 0.0380 | -0.0404 | 0.0430 | -0.0510 | 0.0481 | -0.0589 | 0.0632 | -0.0808 | 0.0610 | -17.0770 |
| 8 | 0.0368 | -0.0432 | 0.0420 | -0.0580 | 0.0435 | -0.0615 | 0.0558 | -0.090? | 0.0576 | -0.0944 |
| 10 | 0.0362 | -0.0458 | 0.0388 | -0.0516 | 0.0382 | -0.0638 | 0.0475 | -0.0995 | 0.0520 | -0.1240 |
| 12 | 0.0360 | -0.0480 | 0.0352 | -0.6642 | 0.0309 | -0.0661 | 0.0346 | -0.1074 | 0.0210 | -0.1370 |
| 14 | 0.0366 | -0.0502 | 0.0317 | -0.0673 | 0.0238 | -0.0702 | 0.0226 | -0.1194 | -0.0005 | -0.1635 |
| 16 | 0.0374 | -0.0518 | 0.0283 | -0.0707 | 0.0170 | -0.0770 | 0.0106 | -0.1334 | -0.0250 | -0.1950 |
| 18 | 0.0382 | -0.0534 | 0.0248 | -0.0738 | 0.0099 | -0.0831 |  |  |  |  |
| 20 | 0.0400 | -0.0560 |  |  |  |  |  |  |  |  |
| 22 | 0.0474 | -0.0622 |  |  |  |  |  |  |  |  |
| 24 | 0.0440 | -0.0. 00 |  |  |  |  |  |  |  |  |

APPROACH CONFIGURATION $C_{m}$

| $\alpha^{\circ}$ | $M=0,0.4$ |  |
| :---: | :---: | :---: |
|  | $n=-10^{\circ}$ | $\eta=10^{\circ}$ |
| 0 | 0.0322 | -0.0382 |
| 2 | 0.0326 | -0.0370 |
| 4 | 0.0324 | -0.0380 |
| 6 | 0.0314 | -0.0414 |
| 8 | 0.0300 | -0.0432 |
| 10 | 0.0292 | -0.0452 |
| 12 | 0.0296 | -0.0472 |
| 14 | 0.0300 | -0.0492 |
| 16 | 0.0300 | -0.0504 |
| 18 | 0.0300 | -0.0512 |
| 20 | 0.0424 | -0.0632 |
| 22 | 0.0416 | -0.0376 |
| 24 | 0.0400 | -0.0428 |

## Table 4

## CLEAN CONEIGURATION $\mathrm{C}_{\mathrm{Y}}$

M. D, 0.4

$M=0.6$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 1 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | -0.0015 | -0.0030 | -0.0060 | -0.0091 | -0.0121 | 0.0000 | -0.0061 | -0.0123 | -0.0246 | -0.0368 | $-0.0491$ |
| 6 | 0.0000 | -0.0017 | -0.0034 | -0.0068 | -0.0103 | -0.0137 | 0.0000 | -0.0061 | -0.0123 | -0.0246 | -0.0368 | -0.0491 |
| 10 | 0.0000 | -0.0073 | -0.0047 | -0.0094 | -0.0140 | -0.0187 | 0.0000 | -0.0065 | -0.0130 | -0.0267 | -0.0392 | -0.0522 |
| 14 | 0.0000 | -0.0037 | -0.0075 | -0.0150 | -0.0224 | -0.0299 | 0.0000 | -0.0071 | -0.0142 | -0.0284 | -0.0426 | -0.0567 |
| 18 | 0.0000 | -0.0048 | -0.0097 | -0.0193 | -0.0290 | -0.0387 | 0.0000 | -0.0077 | -0.0154 | -0.0307 | -0.0461 | -0 0614 |

$M=0.8$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | $\square$ | 8 | 0 | 1 | 2 | 4 | 0 | 8 |
| 0 | 0,0000 | -0.0015 | -0.00 约 | -110020 | -4.1441 | -0101, 1 | 0. U100 | -0.000? | $-0.01 \%$ | -0.0750 | -0 03, ${ }^{\prime \prime}$ | -10,500 |
|  | 0.0000 | -0.01017 | -0.00 55 | -0.00109 | -0.0104 | -0.01 39 | 0.0000 | -0.0002 | -0.012 ${ }^{\text {c }}$ | -11.11, (1) | 11.11375 | -0.0200 |
| 10 | 0,0000 | -0.0024 | -0.0017 | -6) 0095 | -0.014 | -0.0, 101 | 1).0000 | $0.00 \mathrm{n}^{5}$ | -0 01 万3) | -0.001 | -1) 11392 | -11.04.72 |
| 14 | 0.0000 | -0.0035 | -0.0070 | -0.0140 | -0.0209 | -0.0279 | 0.0000 | -0.0008 | $-0.0101$ | -0.12214 | -0.0410 | -0.0044 |
| 18 | 0,0000 | -0.0044 | -0.0088 | -0.0176 | -0.0264 | -0.0352 | 0.0000 | -0.0072 | -0.0144 | -0.0288 | -0.0431 | -0.0575 |

Table 4 (Contd)
CLEAN CONFIGURATION
$M=0.9$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | -0,0015 | -0.0030 | -0.00h? | -0.0091 | -0.0171 | 0.0000 | $-0.0004$ | -0.0128 | -0.0255 | -0.0383 | -0.0511 |
| 6 | 0.0080 | -0.0011 | -0.0035 | -0.0070 | -0.0105 | -0.0140 | 0.0000 | -0.0064 | -0.0128 | -0.02 2 , 5 | -0.0383 | - 0511 |
| 10 | 0.0000 | -0.0024 | -0.0048 | -0.0096 | -0.0144 | -0 0193 | 0.0000 | -0.0065 | -0.0130 | -0.0261 | -0.0392 | -0.0522 |
| 14 | 0.0000 | -0.0033 | -0.0066 | -0.0133 | -0.0199 | -0.0265 | 0.0000 | -0.0067 | -0.0133 | -0,0267 | -0.0400 | -0.0533 |
| 18 | 0.0000 | -0.0041 | -0.0082 | -0.0163 | -0.0245 | -0.0327 | 0.0000 | -1).0068 | -0.0136 | -0.0272 | -0.0408 | -0.054 |

$M=1.0$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | -0.0015 | -0.0030 | -0.0061 | -0 0091 | -0. 0171 | 0.0000 | -0.0067 | -0.0134 | -0.0267 | -0.0401 | -0.0535 |
| 6 | 0.0000 | -0.0018 | -0.0037 | -0.0073 | -0.0110 | -0.0146 | 0.0000 | -0.0067 | -0.0134 | -0.0207 | -0.0401 | -0.0535 |
| 10 | 0.0000 | -0.0024 | -0.0049 | -0.0098 | -0.0146 | -0.0195 | 0.0000 | -0.0066 | -0.0133 | -0.0265 | -0.0398 | -0.0530 |
| 14 | 0.0000 | -0.0032 | -0.0064 | -0.0128 | -0.0192 | -0.0255 | 0.0000 | -0.0065 | -0.0131 | -0.0262 | -0.0393 | -0.0524 |
| 18 | 0.0000 | -0.0038 | -0.0076 | -0.0152 | -0.0229 | -0.0305 | 0.0000 | -0.0065 | -0.0129 | -0.0258 | -0.0388 | -0.0517 |

## $\underline{\text { APPROACH CONFIGURATION } C_{Y}}$

$M=0,0,4$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | -0.0060 | -0.0121 | -0.0241 | -0.0361 | -0.0482 | 0.0000 | -0.0106 | -0.0213 | -0.0426 | -0.0639 | -0.085? |
| 5 | 0.0000 | -0.0052 | -0.0105 | -0.0238 | -0.0364 | -0.0506 | 0.0000 | -0.0096 | -0.0192 | -0.0415 | -0.0630 | -0.0860 |
| 10 | ก, 01000 | -0.0058 | -0.0116 | -0 0262 | -ก.0399 | -0.0550 | 0.0000 | -0.0100 | -0.0200 | -0.0430 | -0.0650 | -0.0885 |
| 14 | 0.0000 | -0.0065 | -0.0131 | -0.0306 | -0.0479 | -0 0657 | 0.0000 | -0.0099 | -0.0198 | -0.0440 | -0.0680 | -0.0925 |
| 18 | 0.0000 | -0.0087 | -0.0183 | -0.0361 | -0.0539 | -0.0712 | 0.0000 | -0.0115 | -0.0240 | -0.0475 | -0.0710 | -0.0940 |
| 20 | 0.0000 | -0.0092 | -0.0175 | -0.0349 | -0.0524 | -0.0704 | 0.0000 | -0.0120 | -0.0230 | -0.0460 | -0.0690 | -0.0925 |
| 22 | 0.0000 | -0.0068 | -0.0146 | -0.0302 | -0.0488 | -0.0674 | 0.0000 | -0.0095 | -0.0200 | -0.0410 | -0.0650 | -0.0890 |
| 24 | 0.10000 | -0.0079 | -n. 0157 | -0.0310 | -0.0497 | -n.01789 | 0.0000 | -0.0105 | $-0.0 .190$ | -0.0415 | -0.0655 | -0.0900 |

Table 5
CLEAN CONFIGURATION $\mathrm{C}_{\ell}$
$M=0,0.4$

$M=0.6$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | 0.0002 | 0.0004 | 0.0008 | 0.0012 | 0.0016 | 0.0000 | -0.0002 | -0.0005 | -0.0010 | -0.0015 | -0.0020 |
| 6 | 0.0000 | -0.0013 | -0.0026 | -0.0052 | -0.0078 | -0.0105 | 0.0000 | -0.0015 | -0.0030 | -0.0061 | -0.0091 | -0.0121 |
| 10 | 0.0000 | -0.0023 | -0.0046 | -0.0093 | -0.0140 | -0.0186 | 0.0000 | -0.0023 | -0.0046 | -0.0093 | -0.0139 | -0.0186 |
| 14 | 0.0000 | -0.0030 | -0.0060 | -0.0119 | -0.0179 | -0.0239 | 0.0000 | -0.0027 | -0.0054 | -0.0108 | -0.0162 | -0.0216 |
| 18 | 0.0000 | -0.0031 | -0.0062 | -0.0124 | -0.0186 | -0.0248 | 0.0000 | -0.0029 | -0.0058 | -0.0116 | -0.0173 | -0.0231 |

$M=0.8$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | 0.0002 | 0.0004 | 0.0007 | 0.0011 | 0.0015 | 0.0000 | -0.0003 | -0.0005 | -0.0010 | -0.0015 | -0.0021 |
| 6 | 0.0000 | -0.0014 | -0.0028 | -0.0055 | -0.0083 | -0.0110 | 0.0000 | -0.0016 | -0.003? | -0.0064 | -0.0095 | -0.0127 |
| 10 | 0.0000 | -0.002 5 | -0.0051 | -0.0101 | -0.015? | -0.0203 | 0.0000 | -0.0025 | -0.0051 | -0.0101 | -0.0152 | -0.0202 |
| 14 | 0.0000 | -0.0032 | -0.0063 | -0.0126 | -0.0190 | -1. 02753 | 0.0000 | -0.0029 | -0.0058 | -0.0115 | -0.0173 | -0.0230 |
| 18 | 0.0000 | -0.0032 | -0.0064 | -0.0129 | -0.0193 | -0.0>58 | 0.0000 | -0.0030 | -0.00n0 | -0.0120 | -0.0181 | -0.024 |

Table 5 (Contd)
CLEAN CONFIGURATION $C_{\ell}$

$M=1.0$


APPROACH CONFIGURATION $C_{\ell}$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta$ | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | 0.0006 | 0.0011 | 0.0023 | 0.0034 | 0.0046 | 0.0000 | 0.0001 | 0.0002 | 0.0005 | 0.0007 | 00010 |
| 6 | 0.0000 | -0.0005 | -0.0017 | -0.0033 | -0.0050 | -0.0064 | 0.0000 | -0.0007 | -0.0021 | -0.0047 | -0.0062 | -0.0081 |
| 10 | 0.0000 | -0.0015 | -0.0033 | -0.0072 | -0.0107 | -0.0138 | 0.0000 | -0.0015 | -0.0033 | -0.0072 | -0.0107 | -0.0137 |
| 14 | 0.0000 | -0.0027 | -0.0053 | -0.0101 | -0.0142 | -0.0172 | 0.0000 | -0.0024 | -0.0047 | -0.0090 | -0.0125 | -0.0150 |
| 18 | 0.0000 | -0.0026 | -0.0048 | -0.0074 | -0.0112 | -0.0167 | 0.0000 | -0.0024 | -0.0044 | -0.0066 | -0.0100 | -0.0145 |
| 20 | 0.0000 | 0.0004 | -0.0018 | -0.0072 | -0.0120 | -0.0174 | 0.0000 | 0.0006 | -0.0015 | -0.0065 | -0.0110 | -0.0160 |
| 72 | 0.0000 | -0.0024 | -0.0043 | -0.0091 | -0.0155 | -0.0213 | 0.0000 | -0.0022 | -0.0040 | -0.0085 | -0.0145 | -0.0200 |
| 24 | 0.0000 | -0.0021 | -0.0052 | -0.0109 | -0.0163 | -0.0229 | 0.0000 | -0.0020 | -0.0050 | -0.0105 | -0.0157 | -0.0220 |

Table 6

## CLEAN CONFIGURATION


$M=0.6$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | h | 8 |
| 0 | 0.0000 | -0.0013 | -0.0027 | -0.0054 | -0.0081 | -0.0108 | 0.0000 | 0.0013 | 0.0027 | 0.0053 | 0.0080 | 0.0107 |
| 2 | 0.0000 | -0.0014 | -0.0028 | -0.0056 | -0.0085 | -0.0113 | 0.0000 | 0.0013 | 0.0027 | 0.0054 | 0.0081 | 0.0107 |
| 4 | 0.0000 | -0.0015 | -0.0029 | -0.0059 | -0.0088 | -0.0117 | 0.0000 | 0.0014 | 0.0028 | 0.0055 | 0.0083 | 0.0110 |
| 8 | 0.0000 | -0.0011 | -0.0022 | -0.0043 | -0.0065 | -0.0086 | 0.0000 | 0.0014 | 0.0028 | 0.0056 | 0.0085 | 0.0113 |
| 12 | 0.0000 | -0.0009 | -0.0019 | -0.0031 | -0.0056 | -0.0075 | 0.0000 | 0.0014 | 0.0028 | 0.0056 | 0.0084 | 0.0112 |
| 16 | 0.0000 | -0.0007 | -0.0013 | -0.0026 | -0.0040 | -0.0053 | 0.0000 | 0.0013 | 0.0026 | 0.0053 | 0.0079 | 0.0105 |
| 18 | 0.0000 | -0.0006 | -0.0011 | -0.0023 | -0.0034 | -0.0045 | 0.0000 | 0.0013 | 0.0026 | 0.0051 | 0.0077 | 0.0103 |

$M=0.8$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | $b$ | 8 | 6 | 1 | 2 | 4 | 0 | 8 |
| 0 | 0.0000 | -0.0013 | -0.0027 | -0.0053 | -0.0080 | -0.0107 | 17.0016 | 0.0016 | 0.0033 | 0.0065 | 0.0098 | 0.1131 |
| 2 | 0.0000 | -0.0014 | -0.0028 | -0.0056 | -0.0084 | -0.0112 | 0.0000 | 0.0016 | U. 0033 | 0.0060 | 0.0099 | 0.01132 |
| 4 | 0.0000 | $-0.00{ }^{1} 4$ | -0.0029 | -0.0057 | -0.0086 | -0.0115 | 0.0000 | 0.0016 | 0.0031 | 0.0063 | 0.0094 | 0.0126 |
| 8 | 0.0000 | -0.0011 | -0.0022 | -0.0043 | -0.0065 | -0.0086 | 0.0000 | 0.0017 | 0.0034 | 0.0068 | 0.0102 | 0.0135 |
| 12 | 0.0000 | -0.0009 | -0.0019 | -0.0038 | -0.0016 | -0.0015 | 0.0000 | 0.0015 | 0.0031 | 0.0001 | 0.0092 | 0.0123 |
| 16 | 0.0000 | -0.0007 | -0.0014 | -0.0028 | -0.0041 | -0.0055 | 0.0000 | 0.0015 | 0.0031 | 0.0062 | 0.0092 | 0.0123 |
| 18 | 5.0000 | -0.0nof | $-0.0013$ | -0.0025 | -0.0038 | -0.0051 | 0.0000 | 0.0015 | 0.0030 | 0.0050 | 0.0090 | 0.0119 |

Table 6 (Contd)
clean configuration
$C_{n}$
$M=0.9$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | -0.0013 | -0.0027 | -0.0053 | -0.0080 | -0.0107 | 0.0000 | 0.0017 | 0.0034 | 0.0067 | 0.0101 | 0.0134 |
| 2 | 0.0000 | -0.0014 | -0.0028 | -0.0055 | -0.0083 | -0.0110 | 0.0000 | 0.0017 | 0.0034 | 0.0068 | 0.0103 | 0.0137 |
| 4 | 0.0000 | -0.0014 | -0.0028 | -0.0057 | -0.0085 | -0.0114 | 0.0000 | 0.0016 | 0.0032 | 0.0064 | 0.0096 | 0.0128 |
| 8 | 0.0000 | -0.0011 | -0.0022 | -0.0043 | -0.0065 | -0.0086 | 0.0000 | 0.0018 | 0.0035 | 0.0070 | 0.0105 | 0.0141 |
| 12 | 0.0000 | -0.0010 | -0.0019 | -0.0038 | -0.005 | -0.0076 | 0.0000 | 0.0017 | 0.0035 | 0.0070 | 0.0105 | 0.0140 |
| 16 | 0.0000 | -0.000 | -0 0015 | -0.0079 | -0.0044 | -0.0059 | 0.0000 | 0.0018 | 0.0037 | 0.0073 | 0.0110 | 0.0146 |
| 18 | 0.0000 | -0.0007 | -0.0014 | -0.0028 | -0.0043 | -0.0057 | 0.0000 | 0.0018 | 0.0036 | 0.0072 | 0.0108 | 0.0144 |

$M=1.0$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | 6 | 8 | 0 | 1 | 2 | 4 | 6 | 8 |
| 0 | 0.0000 | -0.0013 | -0.0026 | -0.0053 | -0.0080 | -0.0100 | 0.0000 | 0.0011 | 0.0034 | 0.0069 | 0.0104 | 0.0138 |
| 2 | 0.0000 | -0.0014 | -0.0027 | -0.0055 | -0.0082 | -0.0110 | 0.0000 | 0.0018 | 0.0036 | 0.0072 | 0.0107 | 0.0143 |
| 4 | 0.0000 | -0.0014 | -0.0028 | -0.0056 | -0.0084 | -0.0112 | 0.0000 | 0.0017 | 0.0034 | 0.0068 | 0.0102 | 0.0136 |
| 8 | 0.0000 | -0.0011 | -0.0022 | -0.0043 | -0.0065 | -0.0086 | 0.0000 | 0.0019 | 0.0038 | 0.0076 | 0.0114 | 0.0152 |
| 12 | 0.0000 | -0.0010 | -0.0019 | -0.0039 | -0.0058 | -0.0078 | 0.0000 | 0.0020 | 0.0041 | 0.0082 | 0.0122 | 0.0163 |
| 16 | 0.0000 | -0.0008 | -0.0015 | -0.0031 | -0.0046 | -0.0062 | 0.0000 | 0.0022 | 0.0045 | 0.0089 | 0.0134 | 0.0178 |
| 18 | 0.0000 | -0.0008 | -0.0015 | -0.0031 | -0.0046 | -0.0061 | 0.0000 | 0.0022 | 0.0044 | 0.0088 | 0.0132 | 0.0176 |

APPROACH CONFIGURATION $\mathrm{C}_{\mathrm{n}}$
$M=0,0.4$

|  | $K_{F}=0$ |  |  |  |  |  | $K_{F}=1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 4 | も | 8 | 0 | 1 | 2 | 4 | も | 8 |
| 0 | 0.0000 | -0 0023 | -0.0045 | -0.0093 | -0.0130 | -0.0144 | 0.0000 | 0.0003 | 0.0008 | 00013 | 0.0029 | 0.0068 |
| 2 | 0.0000 | -0.0024 | -0.0047 | -0.0097 | -0.0135 | -0.0151 | 0.0000 | 0.0003 | 0.0008 | 0.0073 | 0.0029 | 0.0068 |
| 4 | 0.0000 | -0.002b | -0.0047 | -0.0098 | -0.0137 | -0.0154 | 0.0000 | 0.0003 | 0.0008 | 0.0013 | 0.0029 | 0.0068 |
| 8 | 0.0000 | -0.0021 | -0.0040 | -0.0083 | -0.0114 | -0.0123 | 0.0000 | 0.0003 | 0.0008 | 0.0013 | 0.0029 | 0.0068 |
| 12 | 0.0000 | -0.0018 | -0.0034 | -0.0069 | -0.0099 | -0.0107 | 0.0000 | 0.0004 | 0.0010 | 0.0020 | 0.0034 | 0.0070 |
| 16 | 0.0000 | -0.0008 | -0.0018 | -0.0042 | -0.0064 | -0.0080 | 0.0000 | 0.0010 | 0.0018 | 0.0030 | 0.0044 | 0.0064 |
| 18 | 0.0000 | -0.0011 | -0.0021 | -0.0048 | -0.0076 | -0.0103 | 0.0000 | 0.0005 | 0.0012 | 0.0018 | 0.0023 | 0.0030 |
| 20 | 0.0000 | -0.0021 | -0.0031 | -00053 | -0.0074 | -0.0097 | 0.0000 | -0.0006 | -0.0001 | 0.0007 | 0.0016 | 0.0024 |
| 22 | 0.0000 | -0.0024 | -0.0047 | -0.0075 | -0.0094 | 0.0175 | 00000 | -0.0010 | -0.0020 | -0.0070 | -0.0012 | -0.0005 |
| 24 | 0.0000 | -0.00>4 | -0.0048 | -0.008t | -10.0119 | -0.0146 | 0.0000 | -0.0017 | -0.0024 | -0.003 | -0.0046 | -0.0048 |

Table 7
$\ell_{r}$ FOR BOTH CLEAN AND APPROACH CONFIGURATIONS
BODY AXES

|  | $M=0,0.4$ |  | $M=0.6$ |  | $M=0.8$ |  | $M=1.0$ |  |
| ---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | $K_{F}=0$ | $K_{F}=1$ | $K_{F}=0$ | $K_{F}=1$ | $K_{F}=0$ | $K_{F}=1$ | $K_{F}=0$ | $K_{F}=1$ |
| 0 | -0.0292 | 0.0000 | -0.0292 | 0.0000 | -0.0292 | 0.0028 | -0.0292 | 0.0276 |
| 4 | 0.0185 | 0.0522 | 0.0185 | 0.0522 | 0.0185 | 0.0550 | 0.0185 | 0.0703 |
| 8 | 0.0710 | 0.0985 | 0.0710 | 0.0985 | 0.0710 | 0.1065 | 0.0710 | 0.1191 |
| 12 | 0.1247 | 0.1466 | 0.1247 | 0.1495 | 0.1247 | 0.1533 | 0.1247 | 0.1 .803 |
| 16 | 0.1795 | 0.1969 | 0.1795 | 0.2021 | 0.1795 | 0.2094 | 0.1795 | 0.2596 |
| 20 | 0.2410 | 0.2626 | 0.2410 | 0.2704 | 0.2410 | 0.2884 |  |  |
| 24 | 0.4284 | 0.4485 | 0.4284 | 0.4581 |  |  |  |  |

Table 8
$n_{r}$ FOR CLEAN AND APPROACH CONFIGURATIONS
BODY AXES

|  | $M=0,0.4$ |  | $M=0.6$ |  | $M=0.8$ |  | $M=1.0$ |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\alpha$ | $K_{F}=0$ | $K_{F}=1$ | $K_{F}=0$ | $K_{F}=1$ | $K_{F}=0$ | $K_{F}=1$ | $K_{F}=0$ | $K_{F}=1$ |
| 0 | -0.1630 | -0.3380 | -0.1630 | -0.3380 | -0.1475 | -0.3610 | -0.0491 | -0.2626 |
| 4 | -0.1430 | -0.3380 | -0.1430 | -0.3380 | -0.1393 | -0.3610 | -0.0409 | -0.2626 |
| 8 | -0.1916 | -0.3390 | -0.1916 | -0.3390 | -0.1634 | -0.3610 | -0.0540 | -0.2714 |
| 12 | -0.2136 | -0.3610 | -0.2010 | -0.3610 | -0.1830 | -0.3661 | -0.0670 | -0.3311 |
| 16 | -0.3070 | -0.4267 | -0.2832 | -0.4267 | -0.2400 | -0.4231 | -0.0800 | -0.4058 |
| 20 | -0.4784 | -0.5689 | -0.4529 | -0.5689 | -0.3739 | -0.5500 |  |  |
| 24 | -0.7181 | -0.7769 | -0.6938 | -0.7767 |  |  |  |  |

Table 9
$\ell$ FOR CLEAN AND APPROACH CONFIGURATIONS BODY AXES

| $\alpha$ | $0,0.4,0.6$ | 0.8 | 1.0 |
| :---: | :---: | :---: | :---: |
| 0 | -0.1258 | -0.1258 | -0.1368 |
| 4 | -0.1422 | -0.1641 | -0.1851 |
| 8 | -0.1597 | -0.2025 | -0.2334 |
| 12 | -0.1772 | -0.2408 | -0.2817 |
| 16 | -0.1936 | -0.2792 | -0.3300 |
| 20 | -0.2111 | -0.3175 |  |
| 24 | -0.2276 |  |  |

Table 10
$n_{p}$ FOR CLEAN AND APPROACH CONFIGURATIONS

BODY AXES

| $\alpha$ | M | $0,0.4,0.6$ | 0.8 |
| :---: | :---: | :---: | :---: |
| 0 | 0.0120 | 0.0180 | 0.0503 |
| 4 | -0.0059 | 0.0000 | 0.0328 |
| 8 | -0.0175 | -0.0115 | 0.0212 |
| 12 | -0.0219 | -0.0159 | 0.0168 |
| 16 | -0.0214 | -0.0154 | 0.0180 |
| 20 | -0.0167 | -0.0107 |  |
| 24 | -0.0081 |  |  |

Table 11
CLEAN CONFIGURATION $\frac{\partial C_{\ell}}{\partial \xi}$

| $\alpha M$ | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -0.0831 | -0.1050 | -0.1075 | -0.1178 |
| 4 | -0.0831 | -0.1050 | -0.1075 | -0.1178 |
| 8 | -0.0831 | -0.1050 | -0.1075 | -0.1040 |
| 12 | -0.0831 | -0.0962 | -0.1075 | -0.0903 |
| 16 | -0.0831 | -0.0875 | -0.0975 | -0.0765 |
| 20 | -0.0733 | -0.0780 | -0.0875 |  |
| 24 | -0.0638 |  |  |  |

$\underline{\text { APPROACH CONFIGURATION } \frac{\partial C_{\ell}}{\partial \xi}}$

| $\alpha$ | $0,0.4$ |
| :---: | :---: |
| 0 | -0.0882 |
| 4 | -0.0882 |
| 8 | -0.0882 |
| 12 | -0.0882 |
| 16 | -0.0840 |
| 20 | -0.0760 |
| 24 | -0.0638 |

Table 12
CLEAN CONFIGURATION $\frac{\partial C_{n}}{\partial \xi}$

| $\alpha$ | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -0.0235 | -0.0242 | -0.0273 | -0.0352 |
| 4 | -0.0137 | -0.0137 | -0.0157 | -0.0202 |
| 8 | -0.0040 | -0.0033 | -0.0040 | -0.0052 |
| 12 | 0.0055 | 0.0072 | 00075 | 0.0100 |
| 16 | 0.0152 | 0.0180 | 0.0195 | 0.0250 |
| 20 | 0.0248 | 0.0282 | 0.0310 |  |
| 24 | 0.0342 |  |  |  |

APPROACH CONFIGURATION $\frac{\partial C_{n}}{\partial \xi}$

| $\alpha$ | $M$ |
| :---: | :---: |
| $\alpha$ | $0,0.4$ |
| 0 | -0.0165 |
| 4 | -0.0070 |
| 8 | 0.0025 |
| 12 | 0.0122 |
| 16 | 0.0218 |
| 20 | 0.0310 |
| 24 | 0.0406 |

Table 13
CLEAN CONFIGURATION $\frac{\partial \mathrm{C}_{\mathrm{m}}}{\partial \xi}$

| $\alpha$ | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -0.0835 | -0.0860 | -0.0880 | -0.0725 |
| 4 | -0.0835 | -0.0860 | -0.0880 | -0.0725 |
| 8 | -0.0835 | -0.0860 | -0.0880 | -0.0640 |
| 12 | -0.0835 | -0.0788 | -0.0880 | -0.0556 |
| 16 | -0.0835 | -0.0717 | -0.0798 | -0.0471 |
| 20 | -0.0736 | -0.0639 | -0.0716 |  |
| 24 | -0.0641 |  |  |  |

APPROACH CONFIGURATION $\frac{\partial \mathrm{m}}{\partial \xi}$

| $\alpha$ | $0,0.4$ |
| :---: | :---: |
| 0 | -0.0835 |
| 4 | -0.0835 |
| 8 | -0.0835 |
| 12 | -0.0835 |
| 16 | -0.0795 |
| 20 | -0.0719 |
| 24 | -0.0604 |

Table 14
CLEAN CONFIGURATION $\frac{\partial C_{L}}{\partial \xi}$

| $\alpha$ | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| ---: | :---: | :---: | :---: | :---: |
| 0 | 0.1800 | 0.1820 | 0.1580 | 0.1250 |
| 4 | 0.1800 | 0.1820 | 0.1580 | 0.1250 |
| 8 | 0.1800 | 0.1820 | 0.1580 | 0.1103 |
| 12 | 0.1800 | 0.1668 | 0.1580 | 0.0958 |
| 16 | 0.1800 | 0.1517 | 0.1433 | 0.0812 |
| 20 | 0.1587 | 0.1352 | 0.1286 |  |
| 24 | 0.1381 |  |  |  |

APPROACH CONFIGURATION $\frac{\partial C_{L}}{\partial \xi}$

| $\alpha$ | $0,0.4$ |
| ---: | :--- |
| 0 | 0.1800 |
| 4 | 0.1800 |
| 8 | 0.1800 |
| 12 | 0.1800 |
| 16 | 0.1714 |
| 20 | 0.1551 |
| 24 | 0.1301 |

Table 15
CLEAN CONFIGURATION $\frac{\partial C_{\ell}}{\partial \zeta}$

| $\alpha$ | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| ---: | ---: | ---: | ---: | :---: |
| $\alpha$ | 0.0078 | 0.0120 | 0.0140 | 0.0150 |
| 4 | 0.0034 | 0.0078 | 0.0081 | 0.0084 |
| 8 | -0.0010 | 0.0042 | 0.0044 | 0.0047 |
| 12 | -0.0044 | 0.0005 | 0.0016 | 0.0034 |
| 16 | -0.0099 | -0.0030 | -0.0012 | 0.0022 |
| 20 | -0.0130 | -0.0060 | -0.0038 |  |
| 24 | -0.0110 |  |  |  |

$\underline{\text { APPROACH CONEIGURATION } \frac{\partial C_{\ell}}{\partial \zeta}}$

| $\alpha$ | $0,0.4$ |
| :---: | :---: |
| 0 | 0.0054 |
| 4 | 0.0012 |
| 8 | -0.0030 |
| 12 | -0.0071 |
| 16 | -0.0113 |
| 20 | -0.0157 |
| 24 | -0.0172 |

Table 16
CLEAN CONFIGURATION $\frac{\partial C_{n}}{\partial \zeta}$

| $\alpha$ | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -0.0504 | -0.0574 | -0.0607 | -0.0615 |
| 4 | -0.0504 | -0.0574 | -0.0607 | -0.0615 |
| 8 | -0.0504 | -0.0574 | -0.0607 | -0.0615 |
| 12 | -0.0504 | -0.0574 | -0.0607 | -0.0615 |
| 16 | -0.0504 | -0.0574 | -0.0607 | -0.0615 |
| 20 | -0.0504 | -0.0574 | -0.0607 | -0.0615 |
| 24 | -0.0590 |  |  |  |

$\underline{\text { APPROACH CONFIGURATION } \frac{\partial C_{n}}{\partial \zeta}}$

| $\alpha$ | $0,0.4$ |
| :---: | :---: |
| 0 | -0.0458 |
| 4 | -0.0458 |
| 8 | -0.0458 |
| 12 | -0.0458 |
| 16 | -0.0458 |
| 20 | -0.0458 |
| 24 | -0.0549 |

Table 17

| CLEAN AND APPROACH CONFIGURATIONS $\frac{\partial C_{Y}}{\partial \zeta}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $0,0.4$ | 0.7 | 0.9 | 1.0 |
| Configuration |  | 0.0795 | 0.0820 | 0.0834 |
| Clean <br> Approach | 0.0714 |  | 0.0943 |  |

Table 18
FIN EFFICIENCY $\mathrm{K}_{\mathrm{F}}$

| M | 0.2 | 0.4 | 0.6 | 0.8 | 0.95 | 1.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.970 | 0.900 | 0.800 | 0.686 | 0.592 | 0.561 |
| 3000 | 0.980 | 0.924 | 0.849 | 0.759 | 0.679 | 0.652 |
| 6000 | 0.989 | 0.948 | 0.890 | 0.822 | 0.758 | 0.735 |
| 9000 | 0.995 | 0.965 | 0.925 | 0.876 | 0.826 | 0.807 |
| 12000 | 0.998 | 0.979 | 0.954 | 0.922 | 0.886 | 0.870 |
| 14000 | 0.999 | 0.986 | 0.969 | 0.945 | 0.918 | 0.905 |

Table 19
RUDDER EFFICIENCY $K_{R}$

|  | $0.2,0.4,0.6$ | 0.8 | 0.95 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1.000 | 0.725 | 0.393 | 0.203 |
| 3000 | 1.000 | 0.787 | 0.519 | 0.368 |
| 6000 | 1.000 | 0.844 | 0.629 | 0.516 |
| 9000 | 1.000 | 0.893 | 0.727 | 0.643 |
| 12000 | 1.000 | 0.933 | 0.811 | 0.759 |
| 14000 | 1.000 | 0.953 | 0.854 | 0.815 |

Table 20

CONTROL HINGE MOMENTS

## Elevator

| $M$ | $\frac{\partial \mathrm{C}_{\mathrm{Hn}}}{\partial \alpha}$ | $\frac{\partial \mathrm{C}_{\mathrm{Hn}}}{\partial \eta}$ | $\frac{\partial \mathrm{C}_{\mathrm{Hn}}}{\partial \xi}$ |
| :--- | :--- | :--- | :--- |
| 0 | -0.185 | -0.367 | -0.167 |
| 0.4 | -0.185 | -0.367 | -0.167 |
| 0.6 | -0.185 | -0.367 | -0.167 |
| 0.8 | -0.095 | -0.367 | -0.185 |
| 0.955 | -0.214 | -0.608 | -0.333 |

## Aileron

| $M$ | $\frac{\partial C_{H \xi}}{\partial \alpha}$ | $\frac{\partial C_{H \xi}}{\partial \eta}$ | $\frac{\partial C_{H \xi}}{\partial \xi}$ |
| :--- | :---: | :---: | :---: |
| 0 | -0.480 | -0.170 | -0.400 |
| 0.4 | -0.480 | -0.170 | -0.400 |
| 0.6 | -0.480 | -0.170 | -0.400 |
| 0.8 | -0.480 | -0.170 | -0.400 |
| 0.955 | -0.656 | -0.387 | -0.545 |

## Rudder

| $M$ | $\frac{\partial \mathrm{C}_{\mathrm{H} \zeta}}{\partial \beta}$ | $\frac{\partial \mathrm{C}_{\mathrm{H} \zeta}}{\partial \zeta}$ |
| :--- | :--- | :--- |
| 0 | -0.240 | -0.300 |
| 0.4 | -0.240 | -0.300 |
| 0.6 | -0.240 | -0.270 |
| 0.8 | -0.240 | -0.230 |
| 0.955 | -0.405 | -0.323 |


| $\mathrm{C}_{\text {D }}$ | $\text { drag coefficient } \frac{D^{\text {Symbo1s }}}{\frac{1}{2} \rho v^{2} s}$ |
| :---: | :---: |
| $\mathrm{C}_{\mathrm{H} \zeta}$ | rudder hinge moment coefficient $\frac{\mathrm{H}_{\zeta}}{\frac{1}{2} \rho \mathrm{~V}^{2} \mathrm{~S}_{\mathrm{R}} \mathrm{c}_{\mathrm{R}}}$ |
| $\mathrm{C}_{\mathrm{Hn}}$ | elevator hinge moment coefficient $\frac{H_{n}}{\frac{1}{2} \rho V^{2} S_{E} C_{E}}$ |
| $C_{H \xi}$ $C_{L}$ $C_{Y}$ | alleron hinge moment coefficient $\frac{{ }^{H} \xi}{\frac{1}{2} \rho V^{2} S_{A} A^{\prime}}$ lif coefficient $\frac{L}{\frac{1}{2} \rho V^{2} S}$ side force coefficient $\frac{Y}{\frac{1}{2} \rho V^{2} S}$ |
| $\mathrm{C}_{\ell}$ | rolling moment coefficient $\frac{\mathcal{L}}{\frac{1}{2} \rho \mathrm{~V}^{2} \mathrm{Sb}}$ |
| $\mathrm{C}_{\mathrm{m}}$ | pitching moment coefficient $\frac{M}{\frac{1}{2} \rho V^{2} \mathrm{Sc}}$ |
| ${ }_{\text {Cn }}^{\text {n }}$ | yawing moment coefficient $\frac{N}{\frac{1}{2} \rho V^{2} S b}$ |
| H | altitude |
| $\mathrm{H}_{5}$ | rudder hinge moment |
| $\mathrm{H}_{\mathrm{n}}$ | elevator hinge moment |
| $\mathrm{H}_{\xi}$ | aileron hinge moment |
| $\mathrm{K}_{\mathrm{F}}$ | aeroelastic fin efficiency |
| $\mathrm{K}_{\text {R }}$ | aeroelastic rudder efficiency |
| L | 11 ft |
| $\mathcal{L}$ | rolling moment |
| M | pitching moment |
| N | yawing moment |
| $\underset{b}{s, S_{A}, S_{E}, S_{R}}$ | reference areas of wing, aileron, elevator and rudder span |
| $c, c_{A}, c_{E}, c_{R}$ | aerodynamic mean chord, alleron chord, elevator chord and rudder chord |
| p | rate of roll |
| $q$ | rate of pitch |
| r | rate of yaw |

Symbols (Contd)

| $\alpha$ | angle of incidence |
| :--- | :--- |
| $\beta$ | angle of sideslip |
| $\zeta$ | rudder angle |
| $\eta$ | elevator angle |
| $\xi$ | aileron angle |
| $\rho$ | air density |

Definitions of derivatives and their relation
to aero-normalised derivatives
$C_{m_{q}}=\frac{\partial C_{m}}{\partial\left(\frac{q \mathrm{C}}{V}\right)}=\breve{M}_{q}$
$y_{v}=\frac{\partial}{\frac{1}{2}} \frac{\partial C_{Y}}{\partial B}=\frac{1}{2} \check{Y}_{v}$
$\ell_{v}=\frac{\partial C_{\ell}}{\partial \beta}=\check{L}_{v}$
$n_{v}=\frac{\partial C_{n}}{\partial \beta}=\breve{N}_{v}$
$n_{r}=\frac{\partial C_{n}}{\partial\left(\frac{r b}{2 V}\right)}=2 \stackrel{N}{r}_{r}$
$\ell_{\mathbf{r}}=\frac{\partial \mathrm{C}_{\ell}}{\partial\left(\frac{r \mathrm{~b}}{2 \mathrm{~V}}\right)}=2 \stackrel{\mathrm{~L}}{\mathbf{r}}$
$n_{p}=\frac{\partial C_{n}}{\partial\left(\frac{p b}{2 V}\right)}=2 \check{N}_{p}$
$\ell_{p}=\frac{\partial C_{\ell}}{\partial\left(\frac{\mathrm{pb}}{2 \mathrm{~V}}\right)}=2 \breve{\mathrm{~L}}_{\mathrm{p}}$
Reference dimensions
$\mathrm{S}=448 \mathrm{sq} \mathrm{ft}$
$\mathrm{b}=25 \mathrm{ft}$
$c=21 \mathrm{ft}$
Aileron reference volume $S_{A} C_{A}=67 \mathrm{ft}^{3}$
Elevator reference volume $S_{E} C_{E}=110.5 \mathrm{ft}^{3}$
Rudder reference volume $S_{R}{ }^{C}{ }_{R}=16.56 \mathrm{ft}^{3}$
CG position:- 154 in forward of datum, on the body datum.

## REFERENCES

No.

Title, etc.
Type 221 Model A. Stability and control tests at hagh incidence and with ground effect. BAC (Filton) Report WT 488 Low-speed wind-tunnel tests on a $1 / 7$ scale model of the BAC 221 RAE Technical Report 69052 (1969)

Tests in the ARA transonic tunnel on a $1 / 12$ scale model of the BAC 221 aircraft.
(1) Longitudinal and lateral stability; aileron and rudder power. ARA Model Test Note M 8/3 (1967)
(ii) Drag and control hinge moments.

ARA Model Test Note M 8/4 (1967)
(iii) Summary of longitudinal and lateral stability, drag, control power and control hinge moment results.

ARA Model Test Note M 8/5 (1967)
Low-speed wind-tunnel measurements of the oscillatory lateral aerodynamic derivatives of a BAC 221 model and comparison of results with similar Concorde and HP 115 data. RAE Technical Report 70095 (1970)

Transonic wind-tunnel measurements of the oscillatory lateral aerodynamic derıvatives of a BAC 221 model.
RAE Technical Report 71098 - ARC 33331 (1971)
Unpublished document. British Aircraft Corporation FW/SDO-5/7245 (1967) Unpublished document. Brıtish Aircraft Corporation Aero IS/221/3 (1965) The calculation of lateral stability derıvatives of slender wings at incidence, includıng fin effectiveness and correlation with experiment. RAE Report Aero 2647 (1961)

保

Fig. $2 C_{L}$ v. a for $M=0.7,0.8,0.937,0.955\left(\eta=0^{0}\right)$
促

## Fig. $3 C_{L} v . \alpha$ for $M=0.7,0.8,0.937,0.955\left(\eta=-4^{\circ}\right)$

l
Fig. 4 Low-speed $\mathrm{C}_{\mathrm{D}} \mathrm{V} . \mathrm{Cl}_{\text {I }}^{2}$
促

Fig. $5 C_{D} v . C\left\{\right.$ for $\eta=0^{\circ}$ and $-4^{\circ}, M=0.7,0.8,0.937$ and 0.965







$1 / 4$

| 1 |
| :--- |
|  |
| 4 |
| 4 |



 (

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\ldots$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\cdots$ |  |  |  |  |  |  |  |  |  |  |  |
| \# |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |
|  | 002 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\#$ |  |  |  |  |  |  | $\square$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |  |
|  | 60 |  |  |  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |  |
|  | $\#$ |  |  |  |  | $\square$ |  |  |  | -2, ${ }^{3}$ |  |  |  |  |  |
|  |  |  | - ABA | meata |  |  |  |  |  |  |  |  |  |  | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\square$ |  | - |  |  |  |  |  |  |  |  |  |  |  | + |
|  | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\square^{1+1}$ |  | $\cdots$ | ${ }^{0.027}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 0,069 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \# |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Fig. $7 C_{m} v . \alpha$ for $M=0.7,0.8,0.937,0.955\left(\eta=0^{\circ}\right)$
3


 (


Fig. $9 \quad C_{m_{q}}$ v. Mach number


Fig. 10 Low-speed $C_{Y} \vee \beta$. Clean configuration $K_{F}=1$

 -






rig. 13 Low-speed $C_{l}$ v. $\beta$. Clean configuration $K_{F}=1$
促

Fig. 14 Low-speed $C_{\ell} v . \beta$. Approach configuration $K_{F}=1$





A-A ATA A-A


[^1]Fig. 16 Low-speed $C_{n} v . \beta$. Clean configuration $K_{F}=1$


Fig. 17 Low-speed $C_{n}$ v.A. Approach configuration $K_{F}=1$








## $+1064$






 A

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | + |  | $\square$ | $\cdots$ |  |  |  |  | , |  | - |  |  |  |  |  |  | + |  |  |  |  |  |  |  |  |  | + | - |  |  |  |  |  |
|  | Q, - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \# |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $n$ |  |  |  |  |  |  | + |  |  |  | + |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | + |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |
|  | 1 | + |  |  | - |  |  | + |  |  | , |  |  |  |  | \#, |  | - | \# |  |  | + |  |  |  |  | + | - | + | 1 |  |  |  |  |
|  | 0 |  | - | + | T |  |  |  | 3 |  |  |  |  | ${ }^{0}$ |  |  |  |  |  |  |  | - | 8 |  | O |  |  | 10 |  |  |  |  |  |  |
|  |  |  | - | +1, | - |  |  |  | , |  | + |  |  | ¢ |  |  |  | , | +100 | , |  |  | 8 |  | - |  | - | , |  | . |  |  |  |  |
|  | - |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | + |  |  |  | I |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  | \# |
|  | + |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Q.2. |  |  |  |  |  |  | , |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | T |  |  |  |  |  |  |  |  |  | , |  |  |  |  |  |  |  | : |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 0 |  | , |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +1 |  |  | + |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \# |  |  |  |  |  |  |  |  |  |  |  |
|  | $0 \cdot 6$ |  |  |  | \% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \#1, |  |  |  | $0^{\circ}$ |  |  | 700 |  | Ca, | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | + |  | O |  |  |  |  |  |  |  | , |  |  |  |  |  |  | + |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \#1 |  |  |  | ${ }^{\circ}$ |  | - | - |  |  | - |  |  |  |  |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |
|  | + |  |  | at |  |  |  | - |  |  | $\square$ |  |  |  |  |  |  |  |  |  |  | +1 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | +1 |  |  |  |  |  |  |  |  |  | , |  |  |  |  |  |  |  | - |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \% |  |  |  |  |  |  | - |  |  | , | , |  |  |  |  |  |  | \% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Q? |  |  | + |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% | 1 |  |  | , |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  | : | , |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0.4. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \# |  |  |  |  | + |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - |  | $\square$ | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | - |  | - | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 40. |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | +1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Fig. $19 \mathrm{n}_{r}$ and $\ell_{r}$ v. $M$ (Body axes)



Fig. $20 n_{p}$ and $\ell_{p}$ v.M (Body axes)

$+1+t+1+t+t+t+t+t+1+$
.
Newn $\rightarrow$ - $\rightarrow+\rightarrow+$





Fig. $23 \ell_{p}$ and $n_{p} v, \alpha$ for $M=0,0.4,0.6,0.8,1.0$ (Body axes)


 $\rightarrow 10-1$



保
Fig. 24 Alleron power, $\frac{\partial C_{Q}}{\partial \xi}$ and $\frac{\partial C_{n}}{\partial \xi}$. Anti-symmetric aileron deflection


Fig. 25 Alleron power

$$
\frac{\partial C_{m}}{\partial \xi} \text { and } \frac{\partial C_{L}}{\partial \xi}
$$




Fig. 28 Aeroelastic rudder efficiency, $K_{R}$
 A




Fig. 31 Rudder hinge moment
Printed in England for Her Majesty's Statuonery Office by the
Royal Aurcraft Estabhshment, Farnborough Dd 503427 K4. 8/72



## © Crown copyright 1972

## Published by

 HER MAJESTY'S STATIONERY OFFICETo be purchased from
49 Hıgh Holborn, London WC1 V 6HB 13a Castle Street, Edinburgh EH2 3AR 109 St Mary Street, Cardiff CF1 1JW Brazennose Street, Manchester M60 8AS

50 Farfax Street, Bristol BS1 3DE
258 Broad Street, Birmingham B1 2HC
80 Chıchester Street, Belfast BT1 4JY or through booksellers


[^0]:    * Replaces RAE Technical Report 70252 - ARC 33464

[^1]:    
    
     TA A

