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SUMMARY

B

Two problems are considered, both involving a semi-infinite plane with

adjacent source:
(1) the system at rest (Part A);

(2) the system in motion through the fluid with either a stationary

" or moving observer (Part B),.

Asymptotic forms are given for large wave number and for the observer in the

far field.
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INTRODUCTION

Diffraction of sound by a semi~infinite plane from an adjacent point
source 1s considered in the present paper, both when the source and plane are
at rest and moving. Macdonald's solution1 for the source at rest is used,
and some asymptotic forms are derived for the sound pressure in the far field
and at large values of the wave number. Since this part of the analysis 1s

self-contained it is given first as Part A of the present paper,

Part B concerns the moving source and plane, and in it a general trans-
formation is first derived and then applied in two examples, both involving
the diffraction past a semi-infinite plane and using the results of Part A,
In the first of these examples the plane is moving normal to its edge whereas
in the second example it moves in an 1nclined direction. 1In each example the
results are given both for an observer at rest relative to the fluid and
moving with the source and plane, conditions which apply respectively to an
aircraft in flight past a stationary observer, and to a model aircraft in a

wind-tunnel with a staticnary cbserver.
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PART A

SOURCE NEAR TO A SEMI-INFINITE PLANE

1 PRELIMINARIES

We take the plane as y = 0, x > 0 with the z axis along the edge, and
take cylindrical polar coordinates (ro, ¢0, 0) for the source § and

{r, ¢, z) for the receiving point P. We let

It

PS = R {r2 + ri - 2r r cos (o - ¢°) + 22}£ (1)

and denote the projection of PS on the plane? z2=0 by R' where

R' = f +xl -2 r cos (6 - ¢ )} )

(see Fig.1).

We also consider the 'image' source S whose coordinates are (ro, -4 , 0)

and write

R o= 85 = {7 +r2-2rr cos (¢ +0) + 22} (3)

R {r2 + ri - 2r r_ cos (¢ + ¢O)}£ . (4)

For future reference we also note that from equations (2) and (4) we

can show that

2/T T, leos 46 - 4] = (@ +rp? - (5)
2 [r r !cos i(p + ¢o)| = {(r + ro)2 - §32}£ . (6)

2 GENERAL FORMULA FOR SOUND PRESSURE

If the sound pressure from an undisturbed source is written

A e1k(ct—R)
P = —xg— >

where ¢ 1is the velocity of sound and k the wave number then Macdonald1 has
shown that in the presence of a semi~infinite plane

iket
e

P = A U
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® where -
Eo Eo
b v = X k '[ K. (i k R cosh &) d& + E—E.[ K, (i k R cosh £) d¢ (7)
m 1 W 1
= V + V (say) .
Here
1
2{r ro)E
s1inh EO = —g —— cos b (p - ¢0) =W, (say)
1
. 2(r ro)2 _
sinh EO = cos 3(¢ + ¢0) = W (say) .

(Note: Macdonald's definition of r 1is different to that used here. The

result is in our present notation.)

Nowadays one would use the function H instead of K, when the

argument is imaginary. We have in fact

L]

K, (12) = - H{z) (z) .

It is easy to see that when P 1is in the geometric shadow of S then

both 50 and E& are negative. We shall confine our attention to this case.

3 ASYMPTOTIC VALUES FOR LARGE R/ro AND k r,

Consider the first integral in equation (7), when P 1s in the geometric

shadow of S, so that EO is negative. It may be written
-lg |
- —li (2)
vV = -}ik H;*/ (k R cosh £) dE .

-0
Putting sinh £ = t we have

-l |
° H{z) {k R,/l + tz}

V =-4ik .[ dt
1+t

—-C0

o
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=jw,l o ~lu]
and the integral .[ may be written .[ + j. . The first of these can
-0 ] o

be evaluated by the use of equation 7.14(49) of Erdelyi2 and in the second t

is replaced by -t to give

{w |
L-ikR ° H{Z) {k R /1 + t2)

V = —/——+ ik de . (8)
2R 5
1+t2
o
Now k R 1is large and so we may use the asymptotic series for Hfz),
and evaluate the integrals term by term.
The result is (see Appendix)
e—ikR 1 +i
v S {5 - L2 cee - i see)
. 2 3im
-2ikRy ' +——
_ 2 4 [_ 3y! 3 -1
TR © [j 8 + terms of order y'~ and (kR)
e (D)

Here

y'z %{V]-"'wi-l}a

W
[

[\
]

cos $(¢ = ¢")

C(B) and S(B) are Fresnel integrals

C(B)

cos 2
Tt
" (5 ae
sin
This expression can be rearranged by the use of equation (5). We find

wz - (r + ro>2 _ R,2
o R R2

S(8)

1]
o TT—w
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and since R'2 = R2 - 22 this
2k R y'2
82

Now w
o]

though 82/k R 1s small.

Vv =

R 2

with

& =

is small and so is y' but

e-ikR 1 +1
[% - [C(B) - 1isB) + (-1 +1i) e

leads to

k {/zz+ (r+r0)2 - R}

- 2k {ng + (r +r )2 - R}
= o

2k R y'2 and

We may write finally

1w82

2

2k /2 2
— 2"+ (x +r )" - R}

B may be large,

(38/16k R + ...)}

(11)

There 1s a similar form for V with R replaced by R in equations

{(10) and (11).

When R 1is large we may write
1mB
. _ 1 -1 i 2 -3
C(B) - i s(B) = T *t7 g e + 0(8 7)
and then
. B b
v - elkRe Z ’“Zl:l _ 38]
—isz2+(r+r )z-i%
_ e ° 1 38
Rl/i- TR 8k R |?
noting that
im 82 2 2
ikR+ g = ik\£+(r+r0) i

Combining the two terms

V and V we obtain
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eik[ct-sz+(r+ro)2 -i%

A l 1 38 R ! 1 38 ; I
p = - v )= - 2F_ 12
R /3 T B 8k R Rim B 8k R (12)

with B given by (11), and B by (11) with R replaced by R.

It may sometimes be sufficient to ignore the terms of the form 38/8k R
compared with 1/m B, In one example B was about 25, whilst R and k were

each 100 so that the ratio of the second to the first terms was about 0,06,
4 ATTENUATION

. . . . 2 .
The sound 1intensity is proportional to |P| and so without the screen

the intensity is proportional to A2/R2.

If we take the attenuation to be the inverse of the ratio of the actual
sound intensity to what it would have been without the screen then we find that

the attenuation in the case B large is
L -3 R(L . _BNT
TR B8R R\nEB 8K
and this can be considerable, as numerical examples indicate,

However, there may be circumstances in which B 1is not large and then
equation (12) is not applicable. For instance if R, r and k are large, with

r of order unity we find from the results of section 1, that

rr [1 + cos (4 - ¢0)]

2 2
A + (r + r ) - R = .
° V22 + r2

Hence

2

B 2k rr
_2} x ——— 2 (1 +cos (6 F o s
B ™ 22 + 1‘2 |

and so if z = 0(l) we have 82 = 0(2k ro), EQ = 0(2k ro) unless cos (¢ + ¢o)
is near to —-1. Both of these possibilities are excluded when the receiver is in
the shadow but not too near the edge of the shadow. Thus, excluding this
situation, B and 8 will be large unless r is very small; that is, unless the
source is so close to the edge that k r, is 0(1) in spite of k being large.

~

However, if z 1is large, then B could be small without r being small., In
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i

such a case equation (12) is not applicable but equation (10) is, and can be

written approximately

e-ikR 1 + i
vV = R - [C(B) - 1 S(R)]} (13)

In this case the attenuation will not be so great, [C(R) and S(B) are small
if B is small]. This implies (see Fig.2) that if P 1s in the shadow of S
and is in the position N the attenuation will be large, but if it moves
parallel to the edge to a position such as P1 the attenuation will not be so
great. (Remember that in computing the attenuation we are comparing the

intensity at P1 with what it would have been without the screen.)

5 THE VELOCITY POTENTIAL

The disturbance potential ¢ satisfies the same equation and the same
boundary conditions as the disturbance pressure p. Hence the solution given
above applies equally well for the velocity potential as it does for the
pressure. If the undisturbed density and velocity are oy and V and the
pressure and velocity increments are p and u which are supposed to be small

then the linearized form of Bernoulli's equation is

VLR 4yy = 0
ot po - —

and so for zero undisturbed velocity, as in the above work we have

- 5 2
p- poat!

which gives the relation between the pressure and the velocity potential.

6 SOUND INTENSITY

. . . . 4 .
The intensity vector I 1s def1ned3’ to be the time average of the
flux of acoustic energy across unit area and is equal to the time average

of pu, where u is the velocity (or the velocity increment if the fluid

is moving). Hence we have

For a source we have
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1w t—%) iw(t—g)
Ae Ailw c 1
I
jult=
oo 3 _ _ Alw c
P Po Bt o “ R © :
Hence |V¢| means the magnitude of the vector V¢,

When the complex notation is used as above we must be careful when
dealing with second order quantities which the products are. We are really
taking the product of the real parts of complex quantities and then averaging
over time. Hence, for the above source, the magnitude of the intensity vector
is

2 2
po AT w

and this may be written

This 15 the result we have used in section 4 above.
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THE ASYMPTOTIC EXPANSION

We have to evaluate
-ikR
e
2R

+ W,

where

dr .

W =

|| 3
© Hfz) kR /1 + %)
31k

5 J1o+ 2
We write V1 + t2 =1+ 2y2 and find

y' H{z) {k R (1 + 2y2)}

W = 1k dy ,
1 vl + y2

where

y'2 = § {/1 + wg -1},

and y' 1is small if R 1is large compared with T
Now, the asymptotic expansion of the Bessel function H i52
3in

(2) A (2)*[ 3515 ] -iz
B (z) = e S22 e
1 T Z 8z 128z2

and hence we have

3in ' . 2
ik g_efif'e-ikpfy e 2ikRy {1 _ 3i
(k R)1 B (1 + yz)i 1+ zyz)é 8k R (1 + 2y2)

.\ 15

]

3ir b 2 2 4 6
_ ik [Z 7% -ikr -2ikRy _3y° 19y _ 63y
wpivts " fe <1 2R A
o]

1282 R? (1 + 2y%)2

11

(1 3, 15 +3iy_3iy+.__>dy(14)

8k R 128k2 R2 4k R 2k R
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If '
. 2
jy e—21kRy dy = D
o
th
en y[ 2 2
2 =21k i
[YelRy dy=7;1_}i(y'E-D)
o
where
-2ikR 12
E e Y ,

on 1integrating by parts.

Further products by even powers of y can be integrated by parts in

succession.

The algebra is extremely tedious, and we shall omit the details. We go
as far as terms in y'3 and terms in l/k2 R2, since y' 15 small and k R

15 large. We find that the integral in equation (14}, excluding its multiplier,

is
e R N 2ikRy'P (1 [ 3iy', 194 .3, 015
e k R 8 33 7 y
L1 15y' 45y'3 + 0ts'
2 2| 128 128 y
and
1
4 —2ikRy>
D = l. e “TERY dy
m .
= 4§ [ggle® -1ise)l,
with
kR,
R = 2 - v ,

C(g) and S(B) being Fresnel integrals.

Now multiply by the factor outside the integral in equation (14) and

simplify. We finally obtain

)



(™

283

Appendix

-ikR
e
2R

. . 2 3in
~1kR . -2ikRy' "+
e 1 +1 . 2 4
= [5 7 LC(®) - i s(®)]- LT R € -

+ W

l:_ 3y' ., 19y _ 1 <1Sy' _ 45y

8 32 k R\128

128

eli]

13
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PART B

MOVING SOUND SQURCE

1 BASIC ANALYSIS

We start with a source at rest in a fluid at rest in the presence of a
rigid body. We then apply the Lorentz transformation in the case where the
source and body are moving with the recipient at rest. Other situations may

then be dealt with by straightforward methods.

(2) Acoustic source emitting in the presence of a rigid body fixed in

a quiescent fluid.

In terms of the velocity potential, the solution is governed by the

equation {the wave equation with Dirac delta functions on the right)

I = E(t) S(x -x) 8(y —y) 6(z -
32 ;;i 3 = t) 8(x xS) v ys) z zs) ,

with the source at (xs, Vg zs), together with the boundary condition of zero

normal derivative on the body. (In the special case of a periodic source f£(t)

, . iwt L. . . .
is simply e ,» but 1t 1s just as convenilent to leave it arbitrary.)

Call this solution
¢‘F = _¢F (X, ¥y 2, L, XS’ Ys, ZS). (1)

(b) Now let the source and the body move with velocity =~V parallel
to the x axis. Coordinates axes are still fixed, Let the source be at
(xs -Vt, g zs) at time ¢t. Then the potential satisfies

2 1 a2
V-5 —5)b = £(t) Sx-x_ +ViE)sly-y)sz-z) .
c ot s S s

(c) Apply to this equation a modified Lorentz transformation
x' = v (x4 VD), y' o= vy, z' = ¥z, et o=y (} * y2x>
2..
Y = (l_M)is M =

with inverse
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1] L}
x = x'-vt', y = %r z = 2 e = tr - LE

Then we have

2
¢ 2 o

2 (v -2,
at!

i
=h
TN
~+
]
<
0
Nl M
~—
/’Ei\
= |g_
]
mx
\-_/
(=]
TR
i
<
o
~—
O
TN
<| y
|
mN
~_

4 vy Xs 2

¥ f(t'-———-->5(X'-v x)8(y' ~yy) s(z' -y z)
s ] S

noting that

5($>=Y5(X), f(a-bx)é(x-c¢c) = f(a-be)dx=~c).

Take the body to be an infinite plate with origin of coordinates in the

leading edge, the plate being y =0, x2 0 at t = 0. Then the boundary

condition is 9¢/3y =0 for x+Vt=20, y=20. In the Lorentz space
it is 23¢/3y' = 0 for x' =0, y' =0 and so is the same as in (a). Call
the solution ¢M . Then
oy = Y op X',Y',Z',t"——c-z'—.Y Xg» Y ¥g» ¥ 2
or
V x
_ 2 2 2 Vv x 5 2
¢M =Y ¢F Y (X+Vt),YY1YZ,Y (t+"c_2_ _;_2'_'>9Y XS’YYS,YZS
Vx
2 vV X 8
=Y ¢F<X+VT’ Y, Z,T+_2--—T,XS’ YS’ Zs) (2)
c c
on writing
2 2
X = ¥y x, Y = vy, Z = vz, T = vy t. (3

Note that this is the potential for a moving body, fixed axes and

quiescent fiuid.

One must now decide what the observer is doing. If he is at rest at
(xo, Yo zo) then the velocity potential is as given above with x = X s
y=y,,2=¢2g or X = XO, Y = Yo, Z= ZD. If he is moving with velocity
components (u, v, w) then the velocity potential is as given above with

v T . w i
X = XO +uT, Y= YD + X Z = Z0 + 5
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The above analysis is essentially due to Professor W. Chester of

Bristol University.

2 A FREE SOURCE

Let us consider as an illustration a source with no body present, which at
time t =0 1is at (xs, Yo zs) and is moving with speed V 1in the direction
of the negative real axis, the fluid being at rest. We consider two cases:

(a) P at rest at (x, y, z) and (b) P moving with the source, being at

{(x -V t,y, z) so that, at time t =0, P 1is at the same point in the two

cases.
Then we have f(t) = A e1mc and
A 18
p = 3 °
with
2 2 2 2 ]
8 = (x - xs) + (y - ys) + (z -~ zs) s L= (t - E) .
Hence
o _ A Y2 1L
M S
with
52 = (X+VT-xX)2+(x-v)2+(z-2)°
s s s
VX
Vi S -
L = w<T+-—-—-—2 --—'—-—28--&') ’ (4)
c ¢

and this gives the value of ¢ at P when P is fixed.

When P is moving with the source replace X by X - V T. Naturally
at time t = 0 the two values of ¢ are the same, but this will not apply
to their derivatives with respect to t, so that the values of pressure and

frequency are different in the two cases.

We shall assume that P is sufficiently distant from the source to

ignore terms of order 1/82, and will calculate the pressures at time t = O

for the two cases.
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In case (a) we find

. 4
o T -iweg Ay L vV (X XS) eiL,
P, = o0 3t S' c §'
VX
2 2 o2 2 . vX__"s _8'
gt = (X—Xs) + (Y Ys) + (Z ZS) . L = w( 2 5 - .
c c
and in case (b) we have
. 4
TLwp Ay er 1
- _ 0 _ w2y 1L
Py, ~ — (L -M) e .

Hence the ratio of the pressure amplitudes is given by

VvV (X - XS)

Pg 1T

Py, -

In the particular case where the source is moving along the line P S

we have y =y =2z =2z =0 and 8' =X~ X and so
8 s s
LERN
Py, 1+M°

It is of interest to find the frequencies at time t =0 in the two

cases. In case (a) L 1is given by equation (4) and the frequency, defined to

zm[l_V(X-XS):l
Y c g7 -

In case (b) L 1s given by equation (4) with X -~ VT instead of X and we

be 3L/3t 1is equal to

then find that the frequency is simply w, as we might expect, since P and §

have no relative motion.

The change in frequency in case {(a) is of course the Doppler effect. When
8 1is moving in the line P § we find that the frequency is w/(1 + M) thus
verifying the well-known case for a fixed observer and a source moving directly

away from him.
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3 SOURCE AND SEMI-INFINITE PLANE

We shall only consider cases in which the plane moves parallel to itself

(™

with constant speed V and will first suppose it moves in a direction per-

' pendicular to its edge, leaving the case of a swept plane to the next section.

We must work in terms of the velocity potential ¢ since in the moving system
p and ¢ do not satisfy the same differential equation. They did do this in
section A of these notes and so the solution given there applied equally for
¢ or p. Now we shall use this solution as applying to ¢. If we take the
source to be at (Xs’ Ygs 0} and if the source and body are at rest then the
solution for ¢ can be written down in the form {12) or (13) of section A.
Calling that solution ¢F and the solution we now require ¢M then we have
shown that

Vi 5

- L2 -__S
¢M—Y¢F<X+VT,Y,Z,T+C2 > ,xS,YS,zS>.

All we have to do is to stretch all lengths by a factor YZ in the x direction

L1

and by a factor Yy in directions perpendicular to this, followed by putting

X + VT 1instead of X (where T is t stretched by a factor 72) and

. T+ V (X - XS)/c2 instead of the originmal t. Also multiply ¢F by Y2-

We will now calculate from equation (13) of section A. Equation (12)

¢
M
without the terms of the form 3B8/8k R is included in this equation.

The value of Ops writing k = w/ec, R = s, is

.

A i‘“(t'ES) 1+
oy = Le [g R O s(B)]} (5)

+ a similar term with s and B8 .

For simplicity in presentation, we shall omit the term with bars over
the letters in the work that follows. We have replaced R and R by s and s,
because we wish to reserve capital letters for values in the stretched
coordinate system.

Hence in the new situation

. VX _s.§S
A y2 B (T? o2 c) 1+ i
Y e {ﬁ - 5 [c(B) - i S(B)]}

Oy 3

‘Y
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where S and B are calculated in the stretched coordinate system in exactly
the same way as s and 8 were calculated in the old system, with the proviso

that X must be replaced by X + VT wherever it occurs. Thus

2 2w 2 2.4
B = {[z° + (R + Rs) ] s},

2 = X+VT- xs)2 + (Y - YS)2 v 22,
2 = (x+vm?+vd, ® - xi + Yz .

We are interested in the pressure at large distances and we use the result
P = =P, 3¢/t and will put t = 0 after differentiation. We suppose that a
prime attached to any symbol represents its value at time t = 0. We then

have

: 2 ., . .2 :
T . Ay b H& -1t (e@n i S(B')I] (i vzm-u%sf>

[
iMoo, 2
21+ i 128" o +of-1
L 3T 12

where
'
Lo w(u__s__s_), s? = x-xpte -,

3B'/3T and 235'/3T are the values of 3B/3T and 3S/3T when t 1is put

equal to zero after differentiation.

Note that
B _iwaz
C® - 153 = [ e * da
o
and so
_inB '
—@c-i8 =y e * B,

We have used this in deriving the above equation for B¢M/3t.

Noting that

Ly

("

(e
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V(X - Xs)
9T g'

1 -
B! w [ v X R'" + RS vV (X XS) }
5T T e B " 57
J2% + @' + RS)?‘

we have finally

, b 3 (XR-X)V
aa“’t - A‘Sf,‘”e c ¢ [i(l--——(-:-é-—><%-1+1[C(B)—1S(B)]>

imB’' v X R' + RS X - XS
1t e 2 T c B' ) R' - s’ }
2 S22+ ' + R )2

If x and x, are small compared with y then V X/c S' 1s small

ot S

and
. SS%
. . 4 “’_'“‘"'
30" _ iwAy ]}_1+1[C(B)_1S(B)]+O<vx>] 7

With no meotion of source or body we would find that

- lws
et E—lgl[cw)-ls(s)]+o<ﬁ>],

as 1n section A of these notes.

If the point P 1is moving at the same speed as the source and the body

then B and § are independent of t and we obtain simply

T o]
) 2 2 2TJ )
3¢’ .
. Ledy o Le e E- L* Lice - i 5@ +o<m.15.>:i. ®

There are of course second terms to he added to each of equations (6), (7)
and (8), corresponding to the image source. Under the approximation used we can

show that the ratio of the pressure amplitudes for what we called cases (a) and

(b) 1s
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as in the case of a single free source, with small V X/c S§'.

To summarise then we have found that if M x/s and M xs/s are small
then for a moving source and body the formula for the pressure has a form
closely akin to that which 1t would have 1f there were no movement, provided

. . . 4 e qs
that distances are suitably redefined and a factor vy multiplies the

. .. . 2 .
expression when the recipient 1s at rest; the factor is y  if the

recipient 1s moving with the rest of the system, There is also a phase

change.

4 SOURCE AND SEMI-INFINITE SWEPT PLANE

For this case there is considerably increased complication. Taking the
coordinate system as before we suppose the source and plane have velocity
components (-u, O, -w). The source will then be taken to be at

(xS -ut, Ygs Zg ~ W t). We write

2 -1 9 -1
v o= u2+w2, Yz = <1-V—2> s 6% - (1“"1—2) ’ e = Ll-2E .
¢ c c
Then the equation to be solved is
21 3%
Ve —5)9 = f(®) Sx+rut-x)8(y-y)Szrwe-z). (9)
<2 ot 8 s 8

In effect we turn the coordinate system about the y axis through an
amount equal to the angle of sweep, then apply the Lorentz transformation.
Unfortunately this alters the angle of sweep in the new system so that a
different coordinate transformation is required to get back to the standard

non-moving situatiomn.

The first coordinate rotation and Lorentz transformation may be combined

into

i

(L]

4]
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’ 2 xu zZ W z
£ = ¥ [TV—-+ ~ + Vv EJ = %r [u (x +ut) + ? (z + w t)]
i
- n = Yy
c: M _l[—w(x+ut)+u(z+wt)]
v v
2 Xu+2zw YZ
T=Y[t+ 3 =t+—2[u(x+ut)+w(z+wt)].
c c
This transforms
2 1 9 . 22 1 32
v- - 5 7% into Y v - -3 5
¢ dt ¢ 9T
where the second V2 is evaluated in &, n,  coordinates.
Now we make the transformation
x' =--—-—-————-—UE_WYWC=Y6(x+ut)
y' = n
* + 2 2
z' Xy Ew us v~ de (x +ut) + %r (z + w t)
t' = T ,
where
2 .2
w2 = u2 + Y2 w2 = X g .-
&
This makes
T T L
z+wt=§z— éxs, x+ut = >
Y2 Y Y &

The change is a pure rotation and so the differential operator is now

2
Yz [V'z" LZ __3__2_:| .
c at!

: Equation (9) then becomes

23



<
1N
{ <t
[
1
nNI —_
Q>
t o
-nN (%]
(I
-
n

- 6 [ ] ] i_ L'_
f[: C2 - (ux'+vywz {] 6<6Y x%) 6<Y Y
1 ] 1
5 (Gz _ GxY E _ i;)
Y
2 2
4 ' uwy X w Y z{] : . '
= vy ftf - — §(x" -8y x) 686G -vy))

c c
2
v _ Y 2
GE: 3 (Gsxs+zsﬂ

Here we have used the fact that

6(%) = adé(x) ,

f(t' - ax'"=-bz") 6(x" - ¢) &(z2' - dx' - e)
=fl{t-ac-b (dec + e)] 8{x' - ¢) &(z' - dec - e)

(w

The boundary condition in the physical plane is 3¢/3y =0 for y = O,
x + ut =0 which reduces to 3¢/3y"' =0 for y' =0, x' 20 and so is the

same as in the original non-moving problem.

If the solution for this is

¢F = ¢F (X, ¥, 2, L, XS’ ys, ZS)

then the solution of our problem is

u 2 w 2 z 2
¥ xs v S

A G - Aoy
¢M =Y ¢F {x s ¥ 5, 2, € c2 c2 y OY XS, Y YS, s (§7e xS + ZS) .

Hence transforming back we have

¢M=Y¢F{Y5(X+UC),YY,G—((’Sex+z+w’d t),
X

2 £ o+ BX + Wz U X W zs 5 li (62 + )

'y

(v



L}

283 25

Note that when w =0 then u =V, 6§ = vy and this reduces to our previous
value (2). It does not seem worth while this time to make a transformation

analogous to (3)

If the recipient is moving with the fluid we replace x, z by x - u t,

z - wt respectively and obtain

2 YZ 2 2 fux+wz s xs T zs
¢M = ¥y ¢F {} 8x, v v, 5 (67e x +2), t +v ( 5 - 5 >
¢ e
v2 2
¥ 6xS, Y Yoo g (67¢ x, + zs)} . (11)

To the same approximations as equations (7) and (8) we find for a
stationary observer and moving source and body, the source being at

(xs, Yo 0y at time t =0

i 2 ux+wz__uxs+wzs
5! iwaA Y4 o c2 c2 1 + 1 X
- = 5 e {i [c(B") - i s(B")] +0(—S—,>}
ceees (12)
+ terms corresponding to the image of the source,
where
2 2 2 2 2 2 A2\ L2 2
s'! =Y6(x—x) + vy (y—y)+<Y—>{-5€(x-x)+z}
] 8 § s
4
B"2 = [<‘ > [625 (x - xs) + z]2 + (r" + rs)z} - s'
2 2
L (3 x, + ¥, )
L N s i I

For a moving observer the result is the same but with the factor Y4

replaced by Y2 and O (V x/c s') replaced by 0 (1/w s').

Printed i England for Her Majesty’s Stationery Office by the
Royal Awrcraft Establishment, Farnborough Dd 502109 K 4
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