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SUMMARY 

Two problems are considered, both involvmg a semi-infinite plane with 

adjacent source: 

(1) the system at rest (Part A); 

(2) the system in motion through the fluid with either a stationary 
'or movxng observer (Part B). 

Asymptotic forms are given for large wave number and for the observer in the 
far field. 

* University of Bristol, Consultant to Aerodynamics Department. 
t Replaces RAE Technical Report 69283 - ARC 32130. 



2 283 

CONTENTS 

INTRODUCTION 

PART A SOURCE NEAR TO A SEMI-INFINITE PLANE 

1 PRELIMINARIES 
2 GENERAL FORMULA FOR SOUND PRESSURE 

3 ASYMPTOTIC VALUES FOR LARGE R/r0 AND k r,, 
4 ATTENUATION 
5 THE VELOCITY POTENTIAL 
6 SOUND INTENSITY 
References 
Appendix The asymptotic expansion 
Illustration 

PART B MOVING SOUND SOURCE 

1 BASIC ANALYSIS 
2 A FREE SOURCE 

3 SOURCE AND SEMI-INFINITE PLANE 
4 SOURCE AND SEMI-INFINITE SWEPT PLANE 
Detachable abstract cards 

m 

3 

4 
4 
5 
a 

9 

9 

10 

11 
Figures l-2 

15 

17 
19 
22 



283 

INTRODUCTION 

Diffraction of sound,by a semi-infinite plane from an adjacent point 

source 1s considered in ttie present pa&, both when the source and plane are 

at rest and moving. Macdonald's solution1 for the source at rest is used, 

and some asymptotic forms are derived for the sound pressure in the far field 

and at large values of the wave number. Since this part of the analysis 1s 

self-contained it is given first as Part A of the present paper. 

Part B concerns the moving source and plane, and in it a general trans- 

formation is first derived and then applied in two examples, both involving 

the diffraction past a semi-InfInite plane and using the results of Part A. 

In the first of these examples the plane is moving normal to its edge whereas 

in the second example it moves in an Inclined direction. In each example the 

results are given both for an observer at rest relative to the fluid and 

moving with the source and plane, conditions which apply respectively to an 

arcraft in flight past a stationary observer, and to a model aircraft XI a 

wind-tunnel with a stationary observer. 
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PART A 

SOURCE NEAR TO A SEMI-INFINITE PLANE 

1 PRELIMINARIES 

We take the plane as y = 0, x > 0 with the z axis along the edge, and 
take cylindrical polar coordinates (r 0' $0, 0) for the source S and 
(r, 4, z) for the receiving point P. we let 

PS =R= {r2+rz- o 2r r cm (4 - + 1 + z211 0 

and denote the projection of PS on the plane* z = 0 by R' where 

(1) 

(2) 

(see Fig. 1). 

We also consider the 'image' source 3 whose coordinates are (r o' -@o' 0) 
and write 

ii = PS = {r2 + rf - 2r r. cos ($ + $,) + z2)' 

R’ = {r2 + r2 
0 - 2r r. cos ($ + c$,)I~ . 

(3) 

(4) 

For future reference we also note that from equations (2) and (4) we 
can show that 

-@,)I = {(r+roj2 _ Rf2)1 (5) 

(6) 

2 GENERAL FORMULA FOR SOUND PR!JSSURE 

If the sound pressure from an undisturbed source is written 

= Ae 
ik(ct-R) 

P R , 

where c is the velocity of sound and k the wave number then Macdonaldl has 
shown that in the presence of a semi-infinite plane 

= Ae ikct 
P U 
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where 

c 
ik 

KL (i k R cash 6) dc + - il 
J 

KL (i k E cash 6) dg (7) 

-m -m 

= v + v (say) . 

Here 

smh E. = 
2(r ro)’ 

R cos 1($ - $,) = w. (say) 

sinh f. = 
2(r ro)’ 

ii 
cos h($' + $,) = w. (say) . 

(Note: Macdonald's definition of r is different to that used here. The 

result is in our present notation.) 

Nowadays one would use the function H instead of K, when the 

argument is imagmary. We have in fact 

K1 (i 2) = -211~ Hi2) (z) . 

It is easy to see that when P is m the geometric shadow of S then 

both 5, and To are negative. We shall confine our attention to this case. 

3 ASYMPTOTIC VALUES FOR LARGE R/r0 AND k r. 

Consider the first integral in equation (?), when P 1s in the geometric 

shadow of S, so that 5 0 is negative. It may be written 

-ls,l 
V = -ii k (k K cash 5) dc . 

Putting smh 5 = t we have 

-lug1 (2) 
"1 {k Rjzj 

v = -ii k 
JG-7 dt 

ci 

. 
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-boI 0 -Iwo1 

and the integral 
J 

may be written 
J i 

+ . The first of these can 

-m -m 0 

be evaluated by the use of equatmn 7.14(49) of Erdelyi2 and in the second t 

is replaced by -t to give 

-ikR 
v=+ + hi k (8) 

0 

Now k R is large and so we may use the asymptotic series for (2) Hl , 
and evaluate the integrals term by term. 

The result is (see Appendix) 

-ikR 
v = + 1 - F [C(E) - i S(B)] 

i 
2 3in -2ikRy' .4 

+ terms of order y I3 and . 

C(B) and S(6) are Fresnel integrals 

This expression can be rearranged by the use of equation (5). We find 

283 

2 r+r 2 0 w = 
0 ( > 

-- 
R “,;2 
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and since R' 2 = R2 - 2' this leads to 

2k R y" = kIz2+(r+rJ2 - R1 

62 = k (J,’ + (r + ro) 
2 

- RI . 71 

Now w is small and so is y' but 2k R yt2 and 6 

though 02/koR 1s small. We may write finally 

may be large, 

2 
-ikR In6 

v = + 
c 

-- 
&- J+ [C(6) - i Sti3)l + C-1 + i) e ' (3f3/16k R + . ..) 

3 

with 

. . . . . . (10) 

- RI . (11) 

There IS a s~mllar form for v with R replaced by F in equations 

(10) and (11). 

When 6 is large we may write 

Ill6 
2 

-- 
c(6) - i S(6) = v + & e ' + o(6-3) 

and then 

-ikR 
inB2 

V = ee 
RG 

- +?[A 8;6R] 

noting that 

ikR+i162 = ikd2 2 
+ (r + ro) . 

Combining the two terms V and 7 we obtain 
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= Ae 

iklct- z +(r+ro) 1-i: 

P (12) 
RJT 

with B given by (ll), and 3 by (11) with R replaced by E. 

It may sometimes be sufficient to ignore the terms of the form 36/8k R 

compared with l/r 6. In one example B was about 25, whilst R and k were 

each 100 so that the ratio of the second to the first terms was about 0.06. 

4 ATTENUATION 

The sound intensity is proportional to IpI 2 and so without the screen 

the intensity is proportional to AZ/R'. 

If we take the attenuation to be the inverse of the ratio of the actual 

sound intensity to what it would have been without the screen then we find that 
the attenuation in the case 8 large is 

2 l 
[ 

--&+qL&L)-j 
ll6 

and this can be considerable, as numerical examples indicate. 

However, there may be circumstances in which 5 is not large and then 
equation (12) is not applicable. For instance if R, r and k are large, with 
r 0 of order unity we find from the results of section 1, that 

Am _ R I r r" '1;2c;r; - ")' . 

Hence 

02 
3 

2k r r 
F2 = 71 & [ 1 + cos (4 T $,)I , 

and so if z = O(1) we have 8' = O(2k ro), ??' = O(2k ro) unless cos ($ T $,) 
is near to -1. Both of these possibilities are excluded when the receiver is in 
the shadow but not too near the edge of the shadow. Thus, excluding this 
situation, B and ? will be large unless r 0 is very small; that is, unless the 
source is so close to the edge that k r 0 is O(1) in spite of k being large. 

However, if z is large, then 6 could be small without r 0 being small. In 

283 

i 
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. 

such a case equation (12) is not applicable but equation (10) is, and can be 

written approximately 

-ikR 
v = +-- l+i - 2 [C(B) - 1 S(B)1 

3 
’ (13) 

In this case the attenuation will not be so great, [C(E) and S(6) are small 

if 6 is smalll. This implies (see Fig.2) that if P 1s in the shadow of S 

and is in the position N the attenuation will be large, but if it moves 

parallel to the edge to a position such as Pl the attenuation ~11 not be so 

great. (Remember that in computing the attenuation we are comparing the 

intensity at Pl with what it would have been without the screen.) 

5 THE VELOCITY POTENTIAL 

The disturbance potential $ satisfies the same equation and the same 

boundary conditions as the disturbance pressure p. Hence the solution given 

above applies equally well for the velocity potential as it does for the 

pressure. If the undisturbed density and velocity are pn and V and the - 
pressure and velocity increments are p and x which are supposed to be small 

then the linearized form of Bernoulli's equation is 

Z+E +uv = 0 
PO -- 

and so for zero undisturbed velocity, as in the above work we have 

which gives the relation between the pressure and the velocity potential. 
\ 

6 SOUND INTENSITY 

The intensity vector 2 is defined 394 to be the time average of the 

flux of acoustx energy across unit area and is equal to the time :verage 

of p u, where u is the velocity (or the velocity increment if the fluid 

is moving). Hence we have 

For a source we have 



iu(t$) 

+=AeR , 

R 

IWI 
Aiw lwty +O 1 

=-CR e () 0 7 

Hence IO@/ means the magnitude of the vector V$ . 

When the complex notation is used as above we must be careful when 

dealmg with second order quantities which the products are. We are really 

taking the product of the real parts of complex quantities and then averaging 

over time. Hence, for the above source, the magnitude of the intensity vector 

is 

p. A2 u2 

2c R2 

and this may be wrltten 

No. - 

1 

2 

3 

4 

This IS the result we have used in ?.ectmn 4 above. 

Author 

H. M. Macdonald 

A. Erdelyi 

P. M. Morse 

K. Il. Ingard 

D. I. Blokhintsev 
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Appendix 

THE ASYMPTOTIC EXPANSION 
i 

We have to evaluate 

-ikR 
v = e+w 

2R ' 

where 
lyl 

W = iik J 
(2) Ik R 6-& H1 

n 

We write JZ-7 = 1 + ;y2 and find 

Y' H1(2) 

i 

ik R (1 + 2y2)> 
W = ik 

where 

. 

and y' is small if R is large compared with =0- 

Now, the asymptotic expansion of the Bessel function H is2 

3in 

Hi2+z) = e4 & 
1 

(>C 
3i 15 1-z+---&- 1 -iz . . . e 

and hence we have 

3in 
4 . e-lkR 

; 

-2ikRy2 
3i 

0 (1 + y 11 (1 + 2y2+ c 
l- 

Elk R (1 + 2y2) 

+ 15 

128k2 R2 (1 + 2~~)~ 
. . . 

I 
dy 

15 

128k2 R2 

+ 3i y2 3i y4 + 
4k R 2k R 
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. If 

then 

where 

e-2ikRy' 
dy = D 

0 

Y’ 

Y2 e 
-21kRy2 dy = & (Y’ E - D) 

E = .-2ikRy12 , 

on Integrating by parts. 

Further products by even powers of y can be integrated by parts in 

succession. 

The algebra is extremely tedious, and we shall omt the details. We go 

as far as terms in y' 3 
and terms in l/k2 R2, since y' IS small and k R 

1s large. We find that the integral in equation (14). excluding its multiplier, 

is 

D [I + O(k-3 R-3)] + .-'lkRy I2 1 19i ,3 - - 
c L- 

2 
kR 8 +32y + O(YV5) 1 

and 

Y’ 

6 

2 
D = e-2iW dy 

= 1 d- & [C(B) - i S(B)1 , 

with 

C(B) and S(B) being Fresnel integrals. 

Now multiply by the factor outside the integral in equation (14) and 

simplify. We finally obtam 

i 
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i 

-ikR 
v = ++w 

2 3i.n -ikR 
= e 

-2ikRy' +T 
R t 

1 - L-+-i. [C(B) - i S(B)] - -+& e 
J 

AYL+19y’3- 8 32 
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P 
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r 

f-0 

s R’ 

2 

-Y 

N 

Fig. I 

N is on the xy plane 

Fig. 2 
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PART B 

MOVING SOUND SOURCE 

1 BASIC ANALYSIS 

We start with a source at rest in a fluid at rest in the presence of a 

rigld body. We then apply the Lorentz transformation in the case where the 
source and body are moving with the recipient at rest. Other situations may 
then be dealt mth by straightforward methods. 

(a) Acoustic source emitting in the presence of a rigid body fIxed in 
a quiescent fluid. 

In terms of the velocity potential, the solution is governed by the 
equatmn (the wave equation with Dirac delta functions on the right) 

( T72-La2 

c2 at2 ) q = f(t) 6(x - xs) 6(y - Y,) A(2 - 2 ) , s 

with the source at (x s' Y,. Zs)' together with the boundary condition of zero 
normal derivative on the body. (In the special case of a periodic source f(t) 

iwt is simply e , but it is just as convenient to leave it arbitrary.) 

Call this solution 

% = jF (x9 Y. 2, t, xs, Y,, zs) . (1) 

(b) Now let the source and the body move with velocity -V parallel 
to the x axis. Coordinates axes are still fixed. Let the source be at 
(X s - v t, Y,. zs) at time t. Then the potential satisfies 

( V2$$) $I = f(t) 6(x - x 
at s + v t) S(Y - Y,) Sk - zs) . 

(c) Apply to this equation a modified Lore&z transformation 

x1 = Y2 (x + v t), y’ = y y, z’ = YZ, 

with inverse 



x = x’ - v t’, yd, z=$, t = tLy. 
c 

Then we have 

noting that 

6; 
0 = Y 6(x), f (a - b x) 6(x - c) = f (a - b c) 6(x - c) . 

Take the body to be an infinite plate with origin of coordinates in the 
leading edge, the plate being y = 0, x20 at t=o. Then the boundary 
condition is a@/ay = 0 for x + v t a0 , y=o. In the Lorentz space 
It is a$/ay’ = 0 for X’ 20, y’ = 0 and so is the .same as in (a). Call 
the solution $M . Then 

@M = y2 $ 

i 

x’ , Y’, z’, t’ - 
Y2 v xg 

2 9 Y2 Xs’ Y Y,. Y as 
c 

i 
or 

on writing 

x = y2x, y = YY. z = yz. T = y2t. (3) 

Note that this is the potential for a moving body, fixed axes and 
quiescent fluid. 

One must now decide what the observer is doing. If he is at rest at 
(X o’ Y,. ZJ then the velocity potential is as given above with x = x 

0’ 
Y’Y o, z = z 0 or X=Xo,Y=Y o, z = zo. If he is moving with velocity 
components (u, v, w) then the velocity potential is as given above with 
X = X0 + u T, Y = Y wT 

0 
+ y, z “ZO + -. 

Y 
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The above analysis is essentially due to Professor W. Chester of 

Bristol University. 

2 AFBEE SOURCE 

Let us consider as an illustration a source with no body present,whlch at 

time t = 0 is at (x s' Y,. zs) and is moving with speed V in the dlrection 

of the negative real axis, the fluid being at rest. We consider two cases: 

(a) P at rest at (x, y, z) and (b) P moving with the source, being at 

(x - V t, y, z) so that, at time t = 0, P is at the same point in the two 

case*. 

Then we have f(t) = A e 
iwt and 

with 

S2 = (x - xJ2 + (y - YJ2 
2 

+ (2 - zs) , a. = w 
( > 

t-t. 

Hence 

Ay2 iL c$M =-e s 

with 

s2 = (X + V T - Xs)' + (Y - ysj2 + (2 - zsj2 

L = w T+y+;), 
( 

(4) 

and this gives the value of $ at P when P is fixed. 

When P is moving with the source replace X by X - V T. Naturally 

at time t =o the two values of $ are the same, but this will not apply 

to their derivatives with respect to t, so that the values of pressure and 

frequency are different in the two cases. 

We shall assume that P is sufficiently distant from the source to 

ignore terms of order l/S', and will calculate the pressures at time t=o 

for the two cases. 



in case (a) we find 

p, = -p. 2 = 
-i w p. A y4 

S' 1 .iL' 

St2 = (X - Xs)2 + (Y - Ysj2 + (2 - zsj2s 

and in case (b) we have 

i o p. A y4 
Pb = - S' (1 - M2) eiL' . 

Hence the ratio of the pressure amplitudes is given by 

v (X - XJ 
P 
a= l- CS' 
pb l-2 * 

In the particular case where the source is moving along the line P S 
we have y s 'Y'Z =z=O and S'=X-X and so s 53 

It is of interest to find the frequencies at time t = 0 in the two 

cases. In case (a) L is given by equation (4) and the frequency, defined to 
be aL/at is equal to 

Y2W l- 
C 

v 0 - XJ 
cS' 

1 
. 

In case (b) L 1s given by equation (4) with X - V T instead of X and we 
then find that the frequency is simply w, as we might expect, since P and S 
have no relative motion. 

The change in frequency in case (a) is of course the Doppler effect. When 
S is moving in the line P S we find that the frequency is w/(1 + M) thus 
verifying the well-known case for a fixed observer and a source moving directly 
away from him. 
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3 SOURCE AND SEMI-INFINITE PLANE 

We shall only consider cases in which the plane moves parallel to itself 

with constant speed V and will first suppose it moves in a direction per- 

' pendicular to its edge, leaving the case of a swept plane to the next sectlon. 

We must work in terms of the velocity potential $ since in the moving system 

p and $ do not satisfy the same differential equation. They did do this in 

section A of these notes and so the solution given there applied equally for 

$ o= P. Now we shall use this solution as applying to $. If we take the 

source to be at (xs, ys, 0) and if the source and body are at rest then the 

solution for I$ can be written down in the form (12) or (13) of section A. 

Calling that solution $F and the solution we now require $M then we have 

shown that 

All we have to do is to stretch all lengths by a factor y2 in the x direction 

and by a factor y in dlrections perpendicular to this, followed by putting 

X + V T Instead of X (where T is t stretched by a factor u2) and 

T + V (X - Xs)/c2 instead of the original t. Also multiply $F by y2. 

We will now calculate eM from equation (13) of section A. Equation (12) 

without the terms of the form 36/8k R is included in this equation. 

The value of &, writing k = w/c, R = s, is 

@F = $- iw t-f ( 1 c 1 - J+ tC(5) - i S(B)1 
3 

(5) 

+ a similar term with i and iT . 

For simplicity in presentation, we shall omit the term with bars over 

the letters in the work that follows. We have replaced R and E by s and s, 

because we wish to reserve capital letters for values in the stretched 

coordinate system. 

Hence in the new situation 

A y2 iw (T+?-?-$ [I 
'M=-e S 

1 ; i [C(R) _ i s(Bjj] 
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where S and B are calculated III the stretched coordinate system in exactly 
the same way as s and 6 were calculated in the old system, with the proviso 
that X must be replaced by X + V T wherever it occurs. Thus 

B2 = $ I[ Z2 + (R + Rsj21 ’ - Sl , 

S2 = (x + ” T - Xs)2 + (Y - ysj2 + z2 , 

R2 = (X+VT) 2 +Y2, 

We are interested in the pressure at large distances 

p = -P o a$/at and will put t = 0 after differentiation. 
prime attached to any symbol represents its value at time 

have 

and we use the result 
We suppose that a 

t = 0. We then 

a$’ 2 iL’ -= AY 
at S’e 

I-l+i 2 [C(B’) i S(B’)] 

21+i -+A’ 
-Y 2e 

where 

( 

vx 
L’ = w vx-s 2.’ 

c2 =2 - c ' 
> 

St2 = (X - XJ2 + (Y - Ysj2 + z2 , 

aB’/aT and aS’/aT are the values of aB/aT and aS/aT when t is put 

equal to zero after differentiation. 

Note that 
B im 2 

f 

-- 
C(B) - I S(B) = e 2 da 

0 
and so 

inB 2 
-- 

& (C - i S) = y2 e 2 g . 

We have used this III deriving the above equation for a+,/at. 

Noting that 
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i 

as* v (X - XJ 
-= 

aT S’ 

aB’ vx 
R' + R w -= se 

v w - Xs) 

aT VI c B’ 
+ (R' + RJ2 

R’ S’ 
3 

we have finally 

a+' -= 
at 

(X - Xs) v 
cst 

)( 
1- + [C(B’) - I. S(B’)I 

X R’ + R x-x 

.Z2+ (R' + Rs)2 R’ 31 
. . ...(6) 

If x and xs are small compared with y then V X/c S' 1s small 

and 

a$' 
4 l+i -= 

at 
iwAy a 

S’ A---$- [C(B’) - I S(B’)]+ 0 . (7) 

Nlth no motion of source or body we would find that 

iws 
a$' ioA-T -c-e 
at s + [C(B) - 1 S(E)1 + 0 & 

( )I 
, 

as in sectlon A of these notes. 

If the point P is moving at the same speed as the source and the body 

then B and S are independent of t and we obtain simply 

a$' -= 
at c 

$-l+i 
2 [C(B’) - i S(B’)l + 0 . (8) 

There are of course second terms to be added to each of equations (6), (7) 

and (81, corresponding to the image source. Under the approximation used we can 

show that the ratio of the pressure amplitudes for what we called cases (a) and 

6) 1s 
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pa 2 1 
-=Y = 
Pb 1 - M2 

as in the case of a single free source, with small V X/c S’. 

To sununar~se then we have found that if M x/s and M xs/s are small 

then for a moving source and body the formula for the pressure has a form 

closely akin to that which It would have If there were no movement, provided 

that distances are suitably redefined and a factor y4 multiplies the 

expression when the recipient 1s at rest; the factor is y 2. 
If the 

recipient 1s moving with the rest of the system. There is also a phase 

change. 

4 SOURCE AND SEMI-INFINITE SWEPT PLANE 

For this case there is considerably mcreased complication. Taking the 

coordinate system as before we suppose the source and plane have velocity 

components (7, 0, -w). The source will then be taken to be at 

(X - u t, Y s’ =s - w t). We write s 

“2 = u2 + W2r y2 = 1 -s-l , 62 = (1 -q-’ , E = y . 

( > c c c 

Then the equation to be solved is 

( 
v’-$5) $ = f(t) 6(x + u t - xs) 6(y - y,) 6(2 + w t - Zs). (9) 

In effect we turn the coordinate system about the y axis through an 

amount equal to the angle of sweep, then apply the Lorentz transformation. 

Unfortunately this alters the angle of sweep in the new system so that a 

different coordinate transformation is required to get back to the standard 

non-moving situation. 

The first coordinate rotation and Lorentz transformation may be combined 

into 
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. 
5 = y2 y+y c 2 

+vt 
1 

= + [u (x + " t) + w (2 + " t)l 

n = YY 

+ [-” (x + ” t) + ” (2 + ” t)] 
2 

= Y 
[ 

2 
T t+XU+Z" 

2 3 
= t+~[Iu(X+Ut)+W(Z+Wt)l. 

c c 

This transforms 

9 La2 y2 c 2 

C’ at2 
into 1 a2 Q --- 

1 C’ aT2 

where the second Q2 is evaluated in 5, n, 5 coordinates. 

Now we make the transformation 

xl = US-YWr, 
W = y6(x+ut) 

y' = n 

2 
z' = ywc+uc = 

w y2 6E (x + u t) + % (2 + w t) 

t' = T , 

where 

This makes 

62’ 6x’ E x’ z+wt = --- 
Y2 Y ’ 

x+ut = ys’ 

The change is a pure rotation and so the differential operator is now 

2 1 a2 
-7-T * c at’ 1 

Equation (9) then becomes 



2 2 

= y4ft'- c " Y xs w Y zs 

- 
- c2 c2 1 6(x' 6y XJ 6(y' -Y Y,) 

6 z’ - 
C 

g (62E xs + zs) 1 
Here we have used the fact that 

f (t' - a x' - b a') 6(x' - C) A(z' - dx' - a) 

= f [t - a c - b (dc + e)] 6(x' - c) 6(z' - dc - a) . 

The boundary condition in the physical plane is a+/ay = 0 for y = 0, 

x+utao which reduces to a$/ay' = 0 for y' = 0, x' 2 0 and so is the 

same as in the original non-moving problem. 

If the solution for this is 

$F = bF (x9 Y, =, t, xs. Y,* zs) 

then the solution of our problem is 

2 2 

$M = Y2 4F 
c 

2 
x' , Y', z', t' - 

u Y xs w Y zs 

2 - 2 , 6y xs, Y Y,, 5 (A2E xs + zs) * 
c c 3 

Hence transforming back we have 

@M = Y2 4F 
c 

2 2 y 6(x + " t), y y. F (6 E x + z + " rs2 t), 

y2 t+ 
( 

"X ux+wz s +%I2 
S 

c2 - 2 ) 
, Y 6xs. Y Y,. g (62, xs + zs) 

c 3 

. . . . . (10) 

c 

. 
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i 

Note that when w = 0 then u = V, 6 = y and this reduces to our previous 

value (2). It does not seem worth while this time to make a transformation 

analogous to (3) 

If the recipient is moving with the fluid we replace x, z by x - u t, 

a-wt respectively and obtain 

@M = Y2 $F c 6x9 Y Y, cx+z),t+y 
2 ux+wz 

Y 
( 

uxs+wzs 

c2 - 2 c ) 

Y $3 Y Y,, ; (62, xs +zs) . 
3 

(11) 

To the same approximations as equations (7) and (8) we find for a 

stationary observer and moving source and body, the source being at 

(X s, y,, 0) at time t = 0 

l;iIC(B,)-iS(B,)I +O(VX)] 
c 

. . . . . (12) 

+ terms corresponding to the image of the source, 

where 

St2 = y2 62 (x - q2 + y2 
z2 

(Y - YJ2 + % 

z2 
0 

iS2E (x - xs) + ai2 , 

8'2 = 
K ) 

F [ d2c (x - xs) + zl 2 + (r’ + ry 
3 

1 

- s’ 

r; = y2 (62xz + yf, 

rf2 = y2 (62x2 + y2) . 

For a moving observer the result is the same but with the factor y4 

replaced by y2 and 0 (V x/c s') replaced by 0 (l/w s'). 
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