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SUMMARY 

Three methods of determnnng an unsteady Interference parameter in slotted wrnd tunnels are 

described In each case the govem,ng eqwatlon for the flow I” the wnd tunnel 1s Laplace’s 

equation whxh IS solved by a fuute difference approxunatnn The methods differ in the represen- 

tatIon of the dtsturbance due to the wng A dIscussvan of the malts of each method IS rncluded, 

results are quoted for tunnels of square sectIon with roof and floor of varyzng slot parameter. 

Replaces A.R.C.30 834 



1 INTRODUCTION 

In a recent paper Gamer, Moore and Wight’ have presented a theory for the lift mterference 

effects on wrngs ,n slow pltchmg osclllatmn m slotted wnd tunnels at subsomc speeds This 

theory requxes values for the steady Interference parameters, 6, and 6,) end a further parameter, 

Si, that arises m oscAlatory flow Though tnformatmn 1s available for the steady Interference 

parameters, values of the oscillatory parameter are only avarlable for lkmltmg cases of the open 

and closed tunnels 

Tbls paper IS concerned wth the evaluatmn of the oscrllatory parameter for slotted tunnels 

Three altematwe methods are examl,ned In the first a solutmn to the steady flow equatmn IS 

obtamed, the Interference parameter IS then evaluated from an mfmlte mtegral of the Interference 

upwasb The second method uses rearranged equatmns m terms of a functmn q4’, 6; IS obtamed 

from the first derrvatlve of q5’ at the orlgm In the thud method the unsteady flow equatmns 

are solved for mcompressrble flow over a range of frequency 

These three methods are slmka m that each requrres a solutmn to the Laplace equatmn m 

three dlmensmns, but they have drfferent condltmns on the downstream boundary end at the wmg 

The fm,te dlfference method*replaces the Laplace equatmn and the resultant fuute dlfference 

equatmns solved ather usmg an analogue computer or by the dynamic relaxatmn method30n a 

dlgltal computer The accuracy of the different methods of solutton illustrates both the advantages 

and dwadvantages of the fnte dlfference method 
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2 SUMMARY OF METHODS 

As an aId to the comparison of the methods their sallent features are presented in Table 1 

Further details of the fxst method, III which the Interference due to steady flow IS constiered, are 

to he found I” Ref 2 The rearranged flow equatrons of Method 2 are derived ,n Appenda A, and 

the Important unsteady flow equatvans of Method 3 are recorded III Appendix B The remainder of 

this se&on explains certain of the Items of Table 1 

With each method the governing equation 1s the Laplace equation III three dlmensxons 

Rectangular tunnels are considered which should extend from mn~us rnflnlty to plus lnflnlty How- 

ever, since a flnlte difference method IS to be used, lnflnlty cannot be included III the solution but 

the field ~111 be taken to cover the maximum streamwse dlstence practicable 

A small wng IS posItIoned at the centre of the tunnel, expressions are avallable for the 

perturb&Ion velocity potential due to the presence of the small wng III unconstraned flow The 

relevant formulae we lrsted as Item 4 III Table 1 

The walls of the tunnel can have various boundary condltlons, III thas study the only con- 

dltlons considered are closed, open or slotted For a closed wall the perturbation velocity poten- 

tlal satlsfles 

JdJ 0 -= 
an 

where n IS the dlrectlon of the outward normal, whilst for an open wall 

4 = 0. 

on an Ideal slotted wall, the homogeneous condltlon, _ 

( 0 

(2) 

q5 + K Jd/Jn = 0, i3) 

IS taken, where K IS the geometrx slot parameter III equation (4) of Ref 1. 

As explaIned prewously, the tunnel cannot be continued upstream to lnflnlty but IS usually 

terminated a distance upstream from the wng roughly four times the herght of the tunnel On this 

plane the boundary condltlon IS taken to be, 

J.$/Jx = 0, 

where x IS the streamwse dwxtlon 

On the downsteam boundary different condltlons hold for each of the three methods From 

the steady flow equatrons the perturbation velocity potential tends to a steady value, whence the 

Imposed condltlon 1s 
JqVJx = 0 

With the rearranged flow equations an examlnatlon of the expression for c$;, III Appendix A, shows 
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that It steadily increases for large x, but since the streamw,se ord,nate, x, becomes the dom,nant 

term, the downstream condrtlon IS taken to be 

ad'/ax = COnStant 

For the nnag,nary part of the unsteady flow equation d+, /dx IS unknown, but ,t IS possible to f,nd 

a plane on which g$,,, IS zero, this plane IS made the downstream boundary of the problem 

Since this analysts 1s Intended for calculating the interference parameter Si,accurate 

InformatIon 1s requred about the Interference velocrty potential, defined as. 

4, = + - 4, (4) 

Since C# and .$,,, satisfy the Laplace equation, so also does .#, Therefore lnformatxn concern,ng 

the Interference potent181 throughout the field can be determlned from a second solution to the 

Laplace equation, given the boundary values of 4 and hence of +, The method of solution IS 

described in greater detarl rn Ref 2 Boundary condltlons for each of the three methods are llsted 

,n Table 1 

The fIna Item of Table 1 1s the expression used to calculate 8: In the first method an 

integral between minus lnflntty and zero has to be evaluated Ustng the i-earranged flow equat,on, 

8; can be calculated directly from the slope of the interference potential at the or,g,n W,th the 

unsteady flow equatuzns the slope of the Interference potentral at the or,g,n 1s used, but unless the 

flow IS lncompresslble the equation IS only v&d as the frequency parameter w tends to zero. 

3 METHOD OF SOLUTION 

From conslderatlons of the prenous sectnn It LS clear that each of the three methods 

reduces to a solution of the Laplace equation in three dlmenslons The only dlfferences in the 

methods are I” the boundary condltlons and in the methods of evaluatrng the magnitude of the 

Interference parameter 

31 Fmrte dtjjerence solutron 

At present the most versatile method wallable for solwng the Laplace equation IS the fnte 

difference method In the flnrte dlfference method the field LS dlwded Into a three-dlmenslonal grid, 

then the Lsplace equation 1s wntten I” fnrte dlfference form for each node Linear srmultaneous 

equations are obtalned wth one equatnn for each node For example. with the mesh shown in Flg.1, 

Ax, Ay and AZ are the mesh Mew&. Slmllar equations can be wrltten for wregular meshes.Ref.2. 
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These simultaneous equations could be solved by a direct matrix lnverslon method, but 

since a van&y of speclflc problems are to be solved It IS preferable to use techniques I” which 

the boundary condltlons can be modlfuzd quckly 

Two methods have been used wth success The first, the electncsl resistance network,’ 

solves the simultaneous equatrons by an equivalent array of resrstances Once the boundary 

condltlons have been applied as electrical currents and potentrals, the network lmmedlately gwes 

the potential dlstrlbutton wrthln the field 

Recently the dynamic relaxation method has been used to solve the flnlte drfference 

equatrons 3 Thm IS an lteratlve method using a dIgItal computer By lntroduclng dynamic terms 

rnto the equatxms and using an explxlt fuute difference formulation. the equations can be solved 

by an lteratwe method which requues only a simple substltutlon routine on B dIgItal computer 

DampIng factors are chosen so that the osctllatlons quickly die out leadlng to the solution of the 

static equations The dynamic relaxation method has the advantage that a change in boundary 

condrtlons requres an alteration to only one statement of the computer programme. 

Both the resistance network and the dynamic relaxatton method have been used for each of 

the three methods The analogue 1s very useful in the development stage since any InadequacIes 

in the technique quickly become apparent Once the technique has been developed It LS advwable 

to use the dynamic relaxation method so that extensive results can be obtalned The techniques 

used in the dynamic relaxation method wtll be described in the remainder of this report 

In the flnlte difference method the field 1s dlvlded by mesh planes, the choice of mesh 

spactng 1s governed by the need to obtain suffnent numerical values from which the requued 

result can be calculated For methods 2 and 3 the mesh spacing IS chosen to give detailed Inform- 

atIon around the orlgln The mesh spacing used in these two methods for a tunnel of square sectwn 

IS 

Vertical and sparnwse dIrectIon, 

0, 0.04167h. 0 0833h, 0 1667h. 0 25h, 0 375h. 0 5h 

Streamwse spac*ng. 

0, i0 04167h. iO.O833h, fO.l667h, +@3333h, -t0.6667h, zt 1’1667h. i2h. +4h 

The mesh spacing for a plane x = constant 1s drawn to scale in Fag 2 In Method 1 the Integral 

from minus lnfunty to x = 0 has to be evaluated, thus addltlonal mesh planes are provided for 

negative x, the mesh being extended as far as -937%. 

In the dynamrc relaxation method the number of mesh subdtvrslons LS llmrted pnmarlly by 

the tune taken in obtauung the solution, rather than from storage llmltatlons 

3.2 Enforced condtrrons 

An examnatlon of the msthematrxl expresslow representing the disturbance due to the 

small wng (Item 4 of Table 1) shows that for x>O each expresslo” tends to lnflnltv as y and z 
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tend to zero Since an lnftnlte potent14 cannot be represented in the numerical solutxux, the 

effect of the disturbance IS rntroduced Into the fxute difference solutxan at nodes surround,ng the 

orrgrn At these nodes, lndxated 1” Frg 2. finite values of + can be set. 

The expressuxw for the respectwe disturbances, 4, and 6, I” Methods 1 and 2 can be 

calculated directly, but Method 3 reqwres the evaluation of an InfInIte Integral for r&, Tb,s 

InfInIte Integral E. calculated by a summation tecbnlque on the d&al computer UJ wblcb x’ 1s 

Increased in small steps untrl the change between two successwe steps IS less than 0001%. 

The boundary condltxons on the walls and roof are applied through flctitvxs nodes Thus, 

for an Ideal slotted roof (z = const ), If the boundary passes through the nodes +, , 4,. +,, 

the condltlon 

4 + Kdgan = 0 (3) 

can be wrxtten in flnrte difference form as 

hence the fxtitious node .$, 1s g,ven by 

(6) 

The closed boundary 1s a special case of this condltlon wth 2Az/h = 0 The open boundary 

cond,t,on can be enforced directly by setting the boundary pant $x0 equal to zero 

Far upstream the condltlon for each boundary LS that d$//dw = 0 Agatn fictltlous nodes are 

used, thus 

The same condltlon holds on the downstream boundary for the first method For the second method 

where d+‘/dx = const , the equation for the flctltlous node 1s 

,#a’, = 4; + 2const Ax 

In the thtrd method 4, and hence +,, 1s made to be zero on the appropriate plane. (7) 

33 lnter~erence potentCal 

The method of solution and enforcement of boundary condrtxans for the Interference poten- 

tral IS slmllar to the method for the perturbatron velocity potential except that there IS no 

smgularlty near the axis The different techniques used to evaluate 8; ~111 be described in the 

follow,ng sect,on, hut each method involves the calculation of the first different14 (&+6/az)z = D 
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Due to the antlsymmetncal cond,t,on across the plane z = 0, (J2~/Jzz).;o = 0, thus a flnlte 

dlfference formula can be constructed having an error of order AZ : 

where nodes a end b are at distances AZ. and 2Az above the or,@” 

4 RESULTS 

In thrs se&on the method of calculetlng 8: IS described and the results for each method 

are presented An estimate IS made of the probable accuracy 

41 Steady flow equormn 

When calculatrng 8: from the results of a steady flow solution the followng equation IS 

used, 
-b 

8; = - ’ J+x 
USC‘ si i z dx (9) 5 -ca 

Since J+,/Jz can be calculated only at mesh points a summetlon method has to be used In an 

earlier report’ the results were fatted to a curve of the form 

Jd,/Jz = (A + Bsln8)cosP8, 

where 8 = ten-’ (-4x/h), 

( 10) 

but in the present study Simpson’s Rule IS used Another dlfflculty auses because the mesh does 

not extend to minus lnflnlty However, If the function 1s assumed to be proportwml to l/x’ 

between the last plane and m,nus Inflnrty. the contrlkution to the integral for this re@on can be 

calculated duectly For several results both the earher and the present method were used to 

evaluate 8; The d,fference was never more than 0.002, and when the cwve of (J+,//az, was 

plotted and the area under the curve determined, very good agreement was obtaned wth the 

present method. 

Results for B square tunnel are Included in column 2 of Table 2. The fnst result refers to a 

tunnel wth all four walls open, whrlst the f,ve other results are for closed side walls but wth an 

Ideal slotted roof end floor The slot parameter, 

(1 + z‘9-’ = (l+ ZK/h)-’ (11) 

varies from O(closed wall) to l(open wall) Anslytlcal values are wallable only for the open and 

closed condltnm, and agreement wth these results 1s satisfactory. The e&mated accuracy IS 

f0.003, Improved values could be obtained by increasing the number of mesh Intervals, but this 

would nwolve an appreciable increase in time on the computer Some errors. however, do ause 

from the lntegratwn end also from the use of flnlte dlfferences to represent a continuous system. 



It IS not possible to assess the magnitude of the frnlte drfference errors but comparisons with 

analyt~~J solutions lndlcate that they are roughly ~0’0015. Since the errors arising from the 

lnfrn,te Integral ,.,,I1 be of the same order the total error wll be about i 0.003. 

42 Rearranged flow equolrons 

The method using the rearranged flow equations IS apparently straightforward since the 

parameter 8: can be calculated directly from the slope of the Interference potentxal 4, at the 

orrgrn Results for the completely open and the completely closed tunnel are Included I” column 

3 of Table 2. 

The reason for the xmccurate results becomes clear on exanunx~g the &l&Ion of the 

function 4’ wth the streamwse dtrectlon x For example, on the downstream boundary the value of 

4’ on the arc surrounding the wng IS roughly 100 times the value m the plane of the wng This 

should be compared wth the steady flow equatxms where the potenirsl at the downstream boundary 

1s only double that at the wng With such a large varratlon I” c$’ the flnlte difference errors become 

serious. leading to the poor results recorded ,n Table 2 Inltlally the results showed an error of up 

to 30% but by averagIng the values grven at different mesh poslhons the figures glen in Table 2 

were obtalned Any method, however. requwng such averaging IS not thought to be r&able Due 

to these errors the method of using the rearranged flow equations 1s not to be recommended 

43 Unsteady JIow equorrons 

The third method, in which the unag~nsry part of the complex function, &, is used. IS 

slmllar to the steady flow problem but differs m the representation of the downstream boundary 

Downstream of the wing the velocity potentval does not tend to a constant value but continues to 

oscillate It IS posstble to estxmate the posltxon of the first plane, x = constant, at which the 

undisturbed potential, c$,, , becomes zero, this plane 1s then taken as the downstream boundary 

wth zero values applied to this plane Although &, from equation (88) does not vsnlsh over the 

whole plane, the values at all nodal pants 11e close to zero 

To rnvestrgate whether this assumpt,on can lead to errors a check was made by taking the 

second plane on which .$,,,,, IS zero and using this as the downstream boundary The results were 

ldentlcal to those obtalned wth the first zero plane 8s the downstream boundary, thus demonstrst- 

rng that the method of representlng the downstream boundary IS satisfactory 

The parameter 8; 1s calculated from equat,on (B6) which states that at x = 0 and for 

small u. 

(12) 

The method adopted I” calculating 8; 1s to obtain solutions for three values of oh/U, 0 5, 0’1 and 
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0.01. By extrapolatmn the value at oh/U = 0 can be determmed, the extrepoletton 1s Illustrated 

an Fig. 3 Results are calculated for the prevrous values of the slot parameter. and recorded in the 

fourth column of Table 2 The estrmated accuracy for these results IS f0~0015. end they are 

thought to be more relmble than those given by Method 1 smce the only source of errors IS the 

fmlte difference approximation. 

In Fig 4 the results of Table 2 are plotted agamst (1 + F)-’ The curve plotted through 

the pants Indicates that, to a fat approrlmatmn, the varmtmn wth (1 + F)-’ IS lmear for the 

particular case of a square tunnel 

5. CONCLUDING REMARKS 

Of the three methods, the method involvmg the rearranged flow equatmns can be dmcerded. 

At first this method appeared to be promwng smce the boundary cond:tlons and the method of 

calculatmg 8: are stralghtforwerd However, due to the streamwse varlatmn III the magmtude of 

the functmn the fmlte difference errors become serious 

Although the evaluatmn of the infmlte Integral m the first method can lead to small errors 

it IS more economical m computer time than the fmal method 

Smce It IS necessary to use the computer to evaluate &,, m the final method a large 

amount of computer tune IS used for each solutmn The most accurate results, however, are given 

by this method which solves the unsteady equetrons Further, the method can be used for per 

forated tunnels m mcompresslble flow et arbltrery frequency, smce the real and mmgmary parts 

of 4 both satisfy the Laplace equatron but have to be solved samultaneously. 

Though the results of Table 2 are derived for mcompressible flow, they can be apphed to 

compressible flow of low frequency. The validity of this assumptmn is dlscussed m Ref 4 where 

It IS shown that the Interference can still be derived from a solution of the Laplace equetlon For 

higher frequency It IS necessary to solve an equatmn of the form, 

0’4 + k$ = 0, (13) 

where k 1s a functmn of o and M An equetron of this form can easily be solved usrng the 

dynamic relaxahon method 
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NOTATION 

tunnel breadth 

ltft coefficient 

complex lift coefflcIent, c,, + z, 

non-dlmenslonal slot parameter, X/h 

tunnel he&t 

(- 1); 

geometric slot parameter 

Mach number of undlshubed stream 

outward normal distance from boundary 

radial ordlnste (x’ + y’ + z+ 

planform area of wng 

un&sturbed stream veloaty 

Cartesian coordinates 

Increment ,n streamw,se dlrectlon 

(1 - ,&f+ 

steady lift Interference parameter at the wrng 

steady streamw~se curvature parameter 

unsteady lrft Interference parameter at the wng 

Increment 

perturbation velocity potential 

rearranged perturbation velocity potential 

complex perturb&on veloaty potential, GE + I& 

veloaty potent181 an unconstramed flow 

complex veloaty potential in unconstramed flow, &,,, + &,,, 

interference velocity potent1a1 

complex Interference potential, &, + I&, 

angular frequency of osclllatlon. 
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Table 1 Comparison of the three metbods F; 

Method 1 Method 2 Method 3 

1) Title Steady Flow Equstvxs 

2) Workrng functxm Perturbstxm velocity potentlsl, 4 

3) Governmg equst1on 

4) Dlsturbsnce 

5) Side walls closed or open 

6) Roof and floor Ideal slotted 

7) condltlon far upstream a+/ax = 0 

8) Condltlon far down- J+/Jx = 0 

stream 

Rearranged Equstlons Unsteady Flow Equstlons 

Spec1sl function, 6’ 

V2$’ = 0 

4, 
m 

= _ Ubz(x+r) 

8nCyn + 22) 

closed or open 

a6’/ax = 0 

a4’/ax = constsnt 

Imsgmsry part of complex velocity 

potent1s1, 4, 

closed or open 

Ideal slotted 

a&lax = 0 

.$ = 0, on plane where &, = 0 on 

tunnel SXlS 

9) SoIutlon 1” mter- 

ference potentIs 

10) Formula for S;, 

~5, set on roof and walls, J+,/Jx = 0 6: set on loof, walls and downstream ;,, set on roof and walls, d;,,/Jx = 0 

on upstream and downstream boundary, a+:/ax = 0 on upstream on upstream plane; &, = 0 on down- 

boundsrles boundary stream plane 

= -(b/USCL) 0@4, /J&dx 
I 

= U/UXJ+:/JzL.,..., = (b/wsC,Xa~,,/az),,,...o 
.ca SSO-.O 
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APPENDIX A 

Tbe velocity potential in incompressible oscillatory flow for a small wing is given tly, 

dx’ , (Al) 

where w is the angular frequency of the osallatn,. 

For small w, 

4, - us& 
J 

z(l- lO,‘/u, dx’ 
an o [(x-x')' + y’+ zq"2 ' 

On substltutlng rz = x2+ y*+ 9, taking the imagnwy part and treating I?‘ as real, 

L SC‘z(x+r) 
-= --- 
w an y’+ 22 (AZ) 

Now the complex interference upwash at tbe centre of the tunnel has been given in equshon 

(15) of Ref. 1. which with slight rearrangement IS, 

a& = USE 

-1 

‘ 
a2 

_ 82 + &NW- 1) 
bh h 2@hz (43) 

For xncompressible flow B = 1; thus at the or&n where x = 0, 

With CL real, the unag~nary part satisfies, 



For Ideal slotted tunnels &Jo setlsfles the boundary condltlon, 

(A@ 
&, 
w 

+ K JC&,/d &n, KJ&,/4 =_-- ___ 
J?l w Jn 

Moreover, in incompressrble flow &, satlsfles the Laplace equat,on 

Thus It follows from equations (AZ), (AS) and (A6) that 8: IS equwalent to the steady Inter- 

ference upwash (J+:/Jz)/U when the unconstrained potent4 due to the wing IS, 

d, 
m 

= _ Ubz(x + 0 
My’+ 22) 

It should be noted that this method is not eppllcable to perforated or non-Ideal slotted walls, 

when the porosxty parameter enters Into the boundary condrtlon (Ref 1) 



APPENDIX B 

Unsteady flow equalrons 

In osallatory incompressible flow the complex velocxty potential 4 satisfies the Lsplsce 

equation 

J’; J$ J2; -+-+-= 0. 
Jx’ Jy2 Jz2 

ON 

where 3 = & + 13, Both the real end imagnwy parts, & and 4,) lndiwdually satisfy the 

Laplace equatKm 

The veloaty potential due to a smell wng in unconstrained flow PS, 

Boundary condltlons are as follows. for a closed wall, 

(82) 

(83) 

for en open boundary, 

= a, = 0, 034) 

whilst for Ideal slotted walls, 

03% 

Snce the real and nnsgrnsry parts of each of the above equstlons sre Independent It is pemnsslble 

to consxder the real and nna~nary parts separately 

The parameter 8: can be derived from equation (A4) of Appendix A in terms of the complex 

Interference parameter, a., 

036) 
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Hence 8: can be calculated from the imaginary part of the complex potent4 The equations re- 

quired to solve this problem for a small wrng are as follows: 

with boundary condrtwns, 

V1&, = 0, 

a&,/an = -a&,/an 

& = - am, 

Q,, + Ka&/an = - .3,, - ~a&,/a~ 

where 

037) 
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Fig. 1. Finite Difference Mesh. 
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Fig. 2. Mesh spacing on a plane x = constant, showing nodes 
representing small wing. 
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discussion of the merits of each method 1s mcluded; 
results are quoted for tunnels of square section with roof 
and floor of varyizk slot parameter. 
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