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SUMMARY 

The drag of an infinite swept wing is found in terms of the drag of a 
related unswept wmg having the same relative position of transition. Results 
in incompressible flow are expressed in terms of a "sweep factor". Detailed 
calculations are made for wings of Rae 101 and 104 sections and the factor 
appears to have a reasonably universal character not very dependent on shape 
or Reynolds number if transition takes place early, but strongly dependent 
on thickness. Results are given as a series of curves and an empirical 
formula is given for the sweep factor in terms of thickness-chord ratio, angle 
of sweep and point of transition. 

A few results are given for compressible flow over an RAE 101 section at 
sweep angles of O0 and 45"; these show the effect of sweep in delaying the 
compressibility drag rise. 

* Replaces R.A.E. TechnIcal Note Aero 2966 - A.R.C. 263~. 
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1 INl'RODUCTION 

Weber end Brebner' attempted to make an estimate of the drag of a swept 
wmg by relating It to the drag of a similar unswept wing, thus obtaining what 

has come to be known as a "sweep factor" by which to multiply the drag of en 

unswept wing to obtain the drag of the same wing swept. In order to do this 

they first calculated the sweep factor for a flat plate and gave some evidence 
to show that this is not much changed if the flat plate is replaced by a wing. 

We must distinguish between the words "swept" snd "sheared". The former 
means that a given wing is simply turned or "yawed" through an angle a 
called the angle of sweep. By the term "sheared" is meant that each chordwise 
section of the wing is moved parallel to itself downstream to such a position 

that the leading and trailing edges, which were normal to the mainstream to 
begin with, now make sn angle 0 with their original directions. In each 
case the total area is unchanged, but the swept wing whose chord was originally 
c now has a stresmwise chord equal to c set @ whilst the sheared wing has a 
streamwise chord which remains equal to c. 

In obtaining the factor for a flat plate Weber and Brebner' used the 
"independence principle" for both laminsr and turbulent flows. This principle 
states that the chordwise flow may be calculated independently of the spanwise 
flow. By this means they found that the drag coefficient of the plate sheared 
to sn angle e at a Reynolds number R is equal ta cos e times that of an 
unsheared plate at the smaller Reynolds number R cos* 9. At the time the 
paper of Weber end Rrebner was written the experimental evidence seemed to be 
in favour of the use of the independence principle for turbulent as well as 
laminar flow, but since then it has been shown both theoretically end 

experimentally2 that the principle does not hold for turbulent flow; indeed 
it is now believed that a "line-of-flow" principle should replace it. 

According to the new principle the wall shearing stress is considered to be a 
function of the distance over which the external fluid has travelled rather 
than the distance perpendicular to the leading edge, which is what the 
independence principle leads to. Intuitively this seems to be more reasonable 
since one would expect the previous hlstory to have some effect on the flow. 
In purely lsminsr incompressible flow both principles lead to the same result 

owing to the particular form of the boundary layer equations. It follows that 
if we use the line-of-flow principle, in all cases, luninar, turbulent, or 
mixed, shearing a flat plate will have no effect on the skin friction at any 
point, and the drag of a sheared flat plate will be always the ssme as that of 
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the same plate unsheared. According to Turcotte2, who gives a detailed 
account of the whole matter, and who introduced the term "line-of-flow 
principle", more recent experiments show results in favour of the line-of-flow 
principle. If this principle is to be believed all Weber and Brebner's flat 
plate curves should be straight lines giving a constant sweep factor of unity. 

It should be noted that according to Young and Booth' th; sweep factor 
for a swept flat plate in lsminsr flow should be equal& cost @. This is 
in accordance with either the independence principle or the line-of-flow 
principle and would lead to a factor of unity for a sheared plate. On the 
other hand for fully turbulent flow they give the factor cos w @ for a swept 
plate which would give a factor cos 315 @ for the sheared plate. From the 
line-of-flow principle the factor for a swept plate would be cos l/5 @ and 
would once more be un1t.y for a sheared plate. The experiments of Young and 
Booth3 are heavily in favour of the factor cos4/5 $ and not COS'/~ c. In 
this respect, however, they are at variance with Ashkenas and Riddel14; and 
Turcotte2 is inclined to favour the experiments of the latter. It should be 
pointed out here that all approximate calculation methods for three-dimensional 
turbulent boundary layers so far given have implicitly followed the line-of- 
flow principle. Indeed this seems to be the only possible procedure in 
approximate methods for general three-dimensional turbulent boundary layers. 

E&n if the results of Weber and Brebner for the flat plate were correct 
it would still seem reasonable physically to expect that the sweep factor 
should vary with thickness, since the thicker the wing the more highly curved 
are the streamlines and the greater cross-flow in the boundary layer. 

In this note a more refined procedure is attempted. We confine ourselves 
at first to incompressible flow, and later extend the analysis to subcritical 
compressible flow, First, by momentum considerations, Squire and Young's 
simple formula for drag is extended to apply to infinite swept wings. This 

3 extended formula was found by Young and Booth by a different procedure. It 
involves two "components" of momentum thickness g,, aid e2,, instead of 
merely g as in the two-dimensional case. Plext, approximate methods of 
calculating these components are devised, assuming small cross-flow in the 

boundarylayer. Finally the result is expressed as a “sweep factor” relating 
the drag of the swept wing to that of a certain unswept wing. In order to 
obtain a set of curves for the sweep factor It is necessary to know the wing 
section, snd RAE 101 and RAE 104 have been used for this purpose. It is not 
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of course necessary to express the results in terms of a sweep factor but 
this was done in the hope that the effect of different shapes would lie 
mainly in the drag of the basic unswept wing and not in the factor. In 
other words it was hoped that the factor would not be too dependent of the 
partlculsr section chosen, but would, in some degree at least, be universal. 
It csnnot be said that this hope has been realised except when transition is 
early, say up to about 30% of the chord. Beyond this the drag factors for 
RAE 104 are considerably less than those for RAE 101, especially for the 
sections with the greatest thickness and the greatest sweep. 

Weber end Drebner tested their theory by an experiment on a 12% thick 

,=T 
and obtained good agreement. The result of the present study gives 

fairly good agreement with the same experiment, but would give results very 
different from this had the experiment been done on a thinner wing for 
instance, whilst their theory gave factors independent of thickness. Fair 
agreement is obtained with an experiment on a 44% thick wing by Brebner and 
Wyatt 70 , a result which was not achieved using the Webper end Drebner factor. 

Owing to the approximations used one must not expect great accuracy in 
the curves given here. It can only be hoped that they will give some estimate 
of drag at zero lift for preliminary design purposes. 

In this connection we must note that our results only apply to en 
infinite sheared wing. They may, however, have some relevance for a finite 
wing, if it is designed to have straight isobars so that the external flow 
bears some resemblance to that over sn infinite yawed wing. 

2 MOMJCM’UM BhLANCE 

We surround a portion of the wing, of length .8, angle of sweep 4, by a 
cylinder of rectangular section but with the plane ends ADCD, A'B'C'D' swept 
to the angle o (Fig.1). The sides BCB'C', ADA'D' are supposed flxed, but 
the top and bottom faces ABA*B*, CDC'D' move off to infinity above and below 
the wing, and the ends move off to infinity upstream and downstream. 

In considering the momentum balance in this control surface we note that 
the contributions to the mass flow end momentum in the direction of the 
velocity at infinity U& due to fluid entering or leaving the sides BCD'C', 
ADAID' cancel each other, and no fluid enters or leaves the sides ABA'B', 
CDC'D', and so we need only consider the ends, where the pressure has every- 
where the same value. By continuity of mass we have (see Fig.2) 
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m 00 
s pw IJ, I cos 0 dz - s puldz=O , 

-co -m 
(1) 

where z 1s measured III the &rectlon CB. 

By momentum considerations we have 

-m -m 

Multiply equation (1) by lJ, 
, 

and subtract from equation (2) and we have 

Dreg = a 
s ~Pu (u, CO.5 @-U) COS @+ PI.2 (U, Sin @ -v) sin O} dz 

-co 

= P, u2wwj7co cos @+ e2,= sin $) 

In this equation 

P, 01, f = ,JP due - u) dz , 
-Q) 

P, 02, 4 = j Ph, - v) dz , 
w i 

* (3) 

(4) 

and the subscript 00 is to mean that the values are to be evaluated at 

mfmlty downstream where 

"e = u, U 
e 

= u, cos e, V 
e 

= &sin 0 . 

It will be somatmes more convenient to write 6,, in terms of e;, 
defmed by 

00 

2 
peej,ue = s pu(u,-u)dz , (5) 

-00 
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and we note that 

u 2 
51 = % if ' 0 

\ 

and in particular at infinity 

eYlD3 = ef,ca cos 2@ 

Hence equation (3) msy be written 

Now we wish to obtain the dreg in terms of momentum thlclmesses at the 

trallmg edge of the wing, so we mst find relations between e&T snd 

eipot and between e 21T md ' 2,cd where the subscript T denotes values 
at the trailing edge of the wing. 

For sunplicity we shall only deal with a symmetrical wing at zero 
Incidence, though the analysis csn be extended to more general cases by 
conslderlng the upper and lower surfaces separately. General equations 
for e,, end g2, have been given by Cooke end Ra115. Here we mnst apply 

them in the wake, which has a plane “centre surface” with zero skin friction 
on It. These equations are obtained by integrating the equations of motion 
right across the wake, and will be of the ssme form as equations (13) and (14) 
of Ref.5, but with the right bend sides equal to zero. We measure x normal 
to the leading edge and y parallel to It. All derivatives with respect to 
y are to be zero, owing to the fact that the wing is a swept mflnlte 
cylmder . The equations reduce to 

ell *e 2e11 due 
p,dx+ Ue dx 

7 due 
--+q&, = 0 , 

$ (Pe e2, f) = 0 ) 

where 

00 

P, U, 6, = s (p, ue -pu) dz 
-00 

(7) 



The second equation shows that 

PC.2 it&.3 = PcT '21T eT L? 

The first equation may be wrltten 

where 

(P, Ue -P U) dz a 

Equation (8) reduces to 

(9) 

which is the usual momentum-integral equation for flow in a wake m two 
dimensions. In other words g independence principle holds in the wake, even 
if it is turbulent, which we shall suppose always to be the case. This result 
was implicitly assumed by Young and Booth'. Now Squire and Young6 gave 
reasons for believing that in incompressible flow, to which we now confine our 
attention, 

approximately in a turbulent wake. (Actually their estimate for the exponent 
7 was 3.2, but, according to Thwaites , it is more satisfactory conceptually to 

use 3.5. This change in the value gives negligible difference.) 

Putting in these values we find for the drag coefficient for a swept wing 
of streamwise chord length c, whose srea is Lccos 0 the expression 



This 1s the extension to swept wmgs of the Squire and Young formula6. 

It can be shown that this is the same equation as that given by Young and 
Booth' after makmg allowance for the changes in notation, although the 

derivation 1s different. It 1s in the determination of gj, and g2, that 

the present treatment differs from that of Young and Booth who assumed the 
Independence prmciple to hold everywhere. 

3 THE VALUES OF giI AND g21 

We denote values referred to streamline coordinates by the subscrlpt S. 
Thus we have 

p, ( (& = p us (use - us) dz s 
. (13) 

-0a 

Formulae for e,2s, etc, are given In Appendix 1 where it 1s shown that 

ei, = e,,s - tan 6' e2,s - tan 6' e,2s + tan ' 6' e22s , 

e 
21 = sm 6' cos 6' B,,s + cos2 6 ' e2,s - sin 2 

6' 8,2s - sin 6' cos 6' e 
22s ' 

where 6' 1s the angle between the external streamlines and the normal to the 
leadlng edge. That is 

v 
6' = @+a , lxnb = " = 

IJ, sin 0 

u ' e e 

where a is the angle between streamlines and the direction of flow at 
mfmlty. For thin wings we may assum that the cross-flow 1s small. This 
Will em that e21s snd e12* are of order p and 822 of order 2 p , 
where P is the angle between streamlines. We ignore terms of order D2. 

Thus we have 

e;, = e,,s - ta 6’ (e2,s + e,2s) , 

9 
2 *' e21s 

2 
21 

= sin6’cos6’8,,s+cos - sin 6’ 8,2s . 

It has usually been 9,15,16 assumad that in turbulent flow the streamwise 
and cross-flow proflles have universal forms; for example the streamwlse 
proflle has usually been supposed to follow a 1/7th power law. Relations for 
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these form are worked out m Appendix 2 and it is found that approxmate 
values *l-e 

81 
11 = ells (1 + 1.5 P tan 6') 

e 
21 = elfs (sin 6 t cos 61 - 2 B c0s2 6' - 0.5 P sin2 6’) . 

Thus we have as an approximate formula for drag 

CD = 2(~){coS% (1 + 1.5 BT tan 6;)(“mu~~s 4y*5+ 

+ tan 4 (sin 6; cos 6; - 2PT cm2 q - 0.5 p T sin2 6') 

If the external flow is known everything in this equation is known except 

‘1lsT and PT. We now proceed to determine these quantities. 

4 THE VALUE OF ells 

We have (see Fig.3) for one surface of the wing (say the upper surface) 

ue = Uecos(4+a) = UeCOS6 , (16) 

and u e is m fact the velocity for flow past an unswept wing with the same 
thickness, but with chord c co8 0, so that its maximum thickness chord ratio 
1s (t/c) set e, whrch we denote by t$. For this wing the Velocity at. 
infinity 18 lJ,cos d. Let Ce be the velocity of flow past this unswept 
ring when the Velocity at infinity is increased to I&, so that 

U 
e 

c ii/OS4 . (17) 

We now suppose the unswept wing to be stretched so that Its chord beconas c, 
without changing its maximum thickness-chord ratio. Bars over sny quantity 
will refer to such sn unswept wing, whose Reynolds number based on chord is 
the same as the Reynolds number of the swept wing, based on its streamwise 
chord. ; e is independent of sweep and depends only on the wing section by a 
plane normal to the leadlng edge. 

. 



To simplify notation we shall denote g,,s, ;a, Ue end ue by 8, ;, 
U end u; in fact we shall drop all subscripts except T which denotes 
values at the trailing edge and t which denotes values at the pomt of 
boundary layer transition. For cOnvenience we shall from now on suppose that 
U, u, u have been made non-dimnsional by dividing by the velocity U,. 

Row Cooke' has shown that for en infinite yawed wmg with small 
cross-flow 

e 1.2 

,2 

e CO8 4 
u;q2 + -I&- $ 

0 

1.2 

0 
= 0.01~ 

R 0.2 s I?. 8 uC.2 d 0 x - c 
(x /c)c0s0 t . . . U8) 

In this equation x measures distance along the surface of the wing normal to 
the leading edge end R = U,c/v, the Reynolds number baaed on streamwise 
chord. EqUfit,iOn (18) is based on the rSSUltS Of Spence’l for two-dmensloual 
turbulent boundary layers, in conjunction with the line-of-flow prlnclple. 

Using equations (16) and (17) and writing x = 8 co8 @ we find that 
equation (18) becomes 

-4.2 -4.2 
UT 2 Ut t 0.0106 cos"*8 0 

cos 3 
= 

6; 
0 1.2 

c 
0 1.2 

- co2 q c Ro.2 

7 s ii4 
St/C cos 

3.8 6, d E 0 

. . . (19) 

where St 1s the streemwise distence from the leading edge to the point of 
transition. 

Now consxier an unswept wing with the so chord end maximum thickness- 
chord ratio (t/c) set o = G; this wing has an external velocity ce. The 
equation for this wing corresponding to (19) is 

0 or 1.2 -4.2 '2 l-2 
c 'T - c 0 

-4.2 ut = y jc G4 d($ , (20) 

t 
assuming that its transition point is at the same fraction of the chord as the 

swept wing. This is in fact equation (19) with e = 0. 

To find 5 T from equation (20) it is necessary to determine et and et. 
These are approximately equal if the cross-flow is small, as shown in 
Appendix 3. 
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5 7 
t IS found the formula of Thwaites , namely 

5 TBE DETEFlMINATION OF P, 

A general method for finding ST (which is small) seems to be too 

complicated to use here, and instead we give a semi-empirical value for it. 

ij T will depend on sweep, being zero both for 0' and 90’ sweep. It IS 
possible to give crude arguments based on Refs.8 and 9 to show that PT has 
a factor (p) sin Q cos o; the reasoning is given in Appendix 4. 

We therefore write 

PT = m(qz) sin 0 cos @ ) (21) 

where m is a constant for a given section shape. We may then find m by 
experiment. Brebner and Wyatt 10 for instance, found that for a wing of 
RAE 101 section with t/c = 0.12, swept to 45”, (so that v = 0.17) ST had a 
value 0f about 80. This leads to a value m = 1.64. From Brebner and Wyatt's 
second wing, with t/c = 0.045, swept to 55", (so that v = 0.078) this gives 
p, = 3.5" which agrees approximately with the value obtained in their 
experiment. In their photographs it may be noted that ST‘ does not seem to 
be greatly affected by the position of transition and so we shall use 
equation (21) with m = 1.64 universally. For different shapes m will of 
course be different but for reasonable changes of shape the change should be 
small and BT 1s itself small in sny case. 

This method of finding ST is not very satisfactory but a more rigorous 
determination is scarcely possible at present and might complicate the analysis 
to a degree not Justified by the accuracy of the final results. 

The drag factor is now obtained as the ratio of the drag given by 
equation (12) to that obtained by putting 0 = 0 in equation (12). 

6 KXTENSION TO CQMPBBSSIME FLOW WITIi ZERO HEAT TBABSBT3 

There is no great difficulty in csrrying out the analysis for the sub- 
critical compressible case. In section 2 nothing is changed up to and 
including equation (10) which may be written 

. 

. 
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deil x+(2+H- 91 &e 
$1 yi e27° . 

Following Thwaites7w'a replace 2+H- 2 by the mean of its values 
at the trailing edge and at infinity. We denote this mean value by the 
subscript m. 

Integrating the equation from the trailing edge to infinity downstream 
we find 

mni spence 12 transformed the incompressible boundary layer into an 
incompressible one, and he found that for zero heat trsnsfer 

H = =ll F(Hi+ 1) -1 
e 

where Hi is the corresponding inccanpressible value. This equation was 
derived only for flat plate flow, but is probably adequate for use in the 
momentum equation. At infinity we have Ii = 1 and following Thwaites we 
write Hi = 2 at the trailing edge. According to Spence, for zero heat 
transfer 

Twr - = 1 + 0.178 
T eT 

and we write %=k which will be sufficiently accurate since 

UeT = umcos 0. 

We find 

(2 + H - IE!,, - 3.5 - 0.733 & 

Hence we may write in pl.wre af equation (11) 
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Other formulas have been 
Young and Winterbottom 17 

given for g,700for incompressible flow. For instance 
find that in two-dimensional flow the incompressible ,- 

value sh;ld be multipli;c14by peT/pco that is (TeT/T~5/2. Nash, Moulden and 
Osbourne give (T,TJT~ . For an unswept wing, taking the power as 512, we 
can show that if u ed'ba does not differ greatly 
1s 

from unity, the value of 0, 

and if Spence's form for % is used, and we put 

BT e 
3.5-0.7336 

cI> 

Hi = 2 this becomes 

. 

This will cause the same change to be made to the exponent 3.5 in 

equation (12). The values of g2,s end g,2s in equation (25) will be 
changed, but these are subject to some uncertainty in eny case, and the 
change will be small in subsonic flow which is our main interest in this 
connection. We shall therefore leave them unchanged and so equation (15) 
~111 be unaltered except for the change in the exponent 3.5. 

There will be a change in the value of g7,sT. There is no point now 
in using ;, since equation (17) no longer holds. Equation (18) should be 
replaced by 

1 
O.Olc6 cos @ = HO.2 s 

St/C 

(1 + 0.128 $)-o'822 d : , 
0 

where et/c isfcundfrom 

In the last two equations u and U have been made non-dimensional by U, as 
before. They come from Ref.8. 
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. 

It 1s not so easy to see what happens to pT when compressibility is 
taken into account. It would seem that equation (29) should be replaced by 

where % 1s the Weber factor given by 13 

B, = [l - 6 (cos2 a - cpi,l+ 

and c is the pressure coefficient if the flow is incompressible. 
means Eat we must write in place of (21) 

ThlS 

P, = m(t c) sin $ co8 0 
Pl 

with m = 1.64 as before. Since P, is small it will be sufficient to write 

P, = (1 - b?~COS2 0,: 

When ue is known we find M and Te/T from the equations 

Sk! 5+tJ 

5+&,(1-f) ’ 

These equations are sufficient to determine CD if a set of values of 
u e I.8 known. If the pressure coefficient c 
experilsents, then we have* P is given, for instance from 

T 
e = (1 + ‘3.7 &p)2'7 = K (say) , 

$ = 5+c --5 , K 
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u, = (5 + 6 - 5&Eb, , 

2 u = e 4 - sin2 + . 

7 DRAG OF SWEPT WING OF RAE 101 AND 104 SECTIONS AT ZERO LIFT 

In order to carry out the calculations it is necessary to give some form 
for ie. We have taken values from Ref.11. From x/c = 0.3 and 0.6 
respectively to 0.95 the curves for Ge are straight lines, and these lines 
have been extended to x/c = 1.00. Our results for gT are rather sensitive 
to the choice of ; at this point, as Thwaites'l pointed out. He also 
showed that S(ce3*5e is not so sensitive to such variations. In any case some 

of this sensitivity is lost when one compares the drag with that of a wing 
whose drag is computed by the same technique. 

The integrals were evaluated by Simpson's rule with intervals of s/c 
equal to 0.05. The computations are straightforward and the results show 
little dependence on Reynolds number except for the highest values of st/c. 

Flg.4 gives the sweep factors for RAE 101 for three different values of 
qF. It will be seen that the effect of sweep is wry much reduced if the 
wing is thin. 

Fig.5 is a cross plot of the same curves expressed as functions of q. 
It will be seen that for early transition the curves are very nearly straight 
lines. An empirical formula for these lines is 

sweep factor = 1 - (v) {2.84 - 4.6 (.s,/c)’ - 0.25 (s,/c)“) sm2 e, which 
gives a fair approximation up to s,/c = 0.6. 

Flg.6 gives the curves corresponding to those of Fig.5 for the se&Ion 
RAE 104. For early trsnsition, say up to about st/c = 0.3 the curves do not 
differ greatly. A comparison is shown in Fig.7. It will be seen that for 
high values of s,/c and for high values of 0 the sweep factors for RAE 104 
are considerably less than those for RAE 101. 

Fig.8 gives the drag coefficient for a wing of RAR 101 section, having a 
stresmwise t/c of 0.12 for varying Mach numbers at angles of sweep 0' and 
45". The drsg rise due to compressibility, somstlmes called "drag creep", 
at @ = 0 IS shown clearly, as is also the fact that sweep delays this rise 
considerably. A point of interest in this Fig.8 can be seen in the fact that 



at, low Mach numbers the curves for 0 = 0, st/c = 0.2 and 0 = 45”, st/c = 0.0 
run close together. An unshesred wing at zero incidence may well have its 
transition point at st/c = 0.2, but when it is sheared it is likely that 
transition would IIXYM to e point very close to the leading edge. In such a 
case there would be practically no change in drag, the reduction due to 
shear being cancelled by the forward movement of transition. 

It would be of some interest if one could find out how this increase 
in drag with increasing Mach number arises. It would be useful if we could 
separate out the skin friction dreg and the pressure drag. Unfortunately it 
is not possible to do this with any measure of accuracy. As pointed out by 
Thwaltes7, and already referred to et the beginning of this section, in the 
calculation of S the value g(;e)3*5 is insensitive to local inaccuracies 
in ie near to the trailing edge whilst the pressure drag and skin friction 
drag are both quite sensitive to changes in ;e. It is fortunate that it is 
Just this combination that we need for the overall drag especially as the 
value used for ; e is very much of an estimate near to the trailing edge 
(theory gives ie = 0 there whilst actually it is fairly near to U, cos +). 
Hence we cannot separate the skin friction drag and the pressure drag with 
any degree of confidence, 

We csn perhaps estimate trends in the following way. We will confine 
ourselves to two-dimensional wings of 12% RAR 101 section wxth all-turbulent 
flow. It has often been observed that the skin friction drag of a wing 1s 
qurte close to that of a flat plate of the same planform placed edge on to 
the flow. Let us assume that this is so for the sake of the discussion. 
Then the contributions to drag et R = 10.' are given in Table 1. 

Table 1 

Drag coefficient of RAE 101, 12$, R = lo7 

MC.3 Skin friction Pressure drag Total 

0 o.oc615 0.00208 0.00823 
0.4 0.00607 o.oo225 0.00832 
0.6 0.005g6 0.00268 0.00864 
0.8 0.00582 0.00469 0.01051 

It will be seen that the skin friction decreases very slightly as the 
Mach number goes up, but there is a considerable increase in pressure drsg. 
Now in the subcritical flow of an inviscid fluid the pressure drag is zero. 
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We can dlvlde the body Into two parts, the forebady (up to the point where 
dz/dx = 0) and the afterbody. The drag (or thrust) on the two halves ~111 

cancel each other in lnvlscld flow. Now one would expect little effect of 
the boundary layer In the forebody (where It 1s still thin) and so the large 

Increase In pressure drag at the higher Mach numbers would seem to come 
mainly from the afterbody, being increased because of the considerably 
Increased displacement thickness there, especially at the higher Mach numbers. 

3 COMPARISON WITH EXPERIMENT 
. 

We shall compare our results with the experiments of Weber and Brebner' 
on a wing of HAE 101 section, swept to 45" with a streamwise thickness chord 
ratlo of 12s so that the value of G 1s 0.17. For transition at 0.15 and 
0.35 of the chord the results of this paper give factors 0.773 and 0.807 

respectively, whilst Weber and Brebner found factors 0.82 and 0.84. However, 
they apply the factor to the drag of an unsheared wing of the same thickness 
chord ratlo, whilst the factors given here are to be related to a wing of 
thxkness chord ratlo of 0.17. The results are shown in Fig.9 and the agree- 
ment 1s seen to be fair. Perfect agreement could hardly be expected unless 
one could assume that the end effects of the flnlte wing tested cancel one 
another. 

In this connectlon It might be well to mention some unpublished work by 

Weber in connection with the drag of an unswept wing. This is brlefly 
described in Appendix 5. 

Another comparison may be made by considering the models tested by 
Kirby and described in his addendum to Ref.1. For wing A Kirby found the 
drag factor to be 0.87 whilst the present method gives 0.887, and for wing 
B his factor was 0.845 compared with 0.874 by the present method. The 
measurements were, however, made on tapered wings, and the angle of sweep 

used was based on that of the quarter chord line. One would expect these 
wings to behave even less like infinite swept wings than that described above 
and one would not really expect good agreement. 

Another comparison may be made from Brebner and Wyatt's work 10 on a 4f% 
thick RAE 101 section sheared to 55" at a Reynolds number of 2 x 106. Transi- 
tlon was at 0.79 of the chord. For this sweep and thickness we have 
$? = 0.078. According to Weber and Brebner' the sweep factor should be 0.83 
whilst the measured value was very approximately 1.06. According to the 
present work the factor should be about 0.98. This factor, however, compares 



the wing with an unswept one of thickness/chord ratio of 0.078. To make the 
factor apply to wings of the same streamwise section we must allow for this 

change of thickness. This can be done by the use of Fig.11. We find that 

the factor becomes 1.01. Thus the error of 20% in the factor is reduced to 

5%. 

The factor is always nearer to unity when this type of comparison 1s 

made, that 1s between sheared and unsheared wings, both having the same 
streamwise thickness chord ratio. Indeed in such a comparison it may become 
greater than unity in rather extreme conditions, namely late transition and 

low Reynolds numbers, as in the example above. 

9 DRAG OF RAE 101 AND 104 SECTIONS UNSW-EF’T. INCOMFRESSIBLE FLOW 

As the method involves finding the drag of these sections when unswept, 
and as the drags do not appear to have been previously determined, it was 
considered that these might be worth recording. In Ref.14 the method of 
displaying the results is first to give curves for the drag of a flat plate, 

and then to give curves for a “form factor” A by which the flat plate drag 
is to be multiplied to give that of the wing. We have recomputed the flat 
plate drag and the results are shown in Fig.9. The curves are the same as 

those in F1g.V 4 in Ref.7 and are obtained from equation (20) with all 
velocities constant and equal to the free stream values. The factor h for 
the two sections is given in Figs.11 and 12. The curves given in Ref.14 show 
no dependence of A on Reynolds number, but it will be seen that there is in 
fact quite a strong dependence in the case of the wings studied here. 

10 CONCLUDING REMAFKS 

It is to be hoped that the curves given in this Note may be of some use 
In the determination of the drag of swept wings with sections not differing 
too much from the basic sections used. 

The results strictly only apply for an infinite swept wing at Zero lift. 
A finite swept wing of constant section has different pressure profiles at 
different points in its span, and for such a wing it is not true that 
derivatives with respect to y are zero. Such wings are, however, often 

designed so as to have straight isobars and for these the method would work 
if the reference unswept wing vere properly chosen. 

The method will not apply if the transition front is not parallel to the 
leading edge but it might be possible to use it to give approximate values even 

1x1 this case, either by taking a mean position for transition or dividing the 
surfaces into spanwise strips and applying the appropriate factor to each. 
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If the drag coefficient of any other section is required it is not of 
course necessary to use these drag factors since the programme is available 

to calculate directly the drag coefficient for any Reynolds number, sweep, and 
position of transition. All that is necessary to be known sr’e the values of 
the chordvise component of velocity or the pressure coefficient at 21 or 41 
points on the chord. It is also necessary to know BT, but if the section 
does not differ very much from those considered here, the change in PT (which 
is itself small) ~11 probably make little difference to the results, and so 
the value given in equation (21) may suffice. 

Few experiments seem to be avarlable to test the theory. It gives fair 
results for the wings tested by Weber and Brebner’, but a wider series of 
tests would be necessary before its general usefulness could be assessed. 

It is of course to be understood that the results would not be valid if 
separation were to occur, 

The method can in principle be used for a lifting wing, but each surface 
would need to be considered separately, with the appropriate values of 
velocity for each of the two surfaces. The difficulty here would be the 
deteraunation of B T’ which is indeed open to criticism even in the case of a 
symmetrical wing at zero lift. It would not, however, be feasible to attempt 
to find drag factors to be universally used in such cases. In the case of 

symmetrical sections at zero lift in incompressible flow, the factors have a 
universal quality if transition takes place early, as is usually the case. 

This is probably not so, however, at Mach numbers approaching the critxal. 
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Appendix 1 

VALUES OF e;, Am 0 , 

We see from Fig.3 that 

u = uscos6’-v sm6’, 6 u =u e se CO8 6’ = ue cos 6’, 

v = u sin6’+vssin6’, v = u sin 6’ 
9 e se = ue Sl” 6’, 

notmg that vse = 0, use = Ue since the suffix a refers to streamline 
coordmates. 

Now, onutting the limits, which in the wake and at the tralllng edge 
are from - CO to +w, or from 0 to OQ if the upper and lower surfaces are 

treated separately, we have 

P, u: e;, = s 
p due - u) dz , 

and hence 

1 
pee% = 2b 

cos ’ s 
p(us COB 6 ‘-~~sin6’)(U,cos6’-u~cos 6'+vss3n6') dz 

= 
s P uscue - ue)dz+tan6' 

. s P U8 yfj dz 

- bll6 
s P ',oJe - us) dz -tsn26’ .[p v; dz . 

Hence we have 

8’ = e 11 11s - tan 6' (82,s + 8,2a) + tan2 6' t'22s , (22) 

where 

Pe f ells i s p “,CU, - u,) dz , pa L? 528 = s 
p ‘,CUe - us) cat , 

Pe 4 ’21s s =- p us ys dz , pe t e22s = - s 
p vi dS I 

.*. (2zJ) 

.?- 
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In a smular way from the equation 

s 
p he - v) dz , 

we may deduce 

e 21 = sin 6' cos 6'(e,,s -0 22s) + cos - sin2 6’ 8,2s . (24) 
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VALUES OF e12s AND e21s 

we assume, following Cooke9, that 

where P 1s the angle between streamlInes and limiting streamlInes. After 
substituting the values XI equations (24) and lntegratlng between the llmlts 
0 and 6 we find for one surface, say the upper surface, 

e17s = 0.0972 6 , 

8 21s = -0.2071 P6 , 
e12s = 0.0527 136 . 

Hence we have 

e21s 
8 

G = -2.13 P , < = 0.542 p . 

If we use Becker’s forms 15 , which are 

e 
21s x = -1.94 P , 929 - = 0.46 p e 11s 

Smce I3 1s small we may use a simple approximation for these values 
wlthout serious error, and we have in fact chosen 

e 
21s = -2 P Offs 9 e12s = 0.5 P e,fs * (25) 

The same values apply for the lower surface, using the appropriate value 

for e,,s’ which ~111 be different unless the wing 1s synmetrlcal and at zero 
lift. 
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Appendix 3 

PROOF THAT et = gt 

In the full notation, we require to prove that in the laminar flow up to 

transrtlon . 

%ls = i . 

We frrst note that, according to equation (22) 

ells = q, + O(P) , 

- and we shall prove that 8' ,, =e. 

Here 81 
11 

IS equal to the momentum thickness for a two-dimensional wing 
whose chord is c cos @, thickness chord ratio (c) and velocity at inflnrty 
u,cos 4. Thus follows from equation (5) end the independence prlnclple In 
laminar flow. At the same time e is the momentum thickness for a wrng, 
geometrxally srmrlar to the other one, whose chord is c and velocity at 
lnflnlty U, That these are equal follows from the general two-dlmenslonal 
lamlnar boundary layer equations, which are unchanged if u, ue and x are 
each multiplied by a factor co6 6, with w and z unchanged. 

Hence it is true that ells = 8 with an error of order p and in 
particular e,,st = et, which is the &sired result. 
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ESTIMATE FOR B, 

1n Ref.9 1s given the equation 

au 3l+2L = ee 
w u,e u3.5 w J 

e 

where the line element in stresmlme coordmates T and $ 1s given by 

and 

(27) 

T = po.5p&5 ’ 0 = 8,,s c” ;11s>o’2 . (28) 

e 

a and e are constant and cp 1s the velocity potential of the external 
flow. It can be shown 16 that for sn Infinite yawed wing 

Suppose we take a given wing and vary Its sweep, without changing 
anything else. Then x is not changed; although ue varies with sweep 
; = e u,/cos 4 is not changed. 

In lmear thin wing theory 

; = 
e 1 + (-1 f(x) , (29) 

where, as usual, q is the maximwa thickness-chord ratio normal to the 
leadmg edge. v is unchanged by sweep. f(x) is also unchanged by sweep 
or by changes in thickness-chord ratio. 

Now, since from equation (31) below CL tan 4 is small, 

ue ii 
ue = 

e CO8 4 
cos(a=zqTg= ce (1 +atano) . (30) 
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We csn show from equation (14) that 

(1 - 
tena = 

ie) sin 0 CO8 0 

1 - (I - iie) cos*o 

end so to the first order in v we have 

a = - (qT) f(x) sin 0 CO8 0 . (31 

Substituting in equation (26) we have, keeping the first order in powers 
end products of a,p end G and noting that due/&z is of order G, 

1 

. (32) 

For 8 we have the equation9 

III turbulent flow, end we require the value of 8 to zero order, for which we 
may write Ue = ii e, end so 

x 
e = e s ++et et 4 

C> ii e “t e 

= &+et &” 
C> 

ue 

where 8 is independent of sweep. To zero order we could in fact have written 
ii e = f but this might have confused the argument, However, to zero order 6 
is independent of v as well as of sweep. et depends on ellt which is 

supposed to be small and will be ignored. 

Finally we have on using equations (30) and (31) 

u = Tie e (1 + a tan *) 

= 11 + (qa f(x)){1 - (G) f(x) sin2 o} 
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and so to the fmst order 1x1 v 

dU 
-2% = (q7) f’(x) cos2 $ dx 

Hence equation (32) may be written to the first order 

aJ a0 ;i;;+: 
6 

= e(v) f'(x) sin 0 cos 0 . 

This 1s a linear equation for p and the right hand side is the only 
place where the effect of G and 6 IS to be found. 
the factor (v) sm b cos 0. 

Hence pT must have 
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Agpendix 5 

WEBER’S CALCULATIONS OF TBE DRAG OF AIi UBSWEFT WING 

This unpublished work was done in connection with the experiments of 
Brebner and Bsgley 10 

number of 1.6 x 106. 

on an unswept lO$ BAE 101 section wing at a Reynolds 
Boundary layer measurements were made just behind the 

trailing edge and the drag was estimated by the methods of Bet2 19 end of 

Jones”, and also by the method of Squire and Young6, using measured values 

at the trailing edge. The following results were found:- 

Incidence Surface + Bet2 Jones Squire -Young 

00 Upper 0.62 0.0030 o.oojo o.oo37 
Lower 

4.1" Upper 0.11 0.0068 0.0070 0.0077 
Lower 0.85 0.0015 0.0015 0.0019 

8.2" Vpper 0.01 0.0118 0.0123 0.0133 
Lower 1.0 0.0008 o.oq o.ooog 

It will be seen that there are differences between the methods of Betz 

end Jones, but they are nowhere more than 5% (except in the last case where the 
drag 1s very small), For zero lift the method of the present paper gives 
0.00275 for each surface. We see that the Squire and Young method (on which 
the present paper is based) csn be considerably in error (if the results of 

Jones end Betz are accepted as correct). It gives results too high if based 
on measured values and too low if based entirely on calculations. 

The error in the Squire -Young method based on measured values is about 
10% in the cases of early transition and can be over 25% when transition is 
late. It should be noted, however, that the method assumes that the flow in 
the wake is fully turbulent. If transition is late this does not seem to be 
realised in Brebner and Bagley’s work, and this may account for the discrepancy. 

One must also bear in mind that the methods of Bets and Jones both amount to 
applyrng a correction term to allow for the fact that the wake traverse is not 
made at infinity downstream as in theory it ought to be. It has been 
suggested’l that the distance downstream ought to be at least 5% of the chord. 

Here the measurements were made at the trailing edge itself, where it is 
possible that the Jones and Betz r&hods may not be so satisfactory; however, 
the fact that they agree so well is a strong point in their favour. 

. 

. 
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September 1967 

. 

. 

There are errors in equations ('1) and (2) of the main text 
which should be corrected though they do not affect equation (3) or any of 
the subsequent work. It is not correct to say that no fluld enters or leaves 

the sides ABA% and CDC'D' of the control surface of Fig.1. If the fluld 

has an outflow component w normal to these surfaces there must be an 

addItIona term 

-I- pwdS 

in equation (l), where the integral is taken over the two surfaces. There 
must also be an additional term in equation (2) equal to 

- pwU,dS 
s t 

namely, the loss in streamwise momentum due to the outflow w. (We may take 
the streamwIse velocity to be equal to U m on the planes ABA'B' and CDC'D'.) 

These additlonal terms cancel in equation (3). I am indebted to 
Dr. Pankhurst for pointing out this error. 

It has been suggested that Figs.5 and 6 are not the best way to display 
the sweep factor F, and that it would be better to give It based on the 
unsheared wing as defined in section 1, paragraph 2. The most Important case 
1s when the flow is all turbulent, i.e., st/c = 0 end we shall only canslder 
this case. 

The curves in Figs.11 and 12 for st/c = 0 can be given to a good 
approxuzation as 

h = 1 + 2.25 (t/c) + 5(t/cJ2 

for a large range of Reynolds numbers, and those in Figs.5 and 6 for st/c = 0 
are given by 

F = I- 2.65 (G) sin2 0 



flence the factor on the new basis 1s given by 

[ 1 2.85 (t/c) 1 b sln2 01 + F 2.5 (t/c, set Q + SAC 5 (t cj2 sec2 @ = - 

1 + 2.5 (t/c)+ 5 (t/cl2 ' 

,$.These values of F are shown in ~~g~.~rnd h-111 apply for sections RAE 101 

and 104 and probably therefore for mtennediate sections as well. 
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e 
c 

cP 
cD 
e 
E 
K 
L 
m 

M 
8 

T 

& 

u 

UtV 

x,Yle 
a 

constent in equation (26) 
etreemwise chord 

pressure coefficient 
dreg coefficient 

constant in equation (26) 
defined in equation (15) 
(1 + 0.7 hf&'2/7 
length of the leading edge 
constant in equation (21) 
Mach number 
distance in direction of velocity at infinity 

temperature 
maximum thickness 
maxlmmthickneas-chord ratio in direction normal to 
leading edge 
resultant velocity 
velocity components norplalto and parallel to the 
leading edge 
velocity components along and normal to the external 
streamlines 
Cartesian coordinates as shown iu Figs.1 end 2 
angle between external streamlines end direction of 
flow at iufinit 

(1 - sp.2 4J 
angle between streamlines and limiting streemlines 

bouudery layer thickness 
++a 

defined by equation (7) and (9) 
defined by equation (4) 
defined by equation (23) 
defined by equation (28) 
angle of sweep 
density 
defined in equation (27) 
streamline coordinates defined by equation (27) 



32 

Subscripte 

t 
T 
8 
e 
Co 

w 

refers to vdues at the point of transition 
refers to m&es at the trailing edge 
refers to valuea in a streamline coordinate system 
refers to values just outside the boundmy layer 
refers to values at infinity 
refers to vehea at the wall 
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FIG.3. VELOCITY COMPONENTS ON THE WING SURFACE, 
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FIG4(a). FACTOR FOR R.A E. 101. IN CURVES JOINED BY SHADING 
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SINGLE CURVES ARE FOR BOTH IO’ AND IO” 



I.0 

F 

o-3 

FIG.4(b) FACTOR FOR R.A.E. 101. IN CURVES JOINED BY SHADING 

THE UPPER IS FOR R = IO” AND THE LL>WER FOR R = IO’ * 

SINGLE CURVES ARE FOR BOTH Id AND IO” 
I 



I.0 

F 

0.9 

0.7 

0.6 

I-O 

F 

0.9 

0.7 

O-6 

0 0 o-05 o-05 0.10 0.10 
t/t t/t 

0.15 0.15 

II 
0.05 C 

\ 

\ 

\ 

D I 
qc 

00 

d 

20" 

40" 

60' 

SO" 

I5 

FIG.S(a). FACTOR FOR R.A.E. 101. R =Id AND IO*. 



F 

o-9 

0.8 

80" 
I I J 

0.05 0’10 - 
t/c 

0.15 

60" 

80' 

0.8 L I I I 
0 0*05 0.10 - 0.15 

FIG.5(b). FACTOR FOR R.A.E. 101. IN CURVES JOINED BY SHADING 

THE UPPER IS FOR R= IO’ AND THE LOWER FOR R = IO’ 2 

SINGLE CURVES ARE FOR BOTH IO’ AND IO! 



. 

60° 

I.0 

F 

0.9 

0.8 

0.7 

I Y 

4o” 

60' 

80" 

IFIG.6(a). FACTOR FOR R.A.E. 104 . R = IO’ AND IO*, 



0.8 

0.05 O*lO 
fit 

0.15 

, 

FIG.6(b). FACTOR FOR R.A.E. 104. IN CURVES JOINED BY SHADING 

THE UPPER IS FOR R= IO* AND THE LOWER FOR R=lO’. - 

SINGLE CURVES ARE FOR BOTH IO’ AND IO*, 



0.6 
0 005 O-10 0.15 

0-3 - 

F I 40' 

0.8 - 

60' 

. 
0.6 

0 0.05 O-10 0.15 

, FIG.7. DEPENDENCE ON SECTION SHAPE R-lOT WHERE CURVES ARE JOINED BY 
SHADING THE UPPER CURVE REFERS TO R.A.E.IOI.AND LOWER TO R.A.E. 104. 

CURVES ARE INDISTINGUISHABLE FOR St/c = 0.0. 



O.OlZ 

O*OlO 

o*ooz 

cD 

O*OOE 

0.004 

OTIOE 

( 

- 

b- 

I= 

I - 

I_ 

)- 

/ 
/ 

/ 

4ty 

/ 

.’ / 
--# 

,_-_ - _______ -c-- / 
/ 

O’,’ 
/ 

_--- A-$e 
w--m- ____ 

):S& = 0.2 

A’ 

._I 

.------I-------t-------+-zi I 

5,/&l-6 I 43- 

- - ____ ur=Y ---H _ __ _ _ _ 

I ----- f q:5 
0 02 fk4 0.6 0.6 I.0 

M 

. 

FIG.8. DRAG COEFFICIENT AS A FUNCTION OF MACH NUMBER. 

R.A.E. 101, t/c = 0.12, R=ld, AT ZERO LIFT. 



. 

, 

. 

I 

i 

1 ’ 

i ’ 

. 

O~OIC 

O-00! 

f D 

0.007 

0.006 

0005 
I 

. 

an an 
AA AA EXPERIMENT EXPERIMENT 

lX106 lX106 I.2 I.2 I-4 I-4 I.6 I.6 I.8 I.8 
R R 

2.0 2.0 2,2 2,2 x IO6 

FIG.9. COMR4RISON WITH WEBER AND BREBNER’S EXPERIMENTS. 

R.A.E. 101, tk = O-17, $=45? 



\ 

- 

\ 

/ - 

I- 

l- 

o- 
0 

\ 

\ R=108 
‘\ 

0.2 0.4 

- 
\ 
\ 

33 
R=106 

O-6 
Xt/C 

R = IO’ 

R =10* 
. 

FIG.10. DRAG COEFFICIENT OF A FLAT PLATE. (BOTH SIDES). 



R= 

lo6,10: IO8 )I 
xt cl*00 

106 
IO’, IO” 

I 

I c--o2 
t / 

10C 

IO’ 

I 

q/c= 0.4 

lo* 

I-2 IO6 

x 

A5 1 

I cc06 
IO’ 

tl 
I.1 

IO8 

FIG. II. FACTOR A FOR RAE. lOl.UNSWEPT. 



I5 

x 

14 

I3 

ALL 
R 

R= IO6 

10: 1oe 

IO6 

IO’ 

IO8 I 

I $/c = 0.4 

Xt/C =0.6 

FIG. 12 FACTOR ?i FOR RAE 104 UNSWEPT 



. . 



A fewresultsen ixlvsn fOI-cCEWn-Wslble flmmran RAE101 sectlonat 
seep -es of O" and 459 tbalu show the eflect of ~CP In delaying 
the canpmssiblllty drag rise. 

. . 





0 crown copyrrsht 1969 
PublIshed by 

HER MAIESTY’S STATlONBRY OPPICH 

To be purchased from 
49 High Holborn, London w C.1 

13~ Castle Street, Edmburgh 2 
109 St Mary Street, CardrB CFI IJW 

Brazenmxe Street, Manchester 2 
50 Farfax Street, Bristol BSI 3DE 
258 Broad Street, Blmungham I 

7 L,,,e”baU Street, Belfast BT2 BAY 
or through any bookseller 

C.P. No. 1040 

f 
. 

C.P. No. 1040 

SBN II 470167 9 


