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SUMMARY

The drag of an infinite swept wing is found in terms of the drag of a
related unswept wing having the same relative position of transition. Results
in incompressible flow are expressed in terms of a "sweep factor'. Detailed
calculations are made for wings of RAE 101 and 104 sections and the factor
appears to have a reasonably universal character not very dependent on shape
or Reynolds number if transition takes place early, but strongly dependent
on thickness, Results are given as a series of curves and an empirical
formula is given for the sweep factor in terms of thickness-chord ratio, angle

of sweep and point of transitionm,

A few results are given for compressible flow over an RAE 101 section at
sweep angles of 0° and 45°; <{hese show the effect of sweep in delaying the
compressibility drag rise.

* Replaces R.A.E. Technical Note Aero 2966 - A.R.C, 26302,
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1 INTRODUCTION

Weber and Brebner1 attempted to make an estimate of the drag of a swept
wing by relating 3t to the drag of a similar unswept wing, thus obtaining what
has come to be known as a "sweep factor" by which to multiply the drag of an
unswept wing to obtain the drag of the same wing swept, In order to do this
they first calculated the sweep factor for a flat plate and gave some evidence

to show that this i1s not much changed 1f the flat plate 1s replaced by a wing.

We must distinguish between the words "swept"” and "sheared". The former
means that a given wing 18 simply turned or "yawed" through an angle ¢
called the angle of sweep. By the term "sheared" is meant that each chordwise
section of the wing 1s moved parallel to itself downstream to such a position
that the leading and trailing edges, which were normal to the mainstream to
begin with, now make an angle ¢ with their original directions. In each
case the total area 1s unchanged, but the swept wing whose chord was originally
¢ now has a streamwise chord equal to ¢ sec ¢ whilst the sheared wing has a

streamwise chord which remains equal to c.

In obtaining the factor for & flat plate Weber and Brebner1 used the
"independence principle” for both laminar and turbulent flows, This principle
states that the chordwise flow may be calculated independently of the spanwise
flow. By this means they found that the drag coefficient of the plate sheared
to an angle ¢ at a Reynolds number R is equal to cos ¢ times that of an
unsheared plate at the smaller Reynolds number R 0032 ¢, At the time the
paper of Weber and Brebner was written the experimental evidence seemed to be
in favour of the use of the independence principle for turbulent as well as
laminar flow, but since then it has been shown both theoretically and
experim.enta.lly2 that the principle does not hold for turbulent flow; 1ndeed
it is now believed that a "line-of-flow" principle should replace 1t.
According to the new principle the wall shearing stress is considered to be a
function of the distance over which the external fluid has travelled rather
than the distance perpendicular to the leading edge, which is what the
independence principle leads to. Intuitively this seems to be more reascnable
s1ince one would expect the previcus history to have some effect on the flow.
In purely laminar incompressible flow both principles lead to the same result
owing to the particular form of the boundary layer equations. It follows that
1f we use the line-of-flow principle, in all cases, laminar, turbulent, or
mixed, shearing a flat plate will have no effect on the skin friction at any
point, and the drag of a sheared flat plate will be always the same as that of



the same plate unsheared. According to Turcotteg, who gives a detailed
account of the whole matter, and who introduced the term “"line-of-flow
principle”, more recent experiments show results in favour of the line-of-flow
principle. If this principle 1s to be believed all Weber and Brebner's flat

plate curves should be straight lines glving a constant sweep factor of unity.

It should be noted that according to Young and Booth5 th? sweep factor
for a swept flat plate in laminar flow should be equal to cosZ ¢, This is
1n accordance with either the independence principle or the line-of-flow
principle and would lead to a factor of unity for a sheared plate. On the
other hand for fully turbulent flow they give the factor cosal5 % for a swept
3/5 ¢ for the sheared plate, From the
line-of-flow principle the factor for a swept plate would be cos.]/5 9 and

plate which would give a factor cos

would once more be unity for a sheared plate. The experiments of Young and
Booth3 are heavily in favour of the factor cosu/5 ¢ and not cosnl/5 ¢, In
this respect, however, they are at variance with Ashkenas and Riddellu; and
Turcotte2 is inclined to favour the experiments of the latter. It should be
pointed out here that all approximate calculation methods for three-dimensional
turbulent boundary layers 8¢ far given have implicitly followed the line-of-
flow principle, Indeed this seems to be the only posgible procedure in

approximate methods for general three-dimensional turbulent boundary layers.

Even if the results of Weber and Brebner for the flat plate were correct
it would still seem reasoneble physically to expect that the sweep factor
should vary with thickness, since the thicker the wing the more highly curved
are the streamlines and the greater cross-flow in the boundary layer.

In this note a more refined procedure 1s attempted., We confine ourselves
at first to incompressible flow, and later extend the analysis to subcritical
compressible flow, First, by momentum considerations, Squire and Young's
siumple formla for drag is extended to apply to infinite swept wings. This
extended formuls was found by Young and Booth3 by a different procedure, It
involves two "components" of momentum thickness 6., and 621, instead of
merely © as in the two-dimensional case. Next, approximate methods of
calculating these components are devised, assuming small cross-flow in the
boundary layer, Finally the result is expressed as a "sweep factor” relating
the drag of the swept wing to that of a certain unswept wing. In order to
obtain a set of curves for the sweep factor 1t is necessary to knovw the wing
section, and RAE 101 and RAE 104 have been used for this purpose, It is not



of course necessary to express the results in terms of a sweep factor but
this was done 1n the hope that the effect of different shapes would lie
mainly in the drag of the basic unswept wing and not in the factor. 1In
other words 1t was hoped that the factor would not be too dependent of the
particular section chosen, but would, in some degree at least, be universal.
It cannot be said that this hope has been realised except when transition 1is
early, say up to about 30% of the chord. Beyond this the drag factors for
RAE 104 are considerably less than those for RAE 101, especially for the

sections with the greatest thickness and the greatest sweep.

Weber and Brebner tested their theory by an experiment on a 12% thick
wm.g and obtained good agreement., The result of the present study gives
fairly good agreement with the same experiment, but would give results very
different from this had the experiment been done on a thinner wing for
instance, whilst their theory gave factors independent of thickness. Fair
agreement is obtained with an experiment on a h%% thick wing by Brebner and
Wyatt1o, a result which was not achieved using the Webper and Brebner factor.

Owing to the approximations used one must not expect great accuracy in
the curves given here., It can only be hoped that they will give some estimate
of drag at zero lift for preliminary design purposes.

In this connection we must note that our results only spply to an
infinite sheared wing. They may, however, have some relevance for a finite
wing, if it 1s designed to have straight isobars so that the external flow
bears some resemblance to that over an infinite yawed wing.

2 MOMENTUM BALANCE

We surround a portion of the wing, of length 1, angle of sweep ¢, by a
cylinder of rectangular section but with the plane ends ABCD, A'BIC'D! swept
to the angle ¢ (Fig.1). The sides BCB'C', ADA'D' are supposed fixed, but
the top and bottom faces ABA'B'!, CDC'D' move off to infinity above and below
the wing, and the ends move off to infinity upstream and downstream.

In considering the momentum balance in this control surface we note that
the contributions to the mass flow and momentum in the direction of the
velocity at infinity qﬂ, due to fluid entering or leaving the sides BCB'C',
ADA'D' cancel each other, and no fluid enters or leaves the sides ABA'B',
CDC'DY, and so we need only congider the ends, where the pressure has every-
where the same value, By contimuity of mass we have (see Fig.2)



where
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Z 18 measured in the direction C(B.

By momentum considerations we have
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Multiply equation (1) by U and subtract from equation (2) and we have
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It will be sometimes more convenient to write 9.” in terms of 91'1

defined by
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and we note that

and in particular at infinity

6 845, cos” ¢ :

110

Hence equation (3) may be written
Dreg = P Ufo:’(e‘l'bo cos5 b + 92100 sin ¢) .

Now we wish to obtain the drag in terms of momentum thicknesses at the
trailing edge of the wing, so we must find relations between B;TT and
g1 8
1% and between 217
at the trailing edge of the wing.

and 921“1 where the subscript T denotes values

For simplicity we shall only deal with a symmetrical wing at zero
incidence, though the analysis can be extended to more general cases by
considering the upper and lower surfaces separately. General equations
for 9.” and 921
them in the wake, which has & plane "centre surface" with zero skin friction

have been given by Cooke and Halls. Here we must apply

on 1t, These equations are cbtained by integrating the equations of motion
right across the wake, and will be of the same form as equations (73) and (14)
of Ref.5, but with the right hand sides equal to zero, We measure X normal
to the leading edge and y paralle]l to 1t., All derivatives with respect to
y are to be zero, owing to the fact that the wing is a swept infinite
cylinder. The equations reduce to

de11+911 d.pe+29.” au _Ldueg, .
& " p, dx T U, dx T U dx 1 7 ’
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where

o0
Pe Uy 89 = f (Pe u, -pu) dz . (7)
-0



The second equation shows that

oo U2, @ I3

o210 = Perp 621T eT ’

The first equation may be written

29' dp 2 67, U du_u
Ve N 1 e &' _
dx °11 dx T U dx U 1 T ,

oo (B
where
Pe o 87 = f(Pe u, -pu) dz . (9
-0
Equation (8) reduces to
a6t du 6! dp

11 1 11
IR G T Ul Tl T (10)

e e

which is the usual momentum-integral equation for flow in a weke i1n two

dimensions. In other words an independence principle holds in the wake, even

if it is turbulent, which we shall suppose always to be the case.6 This result
was implicitly sssumed by Young and Bootha. Now Squire and Young gave
reasons for believing that in incompressible flow, to which we now confine our

attention,

Uor 5
{10 = %1y (@jc—oﬁf an

approximately in a turbulent wake, (Actually their estimate for the exponent

7

was 3.2, put, according to Thwaites ', it is more satisfactory conceptually to

use 3.5. This change in the value gives negligible difference.)

Putting in these values we find for the drag coefficient for a swept wing
of streamwise chord length ¢, whose area is Lccos ¢ the expression

2 9
Cp = {cos 0( "T)<U v e'l‘ } . (12)

3. 5
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This 1s the extension to swept wings of the Squire and Young formulaé.
It can be shown that this is the same equation as that given by Young and
Booth5 after making allowance for the changes in notation, although the
derivation 1s different. It 1& in the determination of 64, and 621 that
the present treatment differs from that of Young and Booth who assumed the

independence principle to hold everywhere.

3 THE VALUES OF 9{1 AND 621

We denote values referred to streamline coordinates by the subscript s.

Thus we have

0Q
Pe Ui 911 = M/NP Us (use - ug) de : (1)
_%

Formulae for 9125, etc, are given in Appendix 1 where it 1s shown that

2
61, - B - tan & - tan &1 an~ &1
11 " 11s tan & 9218 ten 6125 vt 6 9225 !
2 2
g - L] t ] - g4 t - ' 1
51 = Sin 5t cos & 6195 +COS B8'6,, - sin & 9125 sin &' cos & Ons

where O' 1s the angle between the external streamlines and the normal to the
leading edge. That is

v U_sin ¢
' = dsa tan 8! = £ = S (14)
e e

where @ 1is the angle between streamlines and the direction of flow at

infinity. For thin wings we may assume that the cross-flow i1s small. This

w1ll mean that 6213 and 8, are of order B and @ of order Bg,

28 22
where B 15 the angle between streamlines. We ignore terms of order 32.

Thus we have
e = -
11 = Oppg - tan 8t (6595 + 045)
g = 8in &8 cos ' 6 + cos2 &t e - sin2 L]
21 11s 21s 128 y

It has usually been assumed ’15’16 that in turbulent flow the streamwise
and cross-flow profiles have universal forms; for example the streamwise

profile has usually been supposed to follow a 1/7th power law. Relations for
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these forms sre worked out in Appendix 2 end it is found that spproximate

values are

'
811

911s (1+1.58 tan &")

621

1

6115 (sin 6% cos 6% - 2 B cos2 &' - 0,58 sin2 on .

Thus we have as an approximate formila for drag

g u 5-5
11sT 2 eT
p = 2( c ){cos *( 415 By tan 6'1',')<Umcos ¢> M

UET 2 2 2
+ tan ¢ (?f%) (sin 6% cos &g - 2By cos &% - 0.5 By sin 5*)

T
a
1
(L) (15)
c
If the external flow is known everything in this equation is known except
911sT and BT. We now proceed to determine these quantities.

b THE VALUE OF 6113

We have (see Fig.3) for one surface of the wing (say the upper surface)

w, = U cos (¢ +a) = U cos &' , (16)
and u, is 1n fact the veloecity for flow past an unswept wing with the same
thickness, but with chord c¢ cos ¢, so that its maximum thickness chord ratio
15 (t/e) sec ¢, which we denote by 57—. For this wing the velocity at
infinity 18 Uy cos ¢. Let ﬁe be the velocity of flow past this unswept
wing when the velocity at infinity is increased to 1, so that

u, = u, cos ¢ . (17
We now suppose the unswept wing to be stretched so thet 1ts chord becomes c,
without changing its maximum thickmess-chord ratio. Bars over any quantity
w1ll refer to such an unswept wing, whose Reynolds number based on chord is

the same as the Reynolds number of the swept wing, based on its streamwise
chord. ﬁe is independent of sweep and depends only on the wing section by a
plane normsl to the leading edge.
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To simplify notation we shall denote 6,4, u, U, and u, by ¢, u,
U and wu; in fact we shall drop all subscripts except T which denotes
values at the trailing edge end t which denctes veglues at the point of
boundary layer transition. For convenience we shall from now on suppose that
U, u, u have been made non-dimensional by dividing by the velocity U_.

Now Cooke8 has shown that for an infinite yswed wing with small

cross-flow

cos ¢
Bae(eN? poae(%? _ o0% 3802 4 (x
T p ¢ t t e B R0.2 c :
(x,/c)cos®

... (18)

In this equation x measures distance along the surface of the wing normal to
the leading edge and R = U_c/v, the Reynolds number based on streamwise
7

chord, Egquetion {18) is based on the results of Spence’ for two-dimensional

turbulent boundary layers, in conjunction with the line-of-flow principle,

Using equations (16) and (17) and writing x = s cos ¢ we find that

equation (18) becomes

ﬁ'T‘“E (6—!1.2~ ﬁ:‘e (0_91.2 00106 0B o j b d(ﬁ)
cos’ 6% ¢ cos3 6; ¢ ) R0'2 st/c cos”"C & ¢
... (19)
where Sy 1s the streamwise distance from the leading edge to the point of
transition.

Now ¢onsider an unswept wing with the same chord and maximum thickness-
chord ratio (t/c) sec ¢ = tfe; this wing has an external velocity ﬁe. The
equation for this wing corresponding to (19) is

(‘i;_)’ 2 b (?'_3)’ 2 2 0,016 f - d@ (20)
¢ T c t - R0'2 c ?

st/c
assuming that its transition point is at the same fraction of the chord as the
swept wing. This is in fact equation (19) with ¢ = O,

To find 8, from equation (20) it 18 necessary to determine 8, and €

T
These are approximately equal if the cross-flow is small, as shown in

t t*

Appendix 3.
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ét 38 found the formuls of ThwaitesT, namely
5w 5./
(3 - % [ 24d)
¢ R P ¢ \°
t o

5 THE DETERMINATION OF BT

A general method for finding BT (which 1s small) seems to be too
complicated to use here, and instead we give & semi-empirical value for it.
ﬁT w1ll depend on sweep, being zero both for 0° and 90° sweep. It 1s
possible to give crude arguments based on Refs.B and 9 to show that By bas

a factor (t?c) sin ¢ cos ¢; the reasoning is given in Appendix 4.

We therefore write

By = m(t/c) sin ¢ cos ¢ (21)
where m 1s a constant for a given section shape. We may then find m by
experiment. Brebner and Wyatt10 for instance, found that for a wing of

RAE 101 section with t/c = 0,12, swept to U45°, (so that t/c = 0,17) By had a
value of about 8°. This leads to a value m = 1,64, From Brebner and Wyatt's
second wang, with tf/e = 0,045, swept to 55°, (so that t/c = 0,078) this gives

p
T .
experiment. In their photographs it may be noted that BT does not seem to

= 3.5° which agrees approximately with the value obtained in thear

be greatly affected by the position of transition and so we shall use
equation (271) with m = 1,64 upiversally. For different shapes m will of
course be different but for reasonable changes of shspe the change should be
small and BT 1S 1tself small in any case.

This method of findang BT is not very satisfactory but a more rigorous
determination is scarcely possible at present and might complicate the analysais
to a degree not justified by the accuracy of the final results.

The drag factor i1s now obtained as the ratio of the drag given by
equation (12} to that obtained by putting ¢ = 0 in equation (12).

6 EXTENSION TO COMPRESSIBLE FLOW WITH ZERC HEAT TRANSFER

There is no great difficulty in cerrying out the analysis for the sub-
critical compressible case., In seection 2 nothing is changed up to and
including equation (10) which may be written
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dezt el

11 1

dx+(2+n-“2)—ue—_dx=o .
7

Following Thwalites' we replace 2 + H - M2 by the mean of its values
at the trailing edge and at infinity. We denote this mean value by the

subsgeript m,

Integrating the equation from the trailing edge to infinity downstream

we find

(2-!~H-Mz)n1

'Hoo
'!1'1‘ U U_cos ¢ *

Now Spence12 transformed the incompressible boundary layer into an
incompressible one, and he found that for zero heat transfer

s
H = = (H +1) -1
Te i

where Hi is the corresponding incompressible value. This equation was
derived only for flat plate flow, but is probably adequate for use in the
momentum equation, At infinity we have H = 1 and following Thwaites we
write Hi = 2 at the tralling edge. According to Spence, for zero heat

transfer

T

¥
T

eT: 1+0.178P€ ’

. and we write MT = M, which will be sufficiently accurate since

o ¢
ueT Uoo cos @,

We find
@+E-¥) = 35-0m3 .
Hence we may write in place of equation (11)

1 305"0.733@
6. = @ —eT
10 = 1 \G_cos # .
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Other formulae have bein given for 611u3for incorpressible flow, For instance
Young and Winterbottom 7 find that in two-dimensional flow the incompressible

value should be nrultlplled by Pep/Poc that is (T T/Tw)s/ 2. Nash, Moulden and
OSbourne1 give (T T/qu) . For an unswept wing, taking the power as 5/2, we
can show that if ueT/l.‘)Q does not differ greatly from unity, the value of §_

1ls

2+HT
5 "Mia
e (EEE
T\ Uy

and 1f Spence's form for HT is used, and we put Hi = 2 this becomes

3.5-0,733,
Ve
%
This will cause the same change to be made to the exponent 3.5 in

equation (12), The values of 62.ls and 6 in equation (25) will be

128
changed, but these are subject to some uncertainty in any case, and the

change will be small in subsonic flow which is our main interest in this
connection. We shall therefore leave them unchanged and so equation (15)

w1ll be unaltered except for the change in the exponent 3.5.

There will be a change in the value of 911 sT* There is no point now
1n using wu, since equation {17) no longer holds. Equation {18) should be
replaced by

(@ e () @)

1.343
) o.o1og ;os ) f -8 0. 2(@) (1+ 0.128 Me)-o.aee d(“i’) ’
R st/c

where et/c 1s found from

6 -] @0

In the last two equations u and U have been made non-dimensional by UBO as
before. They come from Ref.8.
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It 15 not so easy to see what happens to BT vwhen compressibility is
taken into account.

It would seem that equation (29) should be replaced by

i o= 1s (o) fx)

e B‘l
13
where 61 15 the Weber factor given by
2 H
By = [1- Nfo(cos ¢ - cpi)]

and c 1s the pressure coefficient if the flow 1s incompressible. This
means that we must write in place of (21)

B - m(t/¢) sin ¢ cos ¢

T ﬂ-]

withm = 1,64 as before., Since B'.r is small it will be sufficient to write

2 b
B_] - (1 - M?”COS ¢)
When u, 1is known we find M and Te/T from the equations

51 1,
< - 5+, (1 -%)

T, 5+M§o

Too 5+ '
These equations are sufficlent to determine CD if a set of values of
u, 18 known. If the pressure coefficient cp is given, for instance from
experiments, then we have8
Te

T - (1+0.7Micp)2/7 = K (say) ,
Mz 5+)€

= ——-5
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RN L

u2 U§ - sin2 ¢ .

[sae]
i

7 DRAG OF SWEPT WING OF RAE 101 AND 104 SECTIONS AT ZERQ LIFT

In order to carry out the calculations 1t is necessary to give some form
for ﬁe. We have taken values from Ref.11. From x/c = 0.3 and 0.6
respectively to 0.95 the curves for u, are straight lines, and these lines
have been extended to x/c = 1,00, Our results for 9T are rather sensitive
to the choice of u_ at this point, as Thwaites ' pointed out. He also
showed that e(ﬁe)a’ 1s not so semsitive to such variations, In any case some
of this sensitivity 1s lost when one compares the drag with that of a wing

whose drag is computed by the same technique,

The integrals were evaluated by Simpson'!s rule with intervals of s/c
equal to 0.05. The computations are straightforward and the results show
little dependence on Reynolds number except for the highest values of st/c.

Fig.4 gives the sweep factors for RAE 101 for three different values of
57_. It wi1ll be seen that the effect of sweep is very ruch reduced if the

wing 1s thin,

Fig.5 is a cross plot of the same curves expressed as functions of t/c.
It w1ll be seen that for early transition the curves are very nearly straight

lines. An empirical formula for these lines is

sweep factor = 1 - (t/c) {2.84 - 4.6 (st/c)2 - 0,25 (st/c)u} s1in> ¢, which
gives a fair approximation up to st/c = 0,6,

F1g.6 gives the curves corresponding to those of Fig.5 for the section
RAE 104, For early transition, say up to sbout st/c = 0.3 the curves do not
differ greatly. A comparison i1s shown in Fig.7. It will be seen that for
high values of s t/c and for high values of ¢ the sweep factors for RAE 104
are considerably less than those for RAE 101,

Fig.8 gives the drag coefficient for a wing of RAE 101 section, having a
streamnse tfc of 0.12 for varying Mach numbers at angles of sweep 0° and
45°, The drag rise due to compressibility, sometimes called "drag creep",
at ¢ = 0 15 shown clearly, as is also the fact that sweep delays this rise
considerably. A point of interest in this Fig.8 can be seen in the fact that
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at low Mach numbers the curves for ¢ = O, st/c = 0.2 and ¢ = 45°, St/c = 0.0
run close together, An unsheared wing st zero incidence may well have 1ts
transition point at st/c = 0,2, but when 1t is sheared it is likely that
transition would move to a point very close to the leading edge. In such a
case there would be practically no change in drag, the reduction due to

shear being cancelled by the forward movement of transition.

It would be of some interest if one could find out how this increase
in drag with increasing Mach number arises, It would be useful 1f we could
separate out the skin friction drag and the pressure drag. Unfortunately 1t
1s not possible to do this with any measure of accuracy. As pointed out by

Thwa1tes7, and already referred to at the beginning of this section, xn the

)3'5 is insengitive to local inaccuracies

calculation of 6 the value & (u,
n u, near to the tralling edge whilst the pressure drag and skin friction
drag are both quite sensitive to changes in U, - It is fortunste that 1t 1s
Just this combination that we need for the overall drag especially as the
value used for ﬁe is very much of an estimate near to the trailing edge
(theory gives Ee = O there whilst actually it is fairly near to U_cos ¢),
Hence we cannot separate the skin friction drag and the pressure drag with

any degree of confidence,

We can perhaps estimate trends in the following way. We will confine
ourselves to two-dimensional wings of 12% RAE 101 section with all-turbulent
flow. It has often been observed that the skin friction drag of a wing is
quite close to that of a flat plate of the same planform placed edge on to
the flow., ILet us assume that this is so for the sake of the discussion,
Then the contributions to drag at R = 107 are given in Table 1.

Table 1

Drag coefficient of RAE 101, 12%, R = 10'

Mo Skin friction Pressure drag Total

0 0,00615 0.00208 0.00823%
0.4 0,00607 0,00225 0,00832
0.6 0,00596 0,00268 0,00864
0.8 0,00582 0.00469 0,01051

It will be seen that the skin friction decreases very slightly as the
Mach number goes up, but there is a considerable increase in pressure drag.
Now in the subcratical flow of an inviscid fluid the pressure drag is zero.
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We can divide the body into two parts, the forebody (up to the point where
9z/0x = 0) and the afterbody. The drag (or thrust) on the two halves will
cancel each other in inviscid flow, Now one would expect little effect of
the boundary layer in the forebody (where 1t 1s still thin) and so the large
Increase 1n pressure drag at the higher Mach numbers would seem to come
mainly from the afterbody, being increased because of the considersably

increased displacement thickness there, especially at the higher Mach numbers.

8 COMPARISON WITH EXPERIMENT

We shall compare our results with the experiments of Weber end Brebner1
on a wing of RAE 101 section, swept to 45° with & streamwise thickness chord
ratio of 12% so that the value of t/c 1s 0,17, For tramsition et 0.15 and
0,35 of the chord the results of this paper give factors 0,773 and 0.807
respectively, whilst Weber and Brebner found factors 0.82 and 0.84, However,
they apply the factor to the drag of an unsheared wing of the same thickness
chord ratio, whilst the factors given here are to be related to a wing of
thickness chord ratic of 0.17. The results are shown in Fig.9 and the agree-
ment 18 seen to be fair. Perfect agreement could hardly be expected unless
one could assume that the end effects of the finite wing tested cancel cne

another,

In this connection 1t might be well to mention some unpublished work by
Weber in connection with the dreg of an unswept wing. This is briefly
described in Appendix 5.

Another comparison may be made by considering the models tested by
Kirby and described in his addendum to Ref.l. For wing A Kirby found the
drag factor to be 0.87 whilst the present method gives 0.887, and for wing
B his factor was 0.845 compared with 0,874 by the present method. The
measurements were, however, made on tapered wings, and the angle of sweep
used was based on that of the quarter chord line. One would expect these
wings to behave even less like infinite swept wings than that described above

and one would not really expect good agreement,

Another compariscn may be made from Brebner and Wyatt's workjo on & 4%%
thick RAE 107 section sheared to 55° at a Reynolds number of 2 X 106. Transi-
tion was at 0.79 of the chord. For this sweep and thickness we have
t/c = 0.078. According to Weber and Brebner1 the sweep factor should be 0.83
whilst the measured value was very spproximately 1,06, According to the

present work the factor should be about 0.98., This factor, however, compares



the wing with an unswept one of thickness/chord ratio of 0,078, To make the
factor apply to wings of the gsame streamwise section we must allow for this
change of thickness. This can be done by the use of Fig.11. We find that
the factor becomes 1.07, Thus the error of 20% in the factor is reduced to
5%.

The factor 1s always nearer to unity when this type of comparison 1is
made, that 1s between sheared and unsheared wings, both having the same
streamwise thickness chord ratio. Indeed 1in such a comparison it may become
greater than unity in rather extreme conditions, namely late transition and

low Reynolds numbers, as in the example above,

9 DRAG OF RAE 101 AND 104 SECTIONS UNSWEPT. INCOMPRESSIBLE FLOW

As the methed involves finding the drag of these sections when unswept,
and as the drags do not appear to have been previously determined, it was
considered that these might be worth recording. In Ref.14 the method of
displaying the results is first to give curves for the drag of a flat plate,
and then to give curves for a "form factor”™ A by which the flat plate drag
1s to be multiplied to give that of the wing. We have recomputed the flat
plate drag and the results are shown in Fig.9. The curves are the same as
those in Fig.V 4 1n Ref.7 and are obtained from equation (20) with all
velocities constant and equal to the free stream values, The factor A for
the two sections is given in Figs.11 and 12. The curves given in Ref.14 show
no dependence of A on Reynolds number, but 1t will be seen that there is 1n

fact quite a strong dependence in the case of the wings studied here,

10 CONCLUDING REMARKS

It 1s to be hoped that the curves given in this Note may be of some use
in the determination of the drag of swept wings with sections not differing
too much from the basic sections used.

The results strictly only apply for an infinite swept wing at zero lift.
A finite swept wing of constant section has different pressure profiles at
different points in its span, and for such a wing it is not true that
derivatives with respect to y are zero. Such wings are, however, often
designed so as to have straight iscbars and for these the method would work

1f the reference unswept wing were properly chosen,

The method will not apply if the transition front is not parallel to the
leading edge but it might be possible to use it to give approximate values even
in this case, either by taking a mean position for transition or divading the

surfaces i1nto spanwise strips and applying the appropriate factor to each,.
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If the drag coefficient of any other section is required it i1s not of
course necessary to use these drag factors since the programme is available
to calculate directly the drag coefficient for any Reynolds number, sweep, and
position of transition. All that is necessary to be known are the values of
the chordwise component of velocity or the pressure coefficient at 21 or 41
points on the chord. It is also necessary to know BT’ but 1if the section
does not differ very much from those considered here, the change 1in BT {whach
15 1tself small) will probably make little difference to the results, and so
the value given in equation (21) may suffice.

Few experiments seem %o be available to test the theory. It gives faar
results for the wings tested by Weber and Brebner1, but a wider series of

tests would be necessary before its general usefulness could be assessed,

It is of course to be understood that the results would not be wvalid if
separation were to occur.

The method can in principle be used for a lifting wing, but each surface
vwould need to be considered separately, with the appropriate values of
velocity for each of the two surfaces. The difficulty here would be the
determination of BT, which is indeed open to criticism even in the case of =
symmetrical wing at zero 1ift. It would not, however, be feasible to attempt
to find drag factors to be universally used in such cases. In the case of
symmetrical sections at zero lift in incompressible flow, the factors have a
universal quality if transition takes place early, as is usually the case,

This is probably not so, however, at Mach numbers approaching the critical.
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Appendix 1

VALUES OF 9{1 AND 921

We see from Fig.3 that

- ' _ 1 = - '

u = u cos ) v, 8in 07, u, u_, cos b U, cos 5!,

= 5 t = t - '

v uS sin Ve sin &1, Ve LI sin & Ué sin &',
noting that Vee ° 0, Uge = Ué since the suffix &8 refers to streamline

coordinates.

Now, omitting the limits, which in the wake and at the trailing edge
are from - to 4+, or from O %o o if the upper and lower surfaces are

treated separately, we have

2
Pe U, Ofy = fpu(ue -u) dz ,
and hence

petf o4y

CQSE 5 fp(us cos & Vs 8in 6')(Ue cos O u cos 6'+vb s &) dz

[}

u/\p u (U -u) dz + tan 6'L/\p u v, dz
20 s
- tan 6'fp \.rs(Ue - us) dz - tan 6‘[[3 vy a4z .

Hence we have

2
| | — -
611 = 9_ns tan &t (62.ls + 8123) + ten” 86, (22)
where
peli11s=fpus(u -ug) &, pelrze‘Ias:fpvs(Ue'“s)dz’
2
Pe Ui o1 =) P Yy Vg 4z, Pe U§ 0208 = _k/hp ve 4

eor (23)



In a similar way from the equation
e Ui %1 = L/ﬁp ulvy - v) dz
we may deduce

21

2 2
— t 1 - t -
e = sin &Y cos © (9115 9223) + cos b 9215 sin” &' 8,

Appendix 1

2s (24)

L4l
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Appendix 2

VALUES OF 8,,; AND 6,y

We assume, following Coakeg, that

i @T/T DT
Ué & ’ Ue 3] Ue

where B 1s the angle between streamlines and limiting streamlines, After
substituting the values in eguations (24) and integrating between the limits

0 and & we find for one surface, say the upper surface,

e‘l'ls = 0.0972 & ’
6215 = -0.2071 85 ,
9125 = 0.,0527 B
Hence we have
] o
S - 21, S - 0.542 8
11s 11s
15

If we use Becker's forms ~, which are

U, § ? U, 57U, U, ’
we find
0 8
21 12
= = -1.948 g = 0.46p
11s 11s

Since B 1s small we may use a Simple approximation for these values

without serious error, and we have in fact chosen

The same values apply for the lower surface, using the appropriate value
for 9115, which will be different unless the wing 1s symmetrical and at zero
1aft.
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Appendix 3

PROOF THAT Qt = et

In the full notation, we require to prove that in the laminar flow up to

transaition

We first note that, according to equation (22)

®11s = 817 + o) ’

and we shall prove that 61, = 6.

Here 9;1 15 equal to the momentum thickness for a two-dimensional wing
whose chord is c¢ cos ¢, thickness chord ratio (5753 and velocity at infainity
U, cos $. This follows from equation (5) and the independence principle in
laminar flow. At the same time ) is the momentum thickness for a wing,
geometrically similar to the other one, whose chord is ¢ and velocity at
infinity U,,. That these are equal follows from the general two-dimensional
laminar boundary layer equations, which are unchanged if u, u, and x are

each multiplied by a factor cos ¢, with w and z unchanged.

Hence it is true that 9115 = 6 with an error of order B and in

particular 9113 = ét’ which is the desired result.

t
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Appendix 4
ESTIMATE FOR ﬁT

In Ref.9 1s given the equation

ou
dn .5 T e e (26)
°¢ " U, & 3.5 ov ’
e

where the line element in streamline coordinates ¢ and ¢ 18 given by

2 g
d52 = d_‘;%“*%lu_é (27)
e P Ye
and
U 8 0,2
B e 11s\*
N R 9:9(—--——) . (28)
50.5 Ui.S 113 Y

a and e are constant and ¢ 1s the velocity potential of the external

flow. It can be shown16 that for an infinite yawed wing

n

5. A o _ led 2 _ sine d
2! o9 dx '’ oy = =0.5 dx
v v F0 0,

Suppose we take a given wing and vary 1ts sweep, without changing
enything else, Then x 1s not changed; although U, varies with sweep

u, = ue/cos¢ is not changed.

In linear thin wing theory

u, = 1+ (k) £(x) (29)

vhere, as usual, t?c is the maximum thickness-chord ratio normal to the
leading edge. t/c is unchanged by sweep, f(x) is also unchanged by sweep
or by changes in thickpess-chord ratio.

Now, since from equation (31) below o tan ¢ is small,

u_ cos ¢

u
e e -
Us = Zos (@+8) = cosll+ay = Y (1+o ten o) . GO
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We can show from equation (14) that

- ﬁe) sin ¢ cos ¢

tan @ = - 2 3
1 -(1 -u) cos“¢
e
and g0 to the first order in t/¢ we have .
@ = - (E?E-) f{x) sin ¢ cos ¢ . (31)

Substituting in equation (26) we have, keeping the first order in powers
and products of «,8 and t/c and noting that dU /dx is of order t/e,

du
2, 4 cos_¢ e
cos ¢ axt ig—— = e 8in ¢ cos ¢ = . (32)

9

For 8 we have the equation

B 1.8
2 Uﬁ = 0,0106 Y
09 50.6 ‘ 50.6

in turbulent flow, and we require the value of @ +to zero order, for which we
may write U = ﬁe, and 8o

x
i
0,0106 -4 et

u ¢
u, cos o

> 4
8 et
cos & ¥ etCl-

where © 1is independent of sweep., To zero ordesr we could in fact have written
ﬁe = 1 but this might have confused the argument, However, to zero order ©
is independent of WE as well as of sweep, ©  depends on & which is
supposed to be small and will be ignored,

t 11¢

Finally we have on using equations (30) and (31)

U
e

"

ﬁe (1 + a tan ¢)

{1+ @) e(x)H1 - ) £(x) ain® ¢}

n
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and so to the first order 1n t?c

du 5
d_: = (17(?) f'{x) cos” ¢ .

Hence equation (32) may be written to the first order

g%.+ = e(t/e) £'(x) sin ¢ cos ¢

@ll%

This 15 a linear equation for B and the right hand side is the only
place where the effect of t7c and ¢ 18 to be found. Hence BT must have
the factor (t/¢) sin ¢ cos ¢,
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Apgendix 5
WEBER'S CALCULATIONS OF THE DRAG OF AN UNSWEPT WING

This unpublished work was done in connection with the experiments of
Brebner and Bagley10 on an unswept 10% RAE 101 section wing at a Reynolds
mumber of 1,6 X 10°. Boundary layer measurements were made just behind the

1
trai1ling edge and the drag was estimated by the methods of Betz 9 and of
Jones20, and also by the method of Squire and Young , using measured values

at the trailing edge. The following results were found:-

Incidence  Surface xt/c Betz Jones  Squire - Young
0° Upper 0.62 0,0030 0,0030 0.0037
Lower
4,1° Upper 0,11  0.0068 0.0070 0.0077
Lower 0.85 0,0015 0,0015 0.0019
8,2° Upper 0,01 0.0118 0.0123 0,0133
Lower 1.0 0.0008  0,0000 0.0009

It w1ll be seen that there are differences between the methods of Betz
and Jones, but they are nowhere more than 5% (except in the last case where the
drag s very small), For zero 1ift the method of the present paper gives
0.00275 for each surface, We see that the Squire and Young method (on which
the present paper 1s based) can be considerably in error (if the results of
Jones and Betz are accepted as correct). It gives results too high if based

on measured values and too low if based entirely on calculations.

The error in the Squire - Young method based on measured values 1s about
10% 1n the cases of early transition and can be over 25% when transition is
late. It should be noted, however, that the method assumes that the flow in
the wake is fully turbulent, If transition is late this does not seem to be
realised in Brebner and Bagley's work, and this may account for the discrepancy.
One must also bear in mind that the methods of Betz and Jones both amount to
applying a correction term to allow for the fact that the wake traverse is not
made at 1nfinity downstresm &8s in theory it ought to be, It has been
suggested.e1 that the distance downstream cught to be at least 5% of the chord.
Here the measurements were made at the trailing edge itself, where it is
possible that the Jones and Betz methods may not be so satisfactory; however,
the fact that they agree so well is a strong point in their favour.

a
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ADDENDUM

September 1967

There are errors in equations (1) and (2) of the main text
which should be corrected though they do not affect equation (3) or any of
the subsequent work. It is not correct to say that no fluid enters or leaves
the sides ABA'B' and CDC'D' of the control surface of Fig.l. If the fluad

has an outflow component W normal to these surfaces there must be an

—prwds

1n equation (1), where the integral is taken over the two surfaces. There

additional term

must also be an additional term in equation (2) equal to

—u/;eru)dS ’

namely, the loss in streamwise momentum due to the outflow w. (We may take
the streamwise velocity to be equal to qm on the planes ABA'B' and CDC'D!'.)

These additional terms cancel in equation (3). I am indebted to
Dr. Pankhurst for pointing out this error.

It has been suggested that Figs.5 and 6 are not the best way to display
the sweep factor F, and that 1t would be better to give 1t based on the
unsheared wing as defined in section 1, paragraph 2, The most important case
15 when the flow is all turbulent, i.e., st/c = 0 and we shall only consider

this case,

The curves in Figs.1l and 12 for st/c = 0 can be given to a good
approximation as

A= 14225 (t/e) + S(t/c)2

for a large range of Reynolds numbers, snd those in Figs.5 and 6 for st/c =0

are given by

F = 1-2.85 (E/c) sin® o



Hence the factor on the new basis 1s given by

1+ 2.5 (t/c) sec ¢ + 5 (’c/c)2 sec” ¢

F = [1-2.85 (t/c) sec ¢ s1n° ¢] 5
1+2.5 (t/e)+5 (t/c)

al

I?
M .These values of F are shown in Flg 13 and will apply for sections RAE 101 ‘

—_—

and 104 and probably therefore for intermediate sections as well,

"
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SYMBOLS

constant in equation (26)

streamwise chord

pressure coefficient

drag coefficient

constant in equation (26)

defined in equation (15)

(1+ 0.7 mfacp)a/"’

length of the leasding edge

constant in equation (21)

Mach number

distance in direction of velocity at infinity
temperature

maximum thickness

maximm thickness-chord ratio in direction normal to
leading edge

resultant velocity

veloeclty components normal to and parallel to the
leading edge

velocity components along and normal to the external
streamlines

Cartesisn coordinates as shown in Figs,l end 2
angle between external streamlines and direction of
flow at infinit

{1 - Micosg ®)2

angle between streamlines and limiting streamlines
boundary lasyer thickness

¢ + o

defined by equation (7) and (9)

defined by equation (4)

defined by equation (23)

defined by equation (28)

angle of sweep

density

defined in equation (27)

streamline coordinates defined by equation (27)

il
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Subscripts

t refers
T refers
8 refers
e refers
00 refers
w refers

to
to
to
to
to
to

values
values
values
values
values

velues

at the point of transition

at the trailing edge

in a streamline coordinate system
Just outside the boundsry layer
at infinity

at the wall
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FIG. 12 FACTOR A FOR RAE 104 UNSWEPT
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THE DRAC OF INFINITE SWEPT WINGS WITH AN ADDENDUM

The drag of an infinite swept wing is found in terms of the drag of a
related unswept wing having the same relative position of transition.
Results in lncompressible [low are expressed In terms of a "smep factor”,
Detalled calculations are made for wings of RAE 101 and 104 sectlons and
the factor appears to have a reasonably universal character not very
dependent on shape or Reynolds humber if transition takes place early, but
strongly dependent on thickness., Results are given as a series of curves
and an empirical formle Is given for the sweep factor In terms of
thickness-chord ratlo, angle of sweep and point of transition.
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A few results are given for compressible flow over an RAE 101 section at
gweep angles of 0° and 459 thess show the effect of sweep in deleying
the campressibility drag rise,
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