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SUMVARY

This Report considers theoretically and experinentally some of the
probl ens associated with the flexure of two unequal cylindrical shells Joined
by a conical frustum  Particular attention is given to the determnation of
the overal| flexural stiffness of the conical frustumand to structura
design considerations associated with the provision of a separation capability
in the frustum The results are particularly relevant to the design of multi-
stage rockets
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1 | NTRODUCT! ON

In a nul ti-stage rocket the structure of each stage is basically a
cylindrical shell, Wen adjacent stages differ in size they may be Joined by
a conical frustumshell. At the junctions of the frustumw th the eylindrical
shells there will be stiffening rings to equilibrate the radial conponent of
the direct stresses in the frustum The provision of a separation capability
in the frustummay al SO necessitate sone internal stiffeners and/or bracing.

I ndeed, one of the main structural difficulties in providing such a capability
lies in the provision of an adequate transverse shear-carrying capacity in the
frustum even when the transverse shears applied are negligable. This is because
the direct stresses resisting an applied nmoment have a transverse conmponent due

to the taper.

In this report an analysis is given of the stresses in the frustumdue to
the remote application of a bending rmonent. The analysis is kept as sinple as
possi bl e, consistent with an adequate determ nation of the overall flexural
stiffness of the frustum Thas latter information 1s of particular value in a
vaibrational anal ysis, for exanple, where the rocket may be regarded as a beam
of varying rigidity. Attention is also given to structural design considera-
tions associated with the provision of a separation capability. A sinplified
analysis is presented for optimising the structure to achi eve maxi mum overal |
flexural stiffness. In addition, a series of nodel conical frustum shells
have been tested to exenplify the relative merits of different types of sheer
connection across a separation line.

2 SYMBOLS
ApyA, section areas of reinforcing rings
A section areas of reinforcing rings resisting shear, i.e.

approxi mte web area

AB section area of stringer

D B3 /12(1=v%)

E Young's nodul us

Fn functions of a, B, p

h depth of reinforcing ring

EI flexural stiffness of equivalent beam of |ength ¢

EL, flexurel stiffness of cylinder with properties as at small end

of frustum



flexural stiffness of reinforcing ring

shear modul us

axial length of frustum

bending monent applied to cylinders renote from frustum
bending noment in reinforcing ring

forces per unit length in the shell, see Fig.1

hoop loads in reinforcing rings

direct load in stringer

radius of frustum see Fig.1

distance along generators of frustum from cone ape*
thickness of shel

thickness of reinforcing ring

thickness of stringer-sheet

radial and shear |oads per unit length acting on reinforcing
ring

strain energy in frustum

strain energy in reinforcing rings

shear in reinforcing ring

width of reinforcing ring

sem-angle of frustum

ry/Ty

i ntroduced before equation (19)

1/1,, non-dinensional flexural stiffness of frustum
angul ar distance, see Fig.1l

1"s.,‘l/t

Poisson's ratio

meximum stress in smaller cylinder due to bending
paraneters introduced in equation {16)

2 (except after F) refer to small and large end of frustum



3 ANALYSI S

The following anal ysis is based on the menbrane theory of shells. The
sinplest problens are treated first and attention is concentrated on the
determnation of the overall flexural stiffness of the conical frustum

3.1 The unreinforced conical frustum shell wth rigid ends

According to Ref.1 (ps67) the forces per unit length in the shell are
given by
\

N o M cos ©
8 . 2 2 4
7 cos d sina s

N M gin 6
80 =—qmcecosasina s2 '

#

where M is the applied noment, a is the sem-angle of the cone and the
notation for the forces is as shown in Fig.1.

The strain energy per unit area of the shell is accordingly given by

U = '2':3? {Nﬁ + 2(1+v) Nﬁe} , (2)

where E is Young's modulus, v is Poisson's ratio and t is the thickness
of the shell. The total strain energy in the shell is thus given by

21 S,
1 2 .
_"231:[ [ §N§+2(‘l+v)NSe}ssmadeds

54
Mze(r + r.) 2
1 2/ /1 + 2(1+ v) sin a.)

LBt rf ré \ cos°a

(]
i}

(3)

In virtue of equation (1), where ¢ is the axial length of the frustumand r

r, are its end. radii (r1 <r,, say).

1!



Now the strain energy stored in a uniformbeam whose flexural stiffness is El is
given by

u = %5 . (&)

so that by equating equations (3)and (4) we can deternine the stiffness of an
equi val ent uniform beam of length & Furthernore, this stiffness is given
conveniently i N nondimensional terns by expressing it as a multiple of the stiff-

ness of a cylinder whose skin thickness is t and radius r,, say. I'n other words
We wite

= T]I1, 8ay,
wher e (5)

— 3
I1 = ntr_,

Thus we find

n = F(a) Fyp)

wher e

P (u.) = cosi'

1 1+ 2(1+ v) sin’a

, (6)
2

Fz(ﬁ) = T+ B

and

The paranmeter = is plotted against g for various values of a in Fig. 2.

[It is to be noted that as a - 0, F, =1 so that F211 may be identified as the
"average' overall staffness of the frustumregarded as a beamof varying stiff-
ness. Thus, had we chosen F.I, instead of |, as our reference stiffness the

21
effect of' the angle of taper would have been given sinply by the term F, (a).

Thais, in turn, is givenby nas g » 1.1

The val ues of 7 determined here relate to a frustumwth rigid ends;

afiniterigidity of the ends results in a further drop in overall stiffness,
See section 3.3.



3,2 The reinforced conical frustumshell with rigid ends

Here we consider a shell of constant thickness reinforced by closely
spaced stringers lying along the generators of the frustum The stringers
are assuned to be continuous and untapered so that, unlike the skin, their
total section ares does not vary axially, The stringers are assuned to be
suffaciently close for the concept of a stringer-sheet to be valid.

The forces per unit length in the reinforced shell are again given by
equation (1) because they are determned entirely fromequilibriumconditions.
The strain energy per unit area Of the reinforced shell is, however, given by

2
8

: N
- & (N
8

2(1+ N2
( tv) SG) | (7

+

wher e t is the thickness of the equivalent stringer-sheet. Further, if

to-tg al the smeller end of the frustum we can wite

t, = wts, /s
wher e (8)
t t .
Ho= 3,1/

Substitution of equations (1) and (8)into (7)and integration vyields

We(r, + 1)) i 4Byu) + 2014 v) sin®

U =
LBt ri rg \ cosja 4 ’
wher e (9)
FB(ﬁ,u) = ;T;%ﬂ [H(B-ﬂ + B 1n (ﬁﬁb‘)} )

whach 1s plotted against g for various values of pin Fig.3.

By equating equation8 (4) and (9) we may determine the stiffness of an
equi val ent uni formveame EXpressing this as a nultiple of the stiffness of a

cylinder specified by t, tg and r, gives, in a manner anal ogous to
equation (5) ’ |



= TII1 ’

wher e

H
I

y nt(1+ ) r,? , (10)
and [
Fz(ﬁ) cos a

(1+ 0) [Fy(B,1) + 2(1+ v) sin’a]

For the particular case in which u =1, the paraneter n is plotted against g
for various values of a in Figele

3«3 The effect of non=-rigid junctions at the ends of the frustum

So far the analysis has assumed that the junctions between the conica
frustumand the cylinders are rigid. In practice, of course, this is not s0
and flexibilaty of these junctions further reduces the overall flexural stiff-
ness of the conical frustum In this section we assume that these Junctions
are reinforced by rings of radius T, T, and section areas A , A, respectively,
[It transpires that, for this particular |oading condition the flexural
rigidity of the rings is not an inportant parameter except in 30 far as it
affects the stability of the rings.] In Appendix A a stress function solution

s presented for the case of a deep ring in the formof an annulus of constant
t hi ckness.

s T

At a Junction there is equilibrium of the axial conponents of the forces
per unit length in the cylinder and frustum and the forces acting on the ring
are purely radial and shear |oads. If these are denoted by T, and T, respectively,
we have for the ring at s = s,,

= i - M cos 08
Tr "Ns stna = (’Jtcosasina) s2’ ’
1
and (11)
_ - | sin e
To = Ngg = (’Jt cos a sin a.) 2 '
S1 |

It may be verified that these distributed forces do not cause any bending of the
ring but produce a varying hoop load P, given by



M tan a
P, = ( xr, )cos 5 . (12)

By the same token the hoop load P2 I's given by

. . fMtana
P2 = <—7u’."2 ) cos @ . (13)

The total strain energy stored in the rings is thus given by

Mta.no.<1 12) (
+ 14)
2nE A1r1 A2r .

{We note here that in determning A, A2 al | owance may be made for the adjacent
shell. skin = an 'edge effect' not accounted for by nenmbrane theory. The
effective section areas of skin (6A1, 6A2) are approxi mately the same as those
in a continuous cylindrical shell under a ring of radial |oads (see Ref.1,
p.283) for which
1
84, =~ 1.5 r? t3/2 :
(15)
y
x z 4 3/2
BAZ x 1.5 rs t ;

where it Is assumed that the thickness of the cylindrical shells adjoining the
frustumas the sane as that in the frustum]

The total strain energy in the frustumis the sum of expressions (9) and
(14). By equating this sumto expression (4) we can find, as before, the stiff-
ness of an equival ent beam Representation in non-dinensional form is
facilitated by the introduction of the symbols
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q;1 - A1/r1t
(16)
¥ = Ayt
whence, corresponding to equation (10), we have
o (Bsp) + 2(14v) sine sm q -1 47)
u F,(F) w -
In practice the section areas A, A, may wel | be deternined by |oading
conditions other than that of pure bending of the conical frustum Nevert hel ess,

we determne them below on that basis, but introduce an arbitrary proportionality

constant in an attenpt to account for other design considerations. Now the
maxinm di rect stress in the frustumis given by

N
s,max _
Wew = 7 0 oW
M
ot (1+p) sf c08 a sin‘a

(18)

in virtue of equation (1). If we stipulate that the maximm hoop stress in the

rings is vyo%, say, the areas A, A2 are determned fromequations (12) and (13):

r1t(‘1+p.) sin a

M tanh a
AE Ty T Y '
(19)
hy = A/

Substitution of equation (19) into equations (16) and (17) gives

— 1+p) {7 (By1) + 2(1+v) sinza.} N inz- -1
n = cosaE Fz(ﬁ) 2‘23_ T 01 . (20)

For the particular case in which p =1,y = 1, the parameter nis plotted
arainst B for various values of a in Figebs
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3.4 The econical frustumshell reinforced by four stringers

Here we assume that the conical frustum shell is reinforced by four
equal | y-spaced stringers « an extrene case in which, of course, the stringer-
sheet concept is not appropriate. Because of the inherent limtations of the
menbrane theory of shells we restrict attention first to the nore tractable
case in which the stringer section areas increase linearly with the distance s.
It is also assumed that there is stringer continuity in the adjoining cylinders.
The forces acting on the reinforcing rings at the junctions between the conical
frustum and the cylinders now produce bending in the plane of the junctions, and
it is necessary to take into consideration the flexural rigidity of the rings.
Finally we note that it is only necessary to consider one orientation of the
stringers relative to the applied noment because solutions for different
orientations may be obtained from it by arguments of symmetry and monent
resol ution.

Tapered stringers at 8 = 0, +tx, =

The solution is facilitated by regarding the applied moment M as conposed
of two parts M' and M", say, in which K' acts on the 'unreinforced shell produc-
ing stresses of the formshown in equation (1), While M" causes direct stresses
only in the stringers together with shear in the skan. The relative magnitudes
of M' and M" are determned by equality of direet stress (and hence strain) in
the stringers and adjacent skin.

Thus we have

L

N s M (cos 6) )
S o2 2 '
mcos asin“a\ s
\ (21)

N'. = M' sin ©
s6 T mcos asina ST .

Al'so, if Psis the load in the stringer at 6 = 0,
M' = 2P s cos asina, (22)

and equilibriumbetween the stringer and the adjacent sheets gives

dPS
T = Mo = 0
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whence from equation (22}, assuming that M" is constant,

N = M- L 0<B <= T
s6 ~ 4cosa.sina0.52 ' ’
> (23)
h" 1_ -
='4cosasina<32>’ n<8<0. )

[It x5 to be noted that these variations of Nse do not require the presence of
additional N and Ny terms for equilibrium the 1/:»,2 variation is the same as
that due to a pure torque.l

Now the section area of each stringer As I's given by

A, = A, (s/s)) , say, (24)

S

so that the direct stress in the stringer at 8 = 0, is given by

Ps M"s (1 )
K;' 2 cos a sin a. AS,, <2

from equation (22). By equating this to the direct stress associated wth
(N;)e=o we obtain

z
2M' A
Mt = TS N
'J'CI'1t L
(25)
= w' o, 38y,
fol | owing the notation of section 3.2. The total strain energy stored in the
shell and stringers is therefore given by
N 2 2 - N 2P§
u o= -é—E-‘E[ f ()™ + 2(1+v) (g + N2g)7) s sin a de d3+ﬁf I;—ds
o 5
wle(r, + r2) ] 2 °
= 21 5 3 [H + 2(1+v) {1 + 0,234 (ﬁ—-)} sin a.] . (26)
L7EL r, r, cos’a B "
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[It is to be noted that if the stringers had been regarded as a (tapered)
stringer-sheet the energy stored would have been the same as that in equa-
tion (26) but without the term containing the factor 0.234.. ]

Stringers of constant section gresa

An approximate solution may be obtained for the case of untapered stringers
by the adoption of equations (21), (22) and (23) with the ratio M"/M* no |onger
constant but given by

" 2A us
. == -;_;1 . (27)

The total strain energy stored in the shell and stringers is now given by

2
0 ox — 2y ) 3= (F(B,n) + 2(1+v) {1 + F (B,p)] sta‘al

LrE t r21 rg cos”a

wher e (28)

2 2 2 2 2
_ u(B=1)" + u(p+1)(n°~38) - 68 63 B(1+u)
F}‘.(ﬁ)l“l) = Oc 23)4-‘: p(}.H-'l) (“"’ﬂ) (p+1r + pz(ﬂ2-1) 1n ( ):] ’

which is plotted against B for various values of y in Fig,6.

The loads in the reinforcing rings at the ends of the frustum

The radial and shear |oads acting on the reinforcing rings are conveniently
expressed in ternms of the previous dashed and doubl e-dashed systens. Thus {cef.
equation (11)),

Tr = Né sin a + forces PS sin a at 0O,x,
and
= | 4 + 1
TB Nse Nse

The dashed conponents do not cause any bending of the ring but produce a
varying hoop load which, in the ring of radius r, say, iS given by

¢ _ (M' tan a
P] = ( =3 )cos 9 . (29)

It is shown in Appendix B that the doubl e-dashed conponents produce a varying
hoop load of the same form
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" M" tan a
P1 = (_—7:1'1 )cos e . (30)

There are al so shearing forces v1 gi ven by
M" t
v, =<—-—m:‘i-9-‘)<l-’i- sine) ) 0O<bem (31)

and bendi ng monment s o, gi ven by

m, = M" tan a(%-%-l;t-cose) , C<8cecm . (32)
The total strain energy stored in the ring is likely to be primarily that

due to bending with lesser contributions from the hoop |oads and sheer forces.

Thus

/} 2X ( )2 j}
U = 1 2 1 P! + PY ae + 1 2
r,1 2EI Zmy Ty 48 + 7 LA oear 2V T 40
I‘,‘l 0 1 0 1 1 0
M" 2 2
_ 2 Ty M §1+v! M"
r,1 171 171
and there is @ simlar expression for the energy stored in the other ring. Thus
for the case Of stringers_Of constant section area (in which M*" differs at each

end of the frustum), we find

r r,i r,2
2 2
_ Y tanal o234 2 [ L + B } 1 (..1_,,_1._)
B [: " (14)° I, (8m)? I, arry \Ay PR,
0,070 (14v)1f /1 1
r \ 2 ] 2 '>J . (3‘4-)
+ 1 (140)° A+ B(B)” Ay

The totel strain energy in the frustumis the sumof expressions (28) and (34).
By equating this sumto expression (4) we can find, as before, the stiffness of
an equivalent beam,
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Dimensions of the reinforcing rings

At this point it 1s expedient to consider sone typical di nensions of the
reinforcing rings. To fix ideas, let us assume that the cross-section of the
ring at 8., SaY, IS basically as shown in Fig.7. The dinmensions w, h, tr
(the identification suffix 1 is omtted here) will now be determined by relating
the maxi mum hoop stress in the ring to the maximumdirect stress in the adjacent
cylinder caused by the applied monent. O course, in an actual structure the
design requirements may be such that strict equality of these stresses is not
appropriate, and for this reason we introduce an arbitrary proportionality con-
stant y, as in section 3.3.

For the section shown in Fig.7

Ar = tr (h + 2w)
and (35)
1. = trhz (h + 6w)/12 .

The maxi mum hoop | oad P oox and the maxi num nonent max each occur at = O,=%
and accordingly the maximm stress in the ring is given by

.. imex  Mnn
max Ar 211"
Mtan a M" tan a
= 'Jt:mtr (h + 2w) + Oubdi7 htr (h + 6w) (36)

an vartue of equations (29), (30), (32) and (35). | f expression (36) i s equated
to yo*, where ¢* is gaven by equation (18), we obtain the relation

2
h™t
r _ s8in af _1. b/ 1+
2 - Y {1 + éwg/-ﬁ *r (1 + 2wl75>] ¢ €l
r1t 1
To Investigate numerically the inplications of this relation let us suppose that
y
I‘1/t = lg.OO []
po= 1 !
@ = 10° (38)
W = 'j?"h
¥y = 1.5 y



An additional requirenment, which follow8 fromconsiderations of the stability of
the ring, is that h/trs 20, say. If we tentatively assune that h/t . 20,
equation8 (37)and (38)give

h = 0.142 r, -
In practice there will also be limtations on the nagnitude of h, and if the
preceding analysis yields an unacceptable value the ratio h/t, nust be reduced.
Thus in the present exanple, if the maximum allowable value of his 0.1 r

1!
say, equation (37)yield8
t, o= G13 h . (39)

There is g similar analysis for determning the dimensions of the ring at
82. Thus, corresponding to equation (37) we find, on introducing the identifica-

tion suffix 2

hg tr 2 §1 EZ sin a h2/1‘2
2t [k_'+ 6w2/h % (b +B) = 1+ 2w2/h2} .

For the exanple specified by equation (38)with, et us say,
B = 1.45 ,

and (41)
hz s (i r_' (=h) ,

it is found from equation (40) that

t = 0,10 h . (42)

r,2

As for the strain energy stored in the rings, it follow8 fromequation (34)
that for a structure specified by equations (38), (39), (1) and (42),

= 0¥ (43)
r Er”
1
the contribution fromthe ring at 8, being slightly greater than that at Sy | t
is also of interest to note that the proportions of this energy due to bending,
hoop | oads and shear forces are approxinately as 10:4:1.Finally we note that

the strain energy U in the shell and stringers is given by expression (28),
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whence

2
U = 6‘|.6-—5 . (Ld)
Er]

A conparison of equations (43) and (44)shows that the stiffness of the conical
frustumais about 20% less than that of a simlar frustumwth rigid ends.

3.5 The conical frustum shell wth a separation capability

If the conical frustum shell has a separation capability the wall of the
shel| cannot be continuous across the separation line (or lines) and relatively
heavy stringers nust be provided to carry the axial and bending | oads. There
will also be a conflict of requirements in that the separation capabilaty,
involving the use of explosive bolts in the stringers, will be sinmpler if the
nunber of stringers is small, whereas, for a given total stringer area, the
overal | flexural stiffness of the frustumwll be greater if the stringers are
more nunerous. A detailed determnation of the stresses is very difficult,
but it is possible to make some general observations and to deduce sone
approximate results. First we note that because of the curvature of the shell
the diffusion of load fromthe stringers into the adjacent shell wall will be
markedly less than into a flat sheet; indeed, according to menbrane theory
there is no diffusion. Furthermore, even if some load diffusion does occur
the diffusion process will be far fromconplete at the Junctions with the
ad gacent cylinders, and this in turn means that the overall flexural stiffness
of the cylinders is effectively reduced. |f we assune, for purposes of
estimating the overal | flexural stiffness, that there is no diffusion in the
frustumbut conplete diffusion in the cylinders the resulting errors are of
opposite sign and therefore tend to cancel each other. Expressions for the
overal | stiffness for a structure with four continuous Stringers may now be
obtained by a limting process fromthe results of section 3.4. Thus from
equation {28) we find

2
u = M-e (r1 +r2) [(_g&)‘l_ + 2447 (1+V) Sinzar} (45)
~ )
LrE r% rg cos3a P+ tS t

while from equation (34)
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M~ tan“a { ( Ty T ) 1 ( 1 1 )
U o e—— o.mzjk + + — +
r E Ir, 1 Ir, 2 2R \r 4 A1 r2A2

+ 0,074l (14v) (

r2“2>} - W)

There is also a contribution fromthe reinforcing rings at separation |ines:

~ M2 ta.nza.
r ° E *

=1

0430 ﬁ' + 0,0045 z o (47)

r,n nn

The derivation of equation (47)is given in Appendix C. It relates to the
in-plane distortion of the rings and is based on the assunption that the only
transfer of shear across a separation line ccours at the stringer positions
(6 =0, *fx, =)o It is also assumed that reinforcing rings adjacent to a common
separation line have the same stiffness so that, from symetry, a typical quad-
rant of a ring - bounded by 6 = 0, 4=, say = is effectively clanped at 6 = 0 and
sinply supported at & = 3= The forces per unit length acting on such a ring
are directed tangentially and are given by
T = Mg (M" = M)
M tan a
= T ¢ (48)

n

These forces cause the following hoop loads, shear forces and bending nonents:

P s M—%‘E‘-—“ (0,208 cos 8 = 0u174 8in 8)

n 41

v s M_%a_n._@ (0,250 0,174 cos 6 = 0,208sin 8) | > (49)
n

m = M tan o (0,219= 0,2506 « 0,208cos 6+0Ce174sin 8) .|

Optimum stringer areal/skin thickness for maxi numoveral |l flexural stiffness

The maximisation of the overall flexural stiffness is equivalent to
minimisation of the expression (U + U+ 'L'Ir) defined by equations (45)~(47).
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The terns ts and t occur only in the expression for U (due, in part, to the
underlying assunptions) and accordingly the optimumratio ts/t can be deternined

i ndependently of the dimensions of the various reinforcing rings. Now the total
weight of the skin and four stringers is proportional to
jeadl
(2 t+rt . (50)
If this total is kept constant, it may readily be shown that the minimum val ue

of U oecurs when

L 28 %
p:-;—:m:(m‘%my) cosec o , (51)

= 3.86 if p = 1.45, a = 10°% v = Oe3 say .

This expression nust be regarded as an upper limt because of the underlying
assunption of zero load diffusion from the stringers; if the skin is assuned
to be 25% effective in carrying direct forces Ns, the optinumvalue for ts/t
is about 3.1in the above exanple. [Equation (51) is appropriate to the
frustum with four stringers. If the nunmber of stringers is increased the
assunption of zero load diffusion becomes increasingly untenable. The limt-

ing case is when there is conplete diffusion and the stringers can be regarded
as a stringer-sheet.  The optinmumvalue of p for this case can be obtained

by minimisation of expression (9), subjectto the constancy of expression(50).
This results in the followng equation for  u:

2 2
2 .2 28 (n+ B+1) (B(1+u) _ Bo(2u+pB+1)
2(4 + 1 -
(1+v) 4 sin"a p(BZ“I) "\ e ) P+ (Br) (B+1) () » ©2)

which yields a non-zero value of u only when

2
6(1+v) sinfa < (B-1) /B
"The fact that non-zero solutions are possible in certain circumstances is
sinply because the axial variation of the section area of the stringers
(a constant) is nearer to the optinumvariation, namely I/s, than is that of
the skin, which varies in direct proportion to s.]
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Opti num t hi ckness of reinforcing rings for maxi numoveral |l flexural Stiffness

Let us now assunme that the paraneter p is given  possibly by
equation (51) = and that the reinforcing rings at the ends of the frustum are
similar to that in Fig.7 with w = $h, so that = dropping the suffices 1,2 =

A = 2t h , |

r r

AL = th \ (53)
_ 1 5

Ir = 3trh ™ ]

[f we further assune that h1, h2 are given, the corresponding optinum val ue of

tr} and t_ , My be determned in terms of t and the overall geometry of the
: )

=

frustum for maximum overal | flexural stiffness. The total weight of the skin
and stringers plus one (arbitrary) ring is proportional to

ﬂ£r1 t

cos &

(1+ B+ 2u)+ harht

If this total is kept constant while t and t are varied it may be shown that
the overal |l flexural stiffness is a maxi numwhen (With v = 0.3)

_t_I'_ _ r1r23|n a/
t

- u(1+B+ 2u)
B2\ + 1.60p (p+1) sin’a

3 1
> (0.011 + 0.276 h2/r2)2 :
. (54)

If the reinforcing rings at separation lines are of the form specified by

equation (53) it may |ikew se be shown that the overall flexural stiffness is a
maxi num when

t - 2

b, Iyrpsin a( u(1+ B+ 2u)
h 8

% 2, 2.3
5 ) (0.00027 + 0.043 h“/r°)
+ 1.60p (B+1) sin

. (55)



21

4 EXPER MENTS ON XYLONI!I'E CONICAL FRUSTUM SHELLS

Tests on a series of nodels have been performed to gauge the efficacy of
dafferent Methods for providing a (tw n) separation capability w thout an undue
drop in the overal | flexural rigidity. For ease of mnufacture the rmodels,
which have four equally spaced stringers, were constructed of xylonite
(cellulose nitrate). There were basically two conical frustum shells wth the
same overal | dimensions, |n one of these the shell wall was continuous; the
overal | flexural stiffness of this nmodel provided a yardstick against which the
other(s) could be conpared.  The wall of the other shell was out along two
circunferences; the overall flexural stiffness was then neasured for this shell
and for ten nodified versions, the nmodifications including a variety of addi-
tional stiffening (and combinations thereof) including external reinforcing
rings at the out edges, push-fit pins (axially orientated) connecting adjacent
reinforcing rings, and an internal crossed shear bracing. The shells and the
modi fications are shown in Figs.8 and 9, Wwhile Fig.40 shows a nodel in the test
rig. To sinplify the interpretation of the results the ends of the shells were
clamped to stiff attachments, as shown in Fig.9. The effect of flexible end
attachments can, of course, be estimated from the preceding analysis.

4.1 Mbdel  di mensi ons

The dzmensions of the uncut shell are

£ = 105in ,

a = 10°
21‘1 = 8in
2r2 = 11«7 1n

(B = /v, = 1.46)
t = 0.040 in )
A, = 0.3 in2 , (depth 0.6 in, wadth 0.5 in)

2AS
(p, = 7'l'.I‘1t = 1.19)

E - 280,000 1bf/in® .
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The structure extended an additional inch at each end to facilitate clampingto
the stiff ply end fittings.

The shell with the twin separation capability is as specified above, but
with circunferential cuts (0075in. wide) in the shell wall at axial distances
fromthe smaller end of 2.7 in. and 66in. The nenbers of the internal crossed
shear bracing are of square cross-section (03in. x 03in.) and each end is
attached to a stringer by a & B. A bolt, as shown in Fig.9. The four externa
reinforcing rings at the cut edges of the shell well are of two kinds, stiff and
flexible.  Each 'stiff' ring measures ¥ in. in the axial direction while the
depth at the cut edge is 0,27 in.; the inner faceof each ring is tapered to
follow the skin surface to which it is glued: the outer face is cylindrical, so
that the depth of the rings varies slightly in the axial direction. Holes of
3/32 in. dianeter were drilled axially through adjacent rings at an angul ar
spacing of 6°; a shear connection can thus be obtained by the insertion of
"push-fit" steel pins which bridge the gap across the cuts without detracting
from the separation capability.

Each 'flexible' ring was obtained by cutting away sections of the "stiff’
ring between adjacent drill holes; this produced a castellated ring with

adequat e shear connection (with pins in) but negligible hoop and flexural
rigidity. The rings were cut away to within 0.020 in. of the shell wall, and
the width of each cut was such that the remaining sections were 0.0344 in.
wide, i.e. (1/8 + 3/32+ 1/8)in. The flexible rings are shown on the frustum
in Fig.8

4 2 The tests

The tests were to determne the overal | flexural stiffness of the nodels.
A typical nodel, supported as a vertical cantilever, i S shown in the test frame
i n Fig.10. The nonent was applied to a horizontal steel channel beam bolted to
the stiff upper end fitting. Di d. gauge readings gave the rotation of this beam
and hence the overall stiffness of the model. [A slight adjustment was nmade, by
calibration, to account for bending of the beamitself.1 Separate tests were
made with the stringers at 6 = 0, etc. end at 6 = t=, etc. although, in theory,
the corresponding overal | flexural stiffnesses should be the same. In practice
the stiffness appropriate to the 6-zero position exceeded the other in all
cases by about 10, This feature can be attributed to differences in the
efficiency of the end clanping of the skin and stringers. Here, only the aver-
age value of the two stiffnesses is quoted. Furthermore, for ease of inter-
pretation, the overall flexural stiffnesses are expressed as fractions of the
stiffness of the uncut shell. In this connection it is worth noting that the



experimental |y determined stiffness of the uncut shell agreed exactly with that
derived from equations (4 and (28).

43 Test results

The overal | flexural stiffness of the uncut frustumis, by definition
unity. In ternms of this the stiffness of the cut frustumis 0.30. Table 1
shows the stiffness of the cut frustumwith various reinforcements. The pin
spacings quoted refer to the angular spaci ng between stringers so that, for
exanpl e, a 45° spacing inplies 4 pins per pair of adjacent rings; simlarly
30°inplies 8 pins.

Table 14

Relative stiffness of cut frustum with reinforcements

flexible rings, no pins 0.32
flexible rings, pins at 45° 0.49
flexible rings, pins at 30° 0.52
flexible rings, pins at 22% 0, 57
flexible rings, pins at 6° Qo T4*
stiff rings, no pins 0.54
stiff rings, pins at 6° O.?Af
crossed bracing, no rings 0.52
crossed bracing, stiff rings, no pins 0.63
crossed bracing, stiff rings, pins at 6° 0.80

"Best buy.' Note the equality with Iiné‘. Wth continuous shear
transfer there is no tendency for the rings to bend.

The test results demonstrate the inportance of a multiple shear connec-
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tion across a separation |ine. In an actual mssile structure the rings woul d,

of course, be on the inside and there would also be differences in the details
of the shear connections.
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5 CONCLUSI ONS

Some aspects of the design of a conical frustum shell with a separation
capability have been considered theoretically and experimentally. Particul ar
attention has been paid to the determination of the overall flexural stiffness

of the frustum and to ways of maximising this stiffness. Such ways include
the followng

(a) increasing the nunber of (continuous) stringers,
(b) optimum choice of stringer section area/skin section area,
(c) provision Of nultiple shear connections across a separation line,

{a) optinum design of reinforcing rings at the ends of the frustum
(markedly dependent on (a)),

(e) ditto for rings at separation |ines (markedly dependent on (c))},

(f) optimum tapering of skin and stringers (not discussed in detail).



25

Appendix A
STRESSES | N AN ANNULAR PLATE AT THE ENDS OF THE FRUSTUM

In this Appendix a stress-function solution is presented for the stresses
in an annular plate of thickness tr' bounded by inner and outer radii T, T,
respectively; the |oading on the outer boundary is given by equation (11) of
the main text, while the inner boundary is free. The | oads on the outer bound-
ary cause radial and shear stresses

(crr)rﬂ_1 = K cos 0 ,
(Tre)r=r1 = Ksin® , (56)
wher e
K _ Mana
2
‘JttrrI

These stresses form a self-equilibrating system and, with the inner boundary
being free of stress, equilibriumand conpatibility throughout the annulusare
satisfied by choosing a single-valued stress function which satisfies the
biharmonic equation and the boundary conditions. A suitable function which
satisfies the biharnonic equation is given by

¢ = 15(8.1‘3 + br'1) cos § , (57)
which vyields stresses

o, = (ar - br-3) cos 9

CA (Zar+ br-j) cos 9, (58)

T4 = (o= br2) sin g .

The vanishing'of the radial and shear stresses on the inner boundary is
satisfied if .
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Thus, introducing the notation

K = ro/r1 .
(59)
p = r/r_1 s
yi el ds
K cos & 4 =3
o o= (p=x )
r 1 -rcl" P ’
LA %co—se(j +:cl*p 3) , (60)
-rc
I
Tre = uK-’-—-S-i'-r.l—e (P - KA‘P-B) .\]

1 =K

Now ¥ 6 p €1 and, unless t he annulus is deep, k is only slightly less than
unity. Accordingly the dom nant stresses in the annulus are the hoop stresses

Ty which vary (snoothly) between the val ues
r r ( | cos ©
= __ K ‘
and
(O'e)r o, = é_:_b‘-é) K cos & .,
- 1 - x.

Further, as x -» 1the hoop stresses remain virtually constant across the w dth
of the annulus and the hoop load is given by

\

Kt r, cos ©
r 1

= (Mu) cos B ) (12 bl S)

1'(!‘1

in virtue of equation (56).
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Appendix B
THE LOADS IN THE REINFORCING RINGS AT THE ENDS OF THE FRUSTUM

In this Appendix we determne the loads in a reinforcing ring due to the
doubl e- dashed system di scussed on page 13. Account is taken of the direct,
shear and flexural stiffness of the ring, and of the eccentricity of the applied
loads Tge It is shown, however, that the more usual analysis which takes
account only of the flexural stiffness of the ring is sufficiently accurate;
attention is confined to this sinpler analysis in Appendix C.

The | oads applied to the half ring bounded by 0 6 6 6 m are shown diagram-
matically in Fig.11 where, for convenience, the end forces and moments are
expressed in terms of fictitious values at the origin. The loads in the other
hal f of the ring are, of course, a mrror imge of these and it follows that
there are no resultant vertical 'opening forces' at the origin. The vertical
(downwar d) forces vo applied at 6 = 0,x are equal to %PB sin a, which is also
the shear force in the ring at 8 = 0; hence the notation Vo. In addition, the
total anti-clockw se bending monent at the origin is equal to nvor and this is
shown, for convenience, as applied in equal proportions to the two fictitious
arms.  There remain two self-equilibrating systems at the origin, nanely equal
and opposite horizontal forces Po and nonents m'; these are to be determned
by the boundary conditions. The following additional notation is introduced,

r = radi us to centroid of ring,

(~-3)/f

EI
r

>
[{]

?2G Al

The nmoment in the ring m(8) is the sumof the followi ng components:
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. o ‘2
monent at origin 2

{m]

u

YVr
o ’

. . -VTrsineg,
[m]vertlcal shear at origin o

Pr cos o ,
Q

] (61)

(M shear flow T, Al centroid = =V, (1-0c0s¢) dy

[m]horizontal force at origin

i

=V r(6-sin 0)

z =V (I‘—I‘) 0 ’
8 0

[mleccentricity of shear flow T

whence, on addition,

m(6) = M + i"z-‘vor- Vorﬁ + Po?‘ cos © . (62)

Simlarly the shear force in the ring is given by
V=V +P siné, (63)
0 o
and the hoop load is given by

P = P cos 6 . (64)

The boundary conditions are such that if the ring is regarded as cl anped
at 8 = 0, the slope due to bending and the horizontal displacenent are zero at
6 = % The vanishing of the slope due to bending inplies that

n
m{8) de = 0 |,

so that

m' = 0 . (65)
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The component of the horizontal displacement at & = & due to bending is given by

-2 X
-Erf! nme) (1 + cos 8) db )
r

and that due to shear 1s given by

- n
GE vsin 6de,

b

while that due to the hoop |oad vanishes identically. Equating to zero the sum
of these expressions vyields

A
P, = -'ﬁ v, (1 - 14_k> . (66)

The paraneter h is small in comparison with unity so that we may wite

which i S the val ue obtained fromelenentary theory which takes account only of
the flexural stiffness of the ring. In terns of v, we now find
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m( 6) vor<°—2t-6-,%cos 9) )

v om v0<1-:sin6) | > (67)

P = ﬂvo cos 6 .

Equations (30)-(32) of the main text are recovered by witing

Lill

V, = 5P si 5 ——————
0 5P  sin a = o~

in virtue Of equation (22).
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Appendix C
THE LOADS | N THE RElI NFORCI NG RINGS AT SEPARATION LI NES

This Appendi x gives the derivation of equation (49), and hence equation
(47),0f the main text. The analysis does not take account of the direct end
shear stiffness of the ring or the eccentricity of the applied |oads Te. The
| oads acting on a quadrant of ring bounded by 0 € 6 ¢ 3x are shown in Fig.12,
where the tangential force per unit Iength Ty I's denoted by F/r and is given
by equation (48). Vertical and horizontal equilibrium of these tangential
forces 1s provided by the forces F shown at the point B, The forces Vo, PQ
and noment m, are to be determned from overall noment equilibrium and from

the boundary conditions.

The nonent m(8) is given by
n(6) = my = Vr Sin g = Pr (1-cos 8) @« Fr (8-sin 6) (68)
The vani shing of m(3=x) |eads to the relation

m, = rivo t P+ F(in -1)} (69)

and hence, in terms of V. P,
or "o
m(6)/r = P_cos 6+ (vQ “F)(1-sin 8) + P(3x =-9) . (70)

The boundary conditions of sinple support at B and clanmping at A can
be expressed by equating to zero the horizontal and vertical displacenents at
B, assuming no displacenent or rotation at A The displacenents at B are
readily given by integrating the curvature changes multiplied by the appropriate
perpendi cul ar arnms. Thus

o

me) cos 6 de

u
o

b
and (7)

L[]
(@)

in
[ M8) (I-sin e) de
o
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Substitution of equation (70) into equations (71) and solving for Vb’ PO gi ves

-

Yo _ 8-2ax4+108° - x
6x° - 16w - 8
and & (72)
Po =1+0-'16'Jt+7t2 ,
P s iemas J

Expressions (70) and (72) suffice to determine the bending noment wm{8), while
the shear force and hoop load may be determined from the relations:

v=vocose+Posine+F(1-cose),

P = Po cos 6+ (F-Vo)sin )
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Fig.10 A model in the test rig
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