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ON THE FLEXUFE OF A CONICAL FRUSTUM SHELL

by

E. H. Mansfield. Sc.D.

SUMMARY

This Report considers theoretically and experimentally some of the
problems associated with the flexure  of two unequal cylindrical shells Joined
by a conical frustum. Particular attention is given to the determination of
the overall flexursl  stiffness of the conical frustum and to structural
design considerations associated with the provision of a separation capability
in the frustum. The results are particularly relevant to the design of multi-
stage rockets.

*Replaces R.A.E. Technical Report 67274 - A.R.C. 30212.
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1 INTRODUCTION
. In a multi-stage rocket the structure of each stage is basicelly  a

cylindrical shell. When adjacent stages differ in size they msy be Joined by
L a conicel  frustum shell. At the junctions of the frustum with the cylirdricd.

shells there will be stiffening rings to equilibrate the radial component of
the direct stresses in the frustum. The provision of a separation capability
in the frustum rnw also necessitate some internal  stiffeners and/or bracing.
Indeed, one of the main structural difficulties In providing such a capability
lies in the provision of an adequate transverse shear-carrying capacity in the
frustum, even when the transverse shears applied are negligible.  This is because
the direct stresses resisting an applied moment have a transverse component due
to the taper.

.

In this report an analysis is given of the stresses In the frustum due to
the remote application of a bending moment. The analysis is kept as simple as
possible, consistent with an adequate determination of the overall flexural
stiffness of the frustum. This latter information 1s of particular value in a
vlbrationsl  analysis, for example, where the rocket may be regarded as a beam
of varying  rigidity. Attention is also given to structursl  design considera-
tions associated with the provision of a separation capability. A simplified
analysis is presented for optimising  the structure to achieve maximum overall
flexural  stiffness. In addition, a series of model conical frustum shells
have been tested to exemplify the relative merits of different types of sheer
connection across a separation line.

2 SYMBOLS

AlaA section areas of reinforcing rings

A' section areas of reinforcing rings resisting shear, i.e.
approximate web area

As section area of stringer

D Et3/12(1-v2)

E Young's modulus

Fn functions of a, p, p

h depth of reinforcing ring

ZI flexural  stiffness of equivalent beam  of length 8

EI, flexural  stiffness of cylinder with properties as at small end
of frustum
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flexural  stiffness  of reinforcing ring

shear modulus

axial length of frustum

bending moment applied to cylinders remote from frustum

bending  moment in reinforcing ring

forces per unit length in the shell, see Fig.1

hoop loads in reinforcing rings

direct load in stringer

radius of frustum, see Fig.1

distance along generators of frustum from cone ape*

thickness of shell

thickness of reinforcing ring

thickness of stringer-sheet

radial  and shear loads per unit length acting on reinforcing
ring

strain energy in frustum

strain enera in reinforcing rings

shear in reinforcing ring

width of reinforcing ring

semi-angle of frustum

r rd1
introduced before equation (19)

I/I,  t non-dimensional flexural  stiffness of frustum

angular distance, see Fig.1

%,dt
Poisson's ratio

maximum stress in smaller cylinder due to bending

parameters introduced in equation (16)

Suffices 1, 2 (except after F) refer to small and large  end of frustum.



5

3 ANALYSIS

The fol.lowing analysis is based on the membrane theory of shells. The
simplest problems are treated first and attention is concentrated on the
determination of the overall  flexural  stiffness of the conical frustum.

3.1 The unreinforced conical frustum shell with rigid ends

According to Ref.1 (p.67) the forces per unit length in the shell are
given by

Ne =O  ,

N M
SO = VI co9 a sin a '

i

where M is the applied moment, a is the semi-angle of the cone and the
notation for the forces is as shown in Fig.1.

The strain energy per unit area  of the shell is accordulgly  given by

where E is Young's modulus, Y is Poisson's ratio and t is the thickness
of the shell. The total strain energy in the shell is thus given by

27c s2
u 1=-
4 i

1% + 2(1+ v) Nie] s sin a de ds
0 Sl

M2&(r,  + r2) 1=
2 2

Wt r, r2 (
+ 2(1+ u) sin2a

3 )
,

cos a

(1)

(3)

in virtue  of equation (I), where 4 is the axial length of the frustum and rl,
r2 are its end. radii (rl < r2, say).
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Now the strain enera stored in a uniform beam whose flexural  stiffness is EI is
given by

2
u = "& ,

so that by equating equations (3) and (4) we can determine the stiffness of an
equivalent uniform beam of length 8. Furthermore, this stiffness is given
converuently  in nondxnensional  terms by expressing it aa a multiple  of the stiff-
ness of a cylinder whose skin thickness is t and radius r,, say. In other words
we write

where

Thus we find

I = rl1,' SBSTI

II = tir:  .

rl = F,(a) F,(P)

where

F,(a) = cos5a
1 + 2(1+ v) sin*a

,

and

F2(B)  = $

$ = �☺r, l

(5)

(6)

The parameter q is plotted against p for various values of a in Fig.2.
[It is to be noted that as a + 0, F , +I so that F21, my be identified as the
'average' overall stiffness  of the frustum regarded as a beam of varying stiff-
ness. Thus, had we chosen F21, instead of I, as our reference stiffness the
effect of' the & of taper would have been given simply by the term F,(a).
This, in turn, is given by q as p + 1.1

The values of q determined here relate to a frustum with rigid ends;
a finite rigidity of the ends results in a further drop in overell  stif'fness.
See section 3.3.



3.2 The reinforced conical frustum shell with rigid  ends

Here we consider a shell of constant thickness reinforced by closely
spaced stringers lying along the generators of the frustum. The stringers
are assumed to be continuous and untapered so that, unlike the skin, their
total section ares does not vary sxially. The stringers are assumed to be
sufficiently  close for the concept of a stringer-sheet to be valid.

The forces per unit length in the reinforced shell are again given by
equation (1) because they are determined entirely from equilibrium conditions.
The strain enerw per unit area  of the reinforced shell is, however, given by

t +8t8 +
a1 + u)

U' 1

(

N2 &
= E t >

,

where ts is the thickness of the equivalent stringer-sheet. Further, if

t8 = t8 1 at the smeller end of the frustum, we csn write
,

where
t8 = W,/8 ,

(8)

Substitution of equations (1) and (8) into (7) and integration yields

M2e(r,  + r2) F (p,~) + 2(1+ u) sin2
u =

l+nEt r2 r2 (' 3 4
t

1 2
CO8 a

where

F3(P,td  = '
I

(9)

which  18 plotted against a for various values  of p in Fig.3.

By equating equation8 (4) and (9) we may determine the stiffness of an
equivalent uniform beam. Expressing this as a multiple of the stiffness of a
cylinder specified by t, ts , and r, gives, in a manner analogous to,
equation  (5),



where

and

I = 71, 9

II = xt(l+p)  r: ,

I
F2(P) 3cc9 a

17 =
Cl+ 1.4 IF3(B,d + 2(1+ u) sin24

.

J

(10)

For the particular case in which p = I, the parameter q is plotted against p
for various values of a in Fig.&,

3.3 The effect of non-rigid  junctions at the ends of the frustum

So far the analysis has assumed that the junctions between the conical
frustum and the cylinders are ngid.  In practice, of course, this is not so
and flexibility  of these junctions further reduces the overall flexural  stiff-
ness of the conical frustum. In this section we aaaume  that these Junctions
are rex-dorced  by rings of radius r,, r2 and section areaa A,, A2 respectively.
[It transpires that, for this particular loading condition the flexural
rigidity of the rings is not an important parameter except in 30 far as it
affects the stability of the rings.] In Appendix A a stress function solution
is presented for the case of a deep ring in the form of an annulus  of constant
thickness.

At a Junction there is equilibrium of the axial components of the forces
per unit length in the cylinder and frustum, and the forces acting on the ring
are purely radial and shear loads. If these are denoted by T, and TO respectively,
we have for the ring at s = a,,

T

Tr
= Ns sin a =

(
M

>
ccs e

x cc9 a sin a -t2
51

and

Tel = Nse = Y
>

sin 0
7t cc9 a sin a 2 .

7 I

(11)

It may be verified  that these distributed forces do not cause any bending of the
ring  but produce a varying hoop load P, given by



P, =

By the sane token the hoop load  P2 is given by

The total strain energy stored in the rings is thus given  by

2x r P2 2
u, = &

i (
u+- der2 p2
*I *2 >0

l

(12)

(13)

(14)

CNe note here that in determining A,, A2 allowance may be made for the adjacent
shell. skin - an 'edge effect' not accounted for by membrane theory. The
effective section areas of skin (&A,,, &A2) are approximately the same as those
in a continuous cylindrical shell under a ring of radisl  loads (see Ref.1,
p.283) for which

6A1 a 1.5 r$ t3'" ,

"*2 = 1.5 rj t312 ,
!

(15)

where it IS assumed that the thickness of the cylx&&xl  shells adJolrung  the
frustum 1s the same as that in the frustum.]

The total strain  energy in the frustum is the sum of expressions (9) and
(14). By equating this sum to expression (4) we can find, as before, the stli'f-
ness of an equivalent beam. Representation in non-dimensional form is
facilitated  by the introduction of the symbols



10

$1 = +,t ,

$2 = AJr2t ,

whence, corresponding to equation (IO), we have

(16)

3cos  a
r

3
(p,p) + 2(l+u)  sin2a

T =iq
*2(P)

+*(*+-j-J]-'  . (17)

In practice the section areas A,, A2 may well be determined by loading
conditions other than that of pure bending of the conical frustum. Nevertheless,
we determine them below on that basis, but introduce an arbitrary proportionality
constant in an attempt to account for other design considerations. Now the
maximum direct stress in the frustum is given by

xt(l+p)  sf cos a sin*a
,
J

(18)

in virtue of equation (1). If we stipulate that the maximum hoop stress in the
rings is @, say, the areas A,, A2 are determined from equations (12) and (13):

A, = M tan a r,t(l+p)  sin a

7tr,y+ = Y t

A2 = Al/P .

(‘9)

Substltutlon  of equation (19) into equations (16) and (17) gives

l+p) [F (p,p) + *(l+v) sin*4 -1q = 3cos  a i’ *2(p)

+ 2-f sin2a
$-I *1 (20)

For the particular  case in which j.! = 1, y = I, the parameter 7~ is plotted
a&aixist  p for various values of a m Flg.5.



3.4 The co~csl frustum shell reinforced by four stringers

Here we assume that the conical frustum shell is reinforced by four
equally-spaced stringers - an extreme case in which, of course, the stringer-
sheet concept is not appropriate. Because of the inherent limitations of the
membrane theory of shells we restrict attention first to the more tractable
case in which the stringer section areas increase linearly with the distance s.
It is also assumed that there is stringer continuity in the adjoining cylinders.
The forces acting on the reinforcing rings at the junctions between the conical
frustum and the cylinders now produce bending in the plane of the junctions, and
it is necessary to take into consideration the flexural  rigidity of the rings.
Finally we note that it is only necessary to consider one orientation of the
stringers relative to the applied moment because solutions for different
orientations may be obtained from it by arguments of symmetry and moment
resolution.

Tapered stringers at 0 = 0, 5&t. x

The solution is facilitated by regarding  the applied moment M as composed
of two parts M' and M", say, in which M' acts on the 'unreinforced' shell produc-
ing stresses of the form shown in equation (I), while M" causes direct stresses
only in the stringers together with shear in the skin. The relative magnitudes
of Ml and M" are determined by equality of direct  stress (and hence strain) in
the stringers and adJaCent  skin.

Thus we have

N' = M' co9 e
S 2x co9 a sin a ( >7'

i

N& = M ' sin 0
71 cos a sin a ()J

-.2S

Also, if Ps is the load in the stringer at 6 z 0,

M" = 2Pss cos a sin a ,

(21)

(22)

and equilibrium between the stringer and the adjacent sheets gives

dF
s 5ds 2NSe so,
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whence from equatmn (22), assuming that M" is constant,

N& = M" 1
4 cm a sin a 02 ' o<etz,

(23)

M”= - 1
04 cos a sin a s2 ' -n<e<o .

I

[It IS to be noted that these variations of NSe do not require the presence of
add~tmnal  Ns and Ne terms for equilibrium; the I/s2 variation is the same as
that  due to a pure torque.1

Now the sectmn area of each stringer A, is given by

AS = *s1, b/s,)  9 say,

so that the direct stress in the stringer at 0 = 0, is given by

(24)

s W’S
AS = 2 cm a sin a. As ,

102
, s

fron  equation (22). By equating this to the direct stress associated with

(25)

following the notation  of section 3.2. The total strain energy stored in the
shell and strmgers  IS therefore given by

2n1 s2 s2 2P2
U=z

Ii
I(N;)2 + 2(l+v)(N&  + N;e)2j s sin a de ds + Y&

i
-2 as
AS

0 s1 9

M2&(r,  + r2)
7

l&t r: r; cos3a
+ 2(1+v) (I + 0.2,(*7)  sin2a] . (26)
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[It is to be noted that if the stringers had been regarded as a (tapered)
stringer-sheet the energy stored would have been the same as that in equa-
tion (26) but without the term containing the factor 0.234.. ]

Stringers of constant section area

An approximate solution may be obtained for the case of untapered stringers
by the adoption of equations (21), (22) and (23) with the ratio W/M' no longer
constant but given by

M" 2A
PSI

iF
=s=-.

xl-t S

The total strain energy stored in the shell and stringers is now given by

u -
M2.tT(r,  + r2)

22 3l+xE t r, r2 cos a
[F,(i%p)  + 2(l+u) 11 + Fq(P,dI  sin2d ,

1
where

which is plotted against p for various values of p in Fig.6

The loads in the reinforcing rings at the ends of the frustum

The radial and shear loads acting on the reinforcing rings are conveniently
expressed in terms of the previous dashed and double-dashed systems. Thus (c.f.
equation (II)),

and
Tr = Nl sin a + forces Ps sin a at 0,X.,

%I = N& + N'& .

The dashed components do not cause any bending of the ring but produce a
varying hoop load which, in the ring of radius r, say, is given by

P; = C';o)oos  e . (29)

It is shown in Appendix B that the double-dashed components produce a varying
hoop load of the same form:
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P; = (M"~a)cosO  . (30)

There are also shearing forces V, given by

v,  = (yy”)(~-  sine) * o<e<n  )

and bending moments m, given by

ml
= M" tan a

(
e 1; -i;-;cos  e

>
, o<e<n .

(31)

The total strain energy stored in the ring is likely to be primarily that
due to bending with lesser contributions from the hoop loads and sheer forces.
Thus

x 2x x
U 1
=,I

=
2EI,,

1 1 (Pi + p;)2 1
r,

de 2+

'
7 2GA,

1 2vl r, de
0 0 0

= tan2a C,@323Jt(&$)+  2$,rl + O.W4(*)] (33)

and there is e similar expression for the energy stored in the other ring. Thus,
for the ease of strwers  of constant section area (in which M" differs at each
end of the frustum), we find

ur =u +u
=,I =J

M
2 2

= y a 0.00234 p2r,
L- c

1

(1+d2 I=,,  (a+d2 Ir,2
+-)+TkJ-$++)

u

+ o*0744 (‘+v) 2 (

1

rl (I+P)~  A; +
1

P(P+d2  Ai>I l (34)

The total  strain energy in the frustum is the sum of expressions (28) and (344).
By equating thu sum to expression (4) we can find, as before, the stiffness of
an equvalent  beam.
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Dimensions of the reinforcing rings

At this point it 1s expedient to consider some typlcsl  dimensions of the
reinforcing rings. To fix ideas, let us assume that the cross-section of the
ring at s,, say, is basxally  as shown in Fig.7. The dimensions w, h, tr
(the identification suffix 1 is omitted here) will now be determined by relating
the maximum hoop stress in the ring to the maximum direct stress in the adJacent
cylander  caused by the applied moment. Of course, in an actual structure the
design requirements msy be such that strxt equality of these stresses is not
appropriate,  and for this reason we introduce an arbitrary proportionality con-
stant y, as in section 3.3.

For the section shown an Fig.7

and

The maximum hoop load Pm, and the maximum moment mmax each occur at 8 = 0,~
and accordingly the maximum stress in the ring is given by

P hm
u = max+max
max Ar 'Ir

M tan a M" tan a
= ?rrt, r (h + 2~) + o-k47  htr (h + 6~)

1x1 virtue  of equations (29). (30). (32) and (35). If expression (36) is equated
to y+, where & is gaven  by equation (18). we obtain the relation

(37)

To Investigate numerically the implications of this relation let us suppose that

r/t = 4.00 ,

cI=’  ,
a = IO0 ,

w = +h ,

y = 1.5 .

(38)



An additional requirement, which follow8 from CO?ksideratiOnB  of the stability of
the ring, is that h/t d 20, say.
equation8 (37) and (3:) give

If we tentatively assume that h/t r = 20,

h = 0.142 r, .

In practice  there will also be limitations on the magnitude of h, and if the
preceding analysis yields an unacceptable value the ratio h/t, must be reduced.
Thus in the present example, if the maximum allowable value of h is 0.1 r,,
say, equation (37)  yield8

tr = 0.13  h . (39)

There is a similar  analysis for determining the dimensions of the ring at
8 .2 Thus, corresponding to equation (37) we find, on introducing the identifica-
tion suffix 2:

hii tr.2
r2 t

=
☺�+qin  a ☯e + *) l (40)

1

For the example specified by equation (38)  with, let us say,

and
B 3 1.45 ,

h2 = o.lr,(=h) ,

it is found from equation (40) that

t
r,2

= 0.10  h .

(41)

ka

As for the strain energy stored in the rings, it follow8 from equation (34)
that for a structure specified by equations (38), (39),  (41) and (42),

u M2
r = ILO- ,

Er:

the contribution from the ring at s2 being slightly greater than that at 8,. It
is also of interest to note that the proportions of this energy due to bending,
hoop loads and shear forces are approximately as 10:4:1.  Finally we note that
the strain energy U in the shell and stringers is given by expression (28),



whence

A comparison of equations (43) and (44) hs OR-S  that the stiffness of the conical
frustum 1s about 2C$ less than that of a similar frustum with rigid ends.

3.5 The conical frustum shell with a separation capability

If the conical frustum shell has a separation capability the wall of the
shell cannot be continuous across the separation line (or lines) and relatively
heavy stringers must be provided to carry the axial and bending loads. There
will also be a conflict of requirements in that the separation capabdlty,
involving the use of explosive bolts in the stringers, will be simpler if the
number of stringers is small, whereas, for a given total stringer area, the
overall flexural  stiffness of the frustum will be greater if the stringers are
more numerous. A detailed determination of the stresses is very difficult,
but it is possible to make some general observations and.  to deduce some
approximate results. First we note that because of the curvature of the shell
the diffusion  of load from the stringers into the adJacent  shell wall will be
markedly less than into a flat sheet; indeed, according to membrane theory
there is 2 diffusion. Furthermore, even if some load diffusion does occur
the diffusion process will be far from complete at the Junctions with  the
&laced cylinders, and this in turn means that the overall flexural  stiffness
of the cylinders is effectively reduced. If we assume, for purposes of
estimating the overall flexural  stiffness, that there is no diffusion in the
frustum but complete diffusion in the cylinders the resulting errors are of
opposite sign and therefore tend to cancel each other. Expressions for the
overall stiffness for a structure with four continuous stringers may now be
obtained by a limiting process from the results of section 3.4. Thus from
equation (20) we find

u =
M2P, (r, +r2) sin2a
22 34KE r, r2 cos

+ + 2.47  (l+v)
t 9 (45)

a S

while from equation (34)
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+ 0.0744  (i+v) l (46)

There is also a contribution from the reinforcing rings at separation lines:

ii sr M2 p2a  p.ocoo57  1 e + 0.0430  1 & + 0.0045  1 $J . (47)

The derivation of equation (47)  is given in Appendix C. It relates to the
in-plane distortion of the rings and is based on the assumption that the only
transfer of shear across a separation line OCCUTS  at the stringer positions
(e = 0, -+, 7c). It is also assumed that reinforcing rings adjacent to a common
separation line have the same stiffness so that, from symmetry, a typical quad-
rant of a ring - bounded by 0 = 0, $x, say - is effectively clamped at 0 i 0 and
simply supported at 0 = &x. The forces per unit length acting on such a ring
are directed tangentially and are given by

Te = we, (M” = hi)

M tan ai
"n '

(48)

These forces cause the following hoop loads, shear forces and bending moments:

Pn = ’ “,” a (0.208  oos e - 0.174  sin 0) ,
n

v, = ' ","" a (0.250  - 0.174  oos 8 - 0.208  sin 8) ,
n

mn = M tan 0, (0.219  - 0.25oe - 0.208  00s e + 0.174  sin e)

Optimum stringer area/skin thickness for maximum overall flexural  stiffness

The msximisation  of the overall flexural  stiffness is equivalent to
minimisation  of the expression (U + U, + fir) defined by equations (45)-(47).



The terms ts and t occur only in the expression for U (due, in part, to the
underlying assumptions) and accordingly the optimum ratio ts/t can be determined
independently of the dimensions of the various reinforcing rings. Now the total
weight of the skin and four stringers is proportional to

If this total is kept constant, it may readily be shown that the mxximum  value
of U oocurs  when

t
IJ =y= +t = (&Jiz$ cosec a ’

= 3.86 if p = 1.45, a = lo’, Y = O-3 w l

This expression must be regarded as an upper limit because of the underlying
assumption of zero load diffusion from the stringers; if the skin is assumed
to be 2% effective in carrying direct forces Ns, the optimum value for ts/t
is about 3.1 in the above example. [Equation (51) is appropriate to the
frustum with four stringers. If the number of stringers is increased the
assumption of zero load diffusion becomes increasingly untenable. The limit-
ing case is when there is complete diffusion and the stringers can be regarded
as a stringer-sheet. The optimum value of p for this case can be obtained
by minimisation of expression (Y), 3ubJeCt  to the constancy of eXpreSSiOn  (50).
This results in the following equation for p:

2(l+v)  p2 sin2a + 2b2(&L+  D+ll

d P2-1  1
l,(v) = B+lml , (52)

which yields a non-zero value of in only when

6(1+v)  sin*a  < (@-1)2/p  .

'The fact that non-zero solutions are possible in certain circumstances is
simply because the axial variation of the section srea  of the stringers
(a constant) is nearer to the optimum variation, namely l/s, than is that of
the skin, which varies in direct proportion to 3.1
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Optimum thickness of reinforcing rings for maximum overall flexural  stiffness

Let us now assume that the parameter p is given - possibly by
equation (51) - and that the reinforcing rings at the ends of the frustum are
simdar to that in Fig.7 with w = $h, so that - dropping the suffices I,2  -

(53)

If we further assume that h,, h2 are given, the corresponding optimum value of
t
rl andtr 2 may be determined in terms of t and the overall geometry of the

frustum  for'maximum  overall flexural  stiffness. The total weight of the skin
and stringers plus one (arbitrary) ring is proportional to

ntr,  t
~~ (I+ B+ 21.4  + 4mhtr .

If this total is kept constant while t and tr are varied it may be shown that
the overall flexural  stiffness is a maximum when (with Y = 0.3)

t
2

r,r2  sin a l.l(l+  p+ 211) 3

t =
>

(0.011 + 0.276 h*/r*)-  .:
h2 P + 1.60~  (e+l) sin*a

. . . (54)

If the reinforcing rings at separation lines are of the form specified by
equation (53) it may likewise be shown that the overall flexural  stiffness is a
maximum when

5 rlr2 sin a

Id'+ @+*ldt =
h2 p + 1.60~  (p+l) sin*

(0.00027  + 0 . 043 h2/r2)' .

. . . (55)
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4 EXPERIMENTS ON XYLONl!l!E CONICAL E'RUSTUM SHELLS

Tests on a series of models have been performed to gauge the effuxcy  of
dlfferent  methods for provuiing  a (twin) separation  capability without an undue
drop in the overall flexural  rigidity. For ease of manufacture the models,
which have four equally spaced stringers, were constructed of xylonite
(cellulose nitrate). There were basically two conical frustum shells with the
same overall diman3ions. In one of these the shell wall was continuous; the
overall flexural  stiffness of this model provided a yardstick against which the
other(s) could be compared. The wdl of the other shell was out along two
cu-cumferences; the overall flexural  stiffness was then measured for this shell
and for ten modified versions, the modifications including a variety of addi-
tional stiffening (end  combinations thereof) including external reinforcing
rings  at the out edges, push-fit pins (axially orientated) connecting adJacent
reinforcing rings, and an internal crossed shear bracing. The shells and the
modifications are shown in Figs.8 and 9, while Fig.40 shows a model in the test
rig. To simplify the interpretation of the results the ends of the shells were
clamped to stiff attachments, as shown in Fig-Y.  The effect of flexible  end
attachments can, of course, be estimated from the preceding analysis.

4.1 Model dimensions

The dimensions  of the uncut shell are

4, = 10.5 in ,

c&=10"  ,

2rl
=8in  ,

2r2 = 11.7  In ,

(p = 'Jr, = l-46) s

t = 0.040 in ,

*s
= 0.3 in2 , (depth 0.6 in, wzdth  0.5 in) ,

(
2A

v = s = 1.19
Tt >

,

E = 280,000 lbf/in2  .
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The structure extended an additionsl  inch at each end to facilitate clamping to

the stiff ply end fittings.

The shell with the twin separation capability is as specified above, but
with circumferential cuts (0.075 in. wide) in the shell wall  at .sxial distances
from the smaller end of 2.7 in. and 6.6 in. The members of the internal crossed
shear bracing  are of square cross-section (0.3 in. x 0.3 in.) and each end is
attached to a stringer by a 4 B.A. bolt, as shown in Fig.9. The four external
reinforcing rings at the cut edges of the shell well are of two kinds, stiff and
flexible. Each 'stiff' ring measures $ in. in the sxisl  direction while the
depth at the cut edge is 0.27  in.; the inner face of each ring is tapered to
follow the skin surface to which it is glued: the outer face is cylindrical, so
that the depth of the rings varies slightly in the axial  direction. Holes of
j/j2 in. diameter were drilled axially  through adjacent rings at an angular
spacing of 6’; a shear connection can thus be obtained by the insertion of
'push-fit' steel pins which bridge the gap across the cuts without detracting
from the separation capability.

Each 'flexible' ring was obtained by cutting away sections of the 'stiff'
ring between adjacent drill holes; this produced a castellated  ring with
adequate shear connection (with pins in) but negligible hoop and flexural
rigdity. The rings were cut away to within 0.020 in. of the shell wall, and
the width of each cut was such that the remaining sections were 0.0344  in.
wide, i.e. (l/8  +  j/32  +  l/8)  i n . The flexible rings are shown on the frustum
in Fig.8.

4 . 2 The tests

The tests were to determine the overall flexural  stiffness of the models.
A typical model, supported as a vertical csdXi.ever,  is shown in the test frame
in Fig.10. The moment was applied to a horizontal steel channel beam  bolted to
the stiff upper end fitting. Did. gauge readings gave the rotation of this beam
and hence the overall stiffness of the model. [A slight adJustment  was made, by
calibration, to account for bending of the beam itself.1 Separate tests were
made with the stringers at 0 = 0, etc. end at 8 = ix, etc. slthough,  in theory,
the corresponding overall flexural  stiffnesses should be the same. In practice
the stiffness  appropriate to the &zero position exceeded the other in all
csses by about I@. This feature can be attributed to differences in the
efficiency of the end clamping of the skin and stringers. Here, only the sver-
age value  of the two stiffnesses is quoted. Furthermore, for ease of inter-
pretation, the overall flexursl  stiffnesses are expressed as fractions of the
stiffness of the uncut shell. In this connection it is worth noting that the
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experimentally determined stiffness of the uncut shell agreed exactly with that
derived from equations (4) and (28).

4.3 Test results

The overall flexural  stiffness of the uncut frustum is, by definition,
unity. In terms of this the stiffness of the cut frustum is 0.30. Table 1
shows the stiffness of the cut frustum with various reinforcements. The pin
spacings quoted refer to the angular  spacing between stringers so that, for
example, a 45' spacing implies 4 pins per pair of adjacent rings; similarly
30’  implies 8 pins.

Table 1

Relative stiffness of cut frustum with reinforcements

flexible rings, no pins 0 . 3 2

flexible rings, pins at 45’ 0 . 4 9
flexible rings, pins at 30’ 0 . 5 2
flexible rings, pins at 22$ a 57
flexible rings, pins at 6’ 0.74*

stiff rings, no pins 0 . 5 4
stiff rings, pins at 6’ 0.74+

crossed bracing, no rings 0 . 5 2
crossed bracing, stiff rings, no pins 0 . 6 3
crossed bracing, stiff rings, pins at 6” 0 . 8 0

"Best buy.' +Note the equality with line . With continuous shear
transfer there is no tendency for the rings to bend.

The test results demonstrate the importance of a multiple shear connec-
tion across a separation line. In an actus.l.  missile structure the rings would,
of course, be on the inside and there would also be differences in the details
of the shear connections.



5 CONCLUSIONS

Some aspects of the design of a conical frustum shell with a separation
capability have been considered theoretically and experimentally. Particular
attention has been paid to the determinatxon  of the overall flexural  stiffness
of the frustum, and to ways of maxiaising  this stiffness. Such ways include
the following:

(4 increasing  the number of (continuous) stringers,

(b) optimum choice of stringer section area/skin section area,

(c) provision  of multiple shear connections across  a separation line,

(a) optimum design of reinforcing rings at the ends of the frustum
(markedly dependent on (a)),

(e) ditto for rings at separation lines (markedly dependent on (c)),

(f) optimum tapering of skin and stringers (not discussed in detail).
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Appendix  A

STRESSES IN AN ANNULS3 PLATE AT THE ENDS OF THE FRUSTU?d

In this Appendix a stress-function solution is presented for the stresses
in an annular plate of thickness tr, bounded by inner and outer radii ro, I,
respectively; the loading on the outer boundary is given by equation (11) of
the main text, while the inner boundary is free. The loads on the outer bound-
ary Cause radial and shear stresses

k-L = K COB 0 ,
1 1

where
K _ Mtana

7ct r2
.

r 1

(56)

These stresses form a self-equilibrating system and, with the inner boundary
being free of stress, equilibrium and compatibility throughout the annulus  are
satisfied by choosing a single-valued stress function which satisfies the
biharmonic  equation and the boundary conditions. A suitable function which
satisfies the biharmonic equation is given by

9 z 1,b3 + br-') cos 0 , (57)

which yields stresses

u =r (a= - br-3) oos 0 ,

Oe = (3sr+br-3)  cos 8 ,

Tre = (cu' - brm3) sin 0 .
,.,

The vanishing‘of.the  radial and shear  stresses on the inner boundary is
satisfied if -_

while the boundary conditions of equation (56) give

(58)

ai=1 - 0 1r4/r3] = K .
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Thus, introducing the notation

yields

u =r K, y4”  (P - K4F3, ,

ue  5 :“_“z4”  (3p  + !+p-‘) ,

I

(59)

(60)

Tre = K, s-i:40  tp - ,4p-3, . J

Now K 6 p d 1 and, unless the annulus  is deep, K is only slightly less than
unity. Accordingly the dominant stresses in the annulus  are the hoop stresses
me whxh  vary (smoothly) between the values

(~~1~~~ = 3 K ~0s  e
0 ( >-K

and

(ue)r‘=r
1

Further, as K +I  the hoop stresses remain virtually constant across the width
of the annulus  and the hoop load is given by

rl
P, = J true dr ,

r0

= Ktrr,  cos 0 ,

= (“:z: “) cos e ,

In virtue of equation (56).

(12 bis)
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THE LOADS IN THE REINFORCING RINGS AT THE ENDS OF THE FRUSTUM

In this Appendix we determine the loads in a reinforcing ring due to the
double-dashed system discussed on page 13. Account is taken of the direct,
shear and flexural  stiffness of the ring, and of the eccentricity of the applied
loads TO. It is shown, however, that the more usual analysis which takes
account only of the flexursl  stiffness of the ring is sufficiently accurate;
attention is confined to this simpler analysis in Appendix C.

The loads applied to the half  ring bounded by 0 6 0 6 n are shown diagrsm-
maticslly in Fig.11 where, for convenience, the end forces and moments are
expressed in terms of fictitious values at the origin. The loads in the other
half of the ring are, of course, a mirror image of these and it follows that
there are no resultant vertical 'opening forces' at the origin. The vertical
(downward) forces V, applied at 0 = 0,~ ere equal to $Ps sin a, which is also
the shear force in the ring at 0 = 0; hence the notation Vo. In addition, the
total anti-clockwise bending moment at the origin is equal to nVor  and this is
shown, for convenience, as applied in equal proportions to the two fictitious
arms. There remain two self-equilibrating systems at the origin, namely equal
and opposite horizontal forces PO and moments m'; these are to be determined
by the boundary conditions. The following additional notation is introduced,

F = radius to centroid  of ring,

k = *Ir
;'GA' .

The moment in the ring m(e) is the sum of the following components:

.
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blmoment at origin

bl vertical shear at origin

bl horizontal force at origin

[ml shear flow Te at centroid

= m’ +fvor ,

= - V,F sin 0 ,

= PO? cos e ,

e
= - v,"

I
(1 - 00s q) dq

0

= - voF (0 -sin e) ,

[ml v (r-3  e ,
eccentricity of shear flow Te = - o

whence, on addition,

m(e) = m' + $ vor - vore  + P,: cos e .

Similarly the shear force in the ring is given by

V = V. + PO sin e ,

and the hoop load is given by

P = P, cos e .

(61)

(62)

(63)

(64)

The boundary conditions are such that if the ring is regarded as clamped
at Cl = 0, the slope due to bending and the horizontal displacement are zero at
8 = T. The vanishing of the slope due to bending implies that

?r

I
m(e) de = 0 ,

0

so that

m’ =o. (65)
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The component of the horizontal displacement at 0 = n due to bending is given by

.

-2 =
L
E1r J

m(e) (1 + co9 e) de )
0

and that due to shear IS given by

7[
;:

GA' I
v sin 8 de ,

0

while that due to the hoop load vanishes identically. Equating to zero the sum
of these expressions yields

p =-0 *vo(,+*)  l

The parameter h is small in comparison with unity so that we may write

(66)

which  is the value obtalned  from elementary theory which takes account only of
the flexural  stiffness of the ring. In terms of V. we now find

d 0) = vor
(
$ - e - ~ cos eIt

)
,

v z v 1-xsin8
0
(

4

>
,

1

v. ~0.3  e . J

Equations  (30)-(32)  of the main text are recovered by writing

v =0 $7Ps sin a = 4s fi, a

In virtue  of equation  (22).

(67)
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Appendix C

THE LOADS IN THE REINFORCING RINGS AT SEPAFUTION  LINES

This Appendix gives the derivation of equation  (by), and hence equation
(47),  of the main text. The analysis does not take account of the direct end
shear stiffness of the ring or the eccentricity of the applied loads TO. The
loads acting on a quadrant of ring bounded by 0 < 0 d $x are shown in Fig.12,
where the tangential force per unit length TO is denoted by F/r and is given
by equation (48). Vertical and horizontal equilibrium of these tangential
forces 1s provided by the forces F shown at the point B. The forces Vo, PO
and moment mo are to be determined from overall moment equilibrium and from
the boundary conditions.

The moment m(0) is given by

m(e) = m. - Vor sin 8 - P,r (1 -cos 0) - Fr (O-sin 0) . (68)

The vanishing of to(&) leads to the relation

m
0

= riVo + PO + F($x-I)]
/

(69)

and hence, in terms of V
0 ’ pO’

m(e)/r = p. cos e + (v. -F) (1  -sin e) + F($3 -e) . (70)

The boundary conditions of simple support at B and clamping at A can
be expressed by equating to zero the horizontal and vertical displacements at
B, assuming  no displacement or rotation at A. The displacements at B are
readily given by integrating the curvature changes multiplied by the appropriate
perpendicular arms. Thus

b

I
m(e) cos e de = 0 )

0

and

m(8) (l-sin e) de = 0 . i

(71)
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Substitution  of equation (70) mto equations (71) and solving for Vo, PO gives

and

vv 33
00
FF

= a-21+7t+10x2-7c= a-21+7t+10x2-7c

6x2-t6Tc--8 *6x2-16~--8 '

PP
""
FF

= bo-= bo- 16x + x216x + x2
3x2 - an - 43x2 - an - 4 ** IJ

(72)

Expressions (70) and (72) suffice to determine the bendmg moment m(e), while
the shear force and hoop load may be determined from the relations:

V = V. cos 0 + PO sin 0 + F(1 -cos 0) ,

P = PO 009 e + (F-vo)  sin e .
(73)



32

REFERENCES

NO. Author Title. etc.-

1 W. Fliigge "Stresses in Shells", Springer-Verlag, 1960

The following papers are on topics closely related to the present investigation:

2 A. Waltien Asymmetrical loading of conical shells.
Trans. Roy. Inst. Technol., Stockholm No.218, 1963

3 H. Becker Design of cylinder-cone intersections.
J. Spacecraft and Rockets 1, 1, 120-122, Jan/Feb  1964

4 B. Wilson Asymmetrical bending of conical shells.
Proc. Amer. Sot. Civ. Engrs. 86, EN3, 119-139, June 1960



_----

\\
22

ll ..



/
/
f I’

/ -
/

3 3.5
1
I.0 I.5 2.0 2.5  p 3.f

Fig. 2 Flexural  stiffness of unreinforced frustum shell, rigid ends.



8 ’

J --

I I I
2.0 2.5

P
3-o

Fig. 3 The function F3(A&)

P
0.25

- 0.5

- o-75

j 4.0



I>-.
stiffnes s c >f reinforced frustum shell, rigid ends(,u =



. 0

IO0 15

7

+

20°

E0

30*

4o”

3

Fig.5 Flexural stiffness of reinforced frustum shell, flexible ends @=I, r=l)



T
0

-

-

?
t

.

n
i

0
-L



l&rl&r 33

I lI l

-7-7
44 --------

Fig.7 Cross-section of reinforcing ring



.-
0



ins-

tiff en

-fitti”





Fig. II Loads acting on half ring at end of frustum.

Fig. 12 Loads  acting on quadrant of ring at separation line.
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