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SUMVARY

Cal cul ations are presented of the compressible turbul ent boundary
| ayer on a flat plate. They have been made by a new, general, accurate and
econoni cal  procedure. The physical inputs chiefly conprise: (1) a formof the
m xi ng- 1 ength hypothesis, and (ii) the assunption of a uniformeffective Prandtl
number . The predictions are conpared with available experimental data and
enpirical  correlations;  the agreenent is satisfactory. It is pointed out
that the sanme method may be expected to give good predictions even in nore

conplex situations.
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1. Introduction

1 . Purpose of the present paper

A new cal cul ation procedure for turbulent boundary |ayers has been put

forward in Refs. 1and 2. This procedure is mathenatically accurate, economical
and widely applicable. Such a convenient mathematical tool prepares the way for
research into physical hypotheses. The present paper provides an illustration

of such research

The probl em considered here is that of a compressible turbul ent boundary
| ayer on a snooth isothernal flat plate in air. Attention will be given to the
effects of Mach nunber, and of wall-to-mainstreamtenperature ratio, on the
frictional drag and heat-transfer coefficient at the wall

The avail abl e predictron nethods for flat-plate drag and keat transfer
have been summarised in Refs. 3 and 4. These papers conpare predictions of the
met hods with each other and with experinental data; and they provide enpirica
correlations which fit available experimental data with reasonable accuracy.

Despite their simplicity and accuracy over a restricted range of
conditions, such enpirical correlations can hardly formthe basis of a genera
theary, For they canbe easily extended beyond their range of validity only
when further experinental data become available, It is hard to modify, for
example, the correlations of Refs. 3 and & to account for the effects of
pressure gradient or of non-uniform wall tenperature.

It is desirable therefore to construct a general theoretical franework,
and then to explore the inplications of a sinple but plausible hypothesis and
conpare the results with experimental data or enpirical correlations. The present
paper is a step an this direction; here our purpose is to test the theay of
RFfs. 1and 2 for the case of the conpressible turbulent boundary layer on a flat
plate.

1.2 Scope and outline of the present contribution

The present paper will be based on the cal cul ation procedure devel oped
in Refs. 1and 2. Sone inportant features of the procedure Will be outlined in
Section 2. The nmethod involves solution of partial differential equations by a
finite-difference  technique, and incarporates two novel features. Firstly, the
grid is so chosen that it adjusts its width so as to fit the thickness of the
boundary | ayer. Secondly, once-for-all Couette-flow integrations are used near
the wal I, where the longitudinal convection is negligible,

The effective viscosity is calculated froma formof Prandtl's d
m xi ng-1 ength hypothesis, and the effective Prandtl nunber is regarded as uniform

*cross the |ayer. In Section 3, results are presented of the conputations for the
drag coefficient and Stanton number of a flat plate; these results are conpared with
experimental  data. The conclusions are given in Section 4  Taken together wth

the results of Ref. 9, they inply that the inplications of the mxing-length
hypothesis agree well with experinent over a wde range of conditions.

2. Desoription of the Calcul ation Yethcd

Since the theory which we shall use has been described in Ref. 1,
and in nore detail in Ref. 2, we here present only the impartant points of the
theory.

2.4/



2.1 Partial differential equations

differential

equations which govern the streamwise velocity u and the stagnation
enthalpy H., The independent co-ordinates will

be x and w, where x is the
distance along the plate and w is a non-dinensional stream function; w is
defined gso that it equals zero at the wall (subscript S) and unityat the outer

edge of the boundary layer (subscript Q. Thus in x ~ w co-ordinates we have:

For the compressible boundary |ayer, we shall solve the partial

Conservation of momentum:
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Conservation of stagnation enthal py:
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Al'l the synbols are systematically defined in Nonmencl ature. 't shoul d
suffice here to note that Hopp stands for the effective viscosity, that
ﬁ]ﬂ

3 is the mass-transfer rate through the wall, and that -m%

5 represents the rate
of entrainment into the boundary |ayer.

2.2. Physi cal hynotheses

The effective viscosity. V& shall use a form of Prandtl's
hypot hesis for evaluating the effective viscosity. Thus,

5

m xi ng- | engt h

Mpp = P& | W/ |, ee(2.2.4)

where ¢ is the mixing |ength. Further, we shall postulate the fol | ow ng
variation of ¢ across the |ayer:
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where » and X are constants, y is the distance fromthe wall, and y, is

the distance (fromthe wall) of a point at which the velocity equals 0.99 times
the free-stream velocity. A similar variation of the mixing-length was first
proposed by HudimO‘toG, and its suitability has been confi ?urrlgg by the experimental
data collected by Escudier/. Al so, Maise and MDonal d. 8 have shown, from
experinental data for conpressible boundary layers that, up to the Mach nunber of s,
the effect of conpressibility on mxing length is negligible. Further, Spalding?,
by use of eq. (2.2.1) and (2.2.2) has obtained predictions which are in good
agreement with a wide variety of experimental data.

The effective Prandt| nunber. W shal | assune that the effective Prandtl
nunber o Is uniform across the boundary |ayer. The available experinental

eff
data collected by Kestin and Rioha.rélson10 roughly conformto this behaviour,

Val ues of the constants. The val ues of the constants will be chosen go
as to procure good agreement wth experinental data in sone sinple cases. we shal |
take K as 0.435, A as 0.09, and the effective Prandtl nunber O pp 8S 0.9

throughout the present work. It IS impoartant to note that the sane set of

hypot heses and the same values of constants were used in Ref. 9; that reference

and the present paper, taken together, denonstrate that satisfactory agreement with
experinent can be cbtained, over a W de range of conditions, by use of the
above-nentioned set of hypotheses.

2.3 The region near a wall

The hypot heses gi ven above are applicable to only the filly-turbul ent
part of the boundary |ayer, where the lamimr contribution is negligible. Near
the wall, however, both the turbulent and laminar viscosities play conparable roles.
As mentioned earlier, the smallness of the |ongitudinal convection in the vicinity
of a wall enables us to use the once-for-all Couette-flow integrations for this
region. The speci al hypot heses, giving the effective viscosity for the wall-near
regi on, manifest thenselves through these integrations. Ve shall once again cmit
details and uge Ref. 2 where the Couette-flow integrations and the useful
rel ationships extracted fromthem have bee%l described and expl ai ned. Here the
reader should note that we use van Driest's' hypothesis for the variation of the
effective viscosity near the walk; the resulting "universal |aw of the well" is
used as an asymptote for the profile in the fully-turbulent part of the |ayer.

2.4 Entrainnent rate

Two MasSs-transfer rates, x‘ng and th:r, appear in the parti al

differential equations (2.1.1) and (2.1.2). O these mg wll be taken as

zero, because we shall deal with only the Inperneable-wall case; the other
quantity, 13, IS the negative of the entrainment rate through the outer edge

of the boundary |ayer. If we apply eq. (2.,1,4) at the outer edge (i.e., at w = 1)
and use the mxing-length hypothesis, it can be shown, after some al gebraic
mani pul ation, that:

&, oo (2ehe1)

3%u/dy?
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mp = 2P 4

W shal | use this equation (or rather a finite-difference form of it) in our
calculation procedure. As a consequence of the definition of the stream function
¥, we can obtain the relation:
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which will be used to calculate (¥, = ¥;) as the integration proceeds.

2.5 Solution by finite-difference method

Ref. 4 describes the finite-difference procedure which we shall wuse for
the solution of the conservation equations of Section 2.1. Ref. 2 provides further
details and also a conputer programe based on this solution procedure. Here it is
necessary to describe the method only in general terns.

The main novelties of the solution procedure are the choice of the @
co-ordinate in conjunction with the entrainment |aw, and the use of the Coustte-

flow rel ationships near the wall. The entrainnent |aw ensures that the width of
the grid always equals the thickness of the layer in which the dependent variables
vary significantly, this makes the conputation efficient. Further saving of

conputational effort comes frem the use, near the wall, of the results of earlier
integrations for the one-dimensional |ayer there.

The finite-difference procedure is of inplicit type, and the difference
equations have been nmade |inear so that no iteration is necessary. The difference
equations allow solution by a sinple recurrence-fornula technique.

The nunber of grid lines across the layer was six and the size of the
forward step was adjusted so that the quantity of fluid entrained during the step
equalled 10% of the amount of fluid already flowing in the Layer. Repetition of
some of the conputations with smaller steps in both x and w directions, showed
that the above-nentioned grid size gave sufficient accuracy.

It may be of interest to the reader to know that, with this grid size,
1000 integrations can be performed in one mnute of conputing time on the [BM 7090
conput er. This conputing time is considerably | ess than that required for the
procedures whieh have been reported el sewhere in the literature.

2.6 Specification Oof the fluid properties

For the conputations to be presented in this paper, the density has been
taken as inversely proportional to the absolute tenperature, and the viscosity

variation as given by

u o _2_0.76

o \% ’ .{2.6.1)
where the subscript G denotes the free-stream quantities. The laminar Prandtl
nunber is 0.7. The specific heats are regarded as constant; their ratio is

1.4. The stagnation enthalpy h is related to the specific enthalpy h via:

ii = h+ut/2. ..(2.6.2)
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3 Results of the Conputations

3.1 The flat-plate drag

Uniform-propertyf | ow V& now present the results of our conputations,
starting with the sinplest case: the flat-plate boundary |ayer with uniformfluid
properties, Fig. 1shows the comparison of our prediction (the full line) with
the experinmental ly-based correlation of Spalding and Chi, Ref. 3, (shown by the
dots) for the drag of the flat plate. Her e Rx i's the I ength Reynol ds nunber.

The agreement is good. throughout; indeed the values of k and x (mentioned
earlier) have been chosen so as to procure good agreement precisely for this case.

Adaabatic plate: effect of Mch nunber. The equation for the stagnation
enthalpy R (2 .4.2jcan be solved as soon as a thermmal boundery condition at the
wal | has been specified, by prescribing zero heat flux through the mall, we obtain

results for the adiabatic-wall case. Fig. 2 shows how the drag varies with Mch
number;  here the ratio of the actual drag to the drag under uniformproperty
condition has been plotted, for the same val ue of the Reynolds nunber R_. The fill

curve represents our prediction and the dots display sone experinental data col I ected
by Schlichting!2,  The agreement of the theory with experinent is very satisfactory,

Ef fect of Mach nunber and temperature ratio. WWen finite heat transfer
takes place through the wall, the tenperature and density fields are affected,
consequently, the drag values change. Vi present sone conputations for the
i sothermal -wal | case with various wall-to-mainstreamtenperature ratios. In Fig. 3
the drag ratio is plotted against Mach nunber for different values of TS /TG. T%e

full Tines show our predictions; the broken curves represent the Spalding-Chi
correlation, which is based upon a large nunber of experimental data. The
agreement may be regarded as satisfactory.

3.2 The flat-plate Stanton number

Uni form property  case. Once again We begin with the case in which the
fluid properties remain alnost unifarm, |n Fig, & is shown the conparison of cur
Stant on-nunber prediction with the experimental d&ta of Reynolds, Kays and Kline'
(which are in agreement with the Chi-Spalding reconmendation that the Reynolds-
anal ogy factor equals 41.,16), W have chosen 0.9 as the value of the effective
Prandtl nunber with reference to these data; obviously therefore, the agreement
s quite good.

Effect of tenperature ratio. Even at low Mch nunbers, non-uniformties

of density can be introduced by large tenperature differences across the |ayer.
In Fig. 5 we showthe influence of wall-to-manmstream tenperature ratio on the

Stanton nunber. It oanbe seen that a wall colder than the free streamis |ess
effective in increasing the Stanton nunber than is a wall hotter than the free
stream in decreasing it. \\¢ now conpare, in Fig, 6, our predictions with the

experinental data of Chi and Spaldingh, cbtained at low Mach nunber for various
val ues of TG/TS. The predictions agree well wth the experimentsl results.

Effect of Mch number and tenperature ratio. The ratio of the actual
Stanton number to the one under uniformproperty conditions for the same R_

has been plotted, in Fig. 7, against the Mach nunber far different tenperature
ratios. The broken curves show the  Chi-Spalding correlations; these are drawn
only where the correlations are based upon experimental data. The agreenent,
once again, is satisfactory.

In all these computstions the Reynolds-analaegv factor was very nearly
equal to 1,46 = a value, recommended by Chi and Spaldingl“. The value of the
reocovery factor was around 0.93, whereas experimental data suggest a val ue of

about/
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about 0.9. In this connection, a1t should be remenbered that the value of the
recovery factor mainly depends upon the value of the effective Prandtl nunber;

it can be shown that the recovery factor should be larger than the effective Prandtl
number (see Ref. 14). Probably, if the effective Prandtl nunber of the turbul ent
region were dropped to about 0.86, the recovery factor would be in good agreenent
with experinent, and the heat-transfer prediction would be scarcely affected.

4, Concl usi ons

(1) Successful predictions of the drag and the Stanton nunber have been
obtained for a conpressible turbulent boundary layer on a flat plate. The
predictions agree well with available experinental data and enpirical correlations.

(2) What is more inportant than the particular results presented here is that
they have been obtained by use of a generally-applicable calculation nethod, based
on a single effective viscosity hypothesis, Thus the present wark serves as a
dermonstration of the capabilities of the solution procedure of Ref. 1, and of the
realismof the mxing-length hypothesis.

(3) The sane equations and the same set of hypotheses and constants, have
been used in Ref. 9 where the predictions have been shown to agree well with
experinmental data for uniformproperty flows in the presence of various pressure
gradients and non-uniform wal |l tenperature. The present paper deals wth
non-uni formproperty case with zero pressure gradient. It can be reasonably
expected that the asame method gnd hypotheses will give good agreement with
efferinentlphen the pressure, the fluid properties and the wall tenperature are
a non-uni f orm
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Nonencl at ur e

op drag coefficient (5 ZTS/(pGUZ))
cf,o drag ocefficient under uniformproperty condition
h speci fic enthalpy
T stagnation enthal py
K a mxing-length constant
A the mxing length
o" mass-transfer rate across a boundary
p pressure
R, | ength Reynol ds nunber (% pGqu/pG )
St the Stanton nunber
St the Stanton number under uniformproperty condition
T absolute tenperature
u velocity in the x dirsction
X distance along the plate
Y di stance fromand normal to the wall
Y, a characteristic thickness of the layer; distance from the wall
of a point where u=0.99 Upo
N a mxing-length constant
i laminar viscosity of the fluid
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Hers

o eff

Subscripts

EM

- 11 =
effective viscosity

density of the fluid

the effective Prandtl number

| ocal shear stress

a stream funotion (dy = pu dy)

di nensi onl ess stream function (%

free stream

wal |

(¥ = ¥)/Chg - wG)>
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