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SUMMARY

Calculations are presented of the compressible  turbulent boundary

layer on 8 flat plate. They have been made by a new, general, accurate and

economical procedure. The physical inputs chiefly comprise: (1) a form of the

mixing-length hypothesis, and (ii) the assumption of a uniform effective Prandtl

number. The prediotions are compared with available experimental data  and

empirical correlations; the agreement is satisfactory. It is pointed out

that the same method may be expected to give good predictions even in more

complex situations.
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1. Introauction

1 .I Purpose of the present paper

A new calculation procedure  for turbulent boundary layers has been put
forward in Refs. 1 and 2. This procedure is mathematically accurate, ecowmical
and widely applicable. Such a convenient mathematical tool prepares the way for
research into physical hypotheses. The present paper provdes  an illustration
of such research.

The problem considered here is that of a compressible  turbulent boundary
layer on a smooth isothermal flat plate In air. Attention will be given to the
effects of Mach number, and of wall-to-mainstream temperature ratio, on the
frictional drag and heat-transfer coefficient at the wall.

The available predlctxon  methods for flat-plate drag and heat transfer
have been summarised  in Refs. 3 and 4. These papers compare predictions of the
methods with each other and with  experimental data; and they provide empirical
correlations which fit available experimental data with reasonable accuracy.

Despite their slmpliolty  and accuracy over a restricted range of
oonddions, such empirical correlations can hardly form the bwis of a general
them-y. For they canbe easily extended beyond their range of validity only
when further experimental data become avadable. It is hard to modi*, for
example,  the correlations of Refs. 3 and 4 to account for the effects of
pressure gradient or of non-unifrxm  wall temperature.

It is desirable therefore to construct a general theoretical framework,
and then to explore  the implications of a simple but plausible hypothesis and
compare the results with experimental data or empirical correlations. The present
paper is a step m this direction; here our purpose is to test the theary  of
Refs. 1 and. 2 for the case of the compressible tirbulent  boundary layer on a flat
plate.

1.2 Scope and outline of the present contributiorn

The present paper will be based on the calculation procedure developed
in Refs. I and 2. Some important features of the~prooedure  will be outlined in
Section 2. The method involves solution of partial differential equations by a
finite-difference technique, and incarporates  two novel features. Firstly, the
grid is so chosen that it adjusts its width so as tofit the thickness of the
boundary layer. Secondly, once-ford1  Couette-flow integrations are used near
the wall, where the longitudinal convection is zegliglble.

The effective viscosity 1s calculated from a form of Prandtl's 5

mixing-length hypothesis, and the effective Prsndtl  number is regarded as uniform
*cross the layer. In Section 3, results are presented of the computations for the
drag coefficient and Stanton number of a flat plate; these results are compared with
experimental data. The conclusions are given in Section 4. Taken together with
the results of Ref. 9, they imply that the implications of the mixing-length
hypothesis agree well with experiment over a wide range of conditions.

2. Desoription of the Calculation Yethcd

Since  the theory whxh we shall use has been described in Ref. 1,
and in more detail in Ref. 2, we here present only the impcdant  points of the
theory.

2.1/
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2.1 Partial differential equations

For the ccmpressible boundary layer, we shall solve the partial
differential equations which govern the streamwise  velocity u and the stagnatxon
enthalpy H. The independent co-ordinates will be x and w, where x is the
distance along the plate and w is a non-dimensional stream function; w is
defined 30 that it equals zero at the wall (subscript S) and unityat the outer
edge of the boundary layer (subscript G). Thus in x w w co-ordinates we have:

Conservation of iuomentum:

Conservation of stagnation enthalpy:

a+-
aw c

. ..(2.1.2)

All the symbols are systematically defined m Nomenclature. It should
suffice here to note that perr stands for the effective viscosity, that

6; is the mass-transfer rate through the wall, and that -fit represents the rate
of entrainment into the boundary layer.

2.2. Physical hmotheses

The effective viscosiQ.  We shall use a form of Prandtl's5 mixing-length
hypothesis for evaluating the effective viscosity. Thus,

'eff = p-P
I I

aday ,

where C is the mixing length. Further, we shall postulate  the following
variation of C across the layer:

cl < y 6 bye/K : e = Icy )
1

AY&h < Y : 4 = we 1, . ..(2.2.2)

where/
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where h and K are constants, y is the distance  from the wall, and ye is
the distance (from the wall) of a point at whwh the velocity equals 0.99 times
the free-stream veloci3.
proposed by Hudimoto6,

A slmilsr variation of the mxing-length  was first
and its suitability has been confirmed by the experimental

data collected by Escudier7. Also, Maise  and McDonald.8 have shwn, from
experimental data for compressible boundary layers that, up to the Mach number of 5,
the effect of compressibility on mixing length is negligible. Further, Spalding9,
by use of eq. (2.2.1) and (2.2.2) has obtained predictions which are in good
agreement with a wide variety of experimental data.

The effective Prandtl number. We shall assume that the effective Prandtl
number ueff is uniform across the boundary layer. The available experimental

IOdata  collected by Kestin and Riohardson roughly conform to this behaviour.

Values of the constants. The values of the constants will be chosen so
as to procure good agreement with experimental data in some simple cases. we shall
take K as 0.435, h as 0.09, and the effective Prandtl number ceff as 0.9
throughout the present work. It is impartant to note that the same set of
hypotheses and the same values of constants were used in Ref. 9; that reference
and the present paper, taken together, demonstrate that satisfactory agreement with
experiment canbe obtained,over  a wide range of conditions, by use of the
above-mentioned set of hypotheses.

2.3 The region near a wall

The hypotheses given above are applicable to only the filly-turbulent
part of the boundary layer, where the lamixxr contribution is negligible. Near
the wall, hcmever,  both the turbulent and laminar  viscosities play comparable roles.
As twntioned earlier, the smallness of the longitudinal convection in the vicinity
of .a wall enables tis to use the once-for-all Couette-flow integrations for this
region. The special hypotheses, Qving the effective nscosity for the wall-near
region, manifest themselves through these integrations. We shall once again cmit
details and use Ref. 2 where th? Couette-flow integrations and the useful
relationships extracted from them, have beey,described and explained. Here the
reader should note that we use van Driest's hypothesis for the variation of the
effective viscosity near the walk; the resulting "universal law of the wall"  is
used as an asymptute  for the profile in the fully-turbulent part of the layer.

2.4 Entrainment rate

%o mass-transfer rate3,  "E and I$ appear in the partial
differential equations (2.1.1) and (2.1.2). Of these 6; will be taken aa
zero, because we shall deal with only the Impermeable-wall case; the other
quantity, 156, is the negative of the entrajnment  rate through the outer edge
of the batndary layer. If we apply eq. (2.1.1)  at the outer edge (i.e., at w = 1)
and use the mixing-length hypothesis, it can be shown, after some algebraic
manipulation, that:

&‘I  = _ 2
G PG e;  1 aa&@  ( G. . ..(2.4.1)

We shall use this equation  (or rather a finite-difference form  of it) in our
calculation procedure. As a consequence of the definition of the stream function

Jr, we can obtain the relation:



..,(2.4.2)

which will be used to calculate ($, - Q,) as the integration prooeeas.

2.5 Sdution by finite-difference method

Ref. 1 describes the finite-difference procedure which we shall use for
the solution ti the conservation equations of Section 2.1. Ref. 2 provides further
details an& also a computer programme based on this solution procedure. Here it: is
necessary to describe the method only in general terms.

The main novelties of the solution procedure are the choice of the u
co-ordinate in conjunction with the entrainment law, and the use of the Couette-
flow relationships near the wall. The entrainment law ensures that the width of
the grid always equals the thiatiss  of the layer in which the dependent variables
vary significantly; this makes the computation efficient. Further saviw of
computational effort comes from the use, near the wall, of the results of earlier
integrations for the one-dimensional  layer there.

The finite-difference procedure is of implicit type, and the difference
equations have been made linear so that no iteration is necessary. The difference
equations allow solution by a simple recurrence-formula technique.

The number of grid lines across the layer was six and the size of the
forward step was adjusted so that the quantitg  of fluid entrained during the step
equalled 1% of the mount  of fluid already flowing in the Layer. Repetition of
some of the computations with  smaller steps in both x and w directions, shwed
that the above-mentioned grid size gave sufficient accuracy.

It may be of interest to the reader to know that, with this grid size,
1000 integrations can be performed in one minute of computing time on the IBM 7090
computer. This computing time is considerably less than that required for the
procedures whxn have been reported elsewhere in the literature.

2.6 Speolfjcation of the fluid properties

For the computations to be presented in this paper, the density has been
taken as inversely proportional to the absolute temperature, and the viscosity
variation as given by

. ..(2.6.1)

where the subscript G denotes the free-stream quantities. The laminar Prandtl
number is 0.7. The specific heats are regarded as constant; their ratio is
1.4. The stagnation enthalpy x is related to the specific enthalpy h via:

ii = h+u'/.. . ..(2.6.2)

3./
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3. Results of the Computations

3.1 The flat-plate drag

Uniform-property flow
starting rmth  the simplest case:

We now present the results of our computations,
the flat-plate boundary layer with uniform fluid

propertles. Fig. 1 shows the compamson  of our prediction (the full line) with
the experimentally-based correlntlon  of Spalding  and Chi, Ref. 3, (shwn by the
dots) for the drag of the flat plate. Here Rx is ths length Reynolds number.
The agreement is good. throughout; indeed the values of k and X (mentioned
earlier) have been chosen so as to procure good agreement precisely for this case.

Atiabatio plate: effect of Mach number. The equation for the stagnation
enthalpy K (24.2)  can be solved as soon ds a thermal  bwndery  condition  at the
wall has been specified; by prescribing sero  heat flux through the mall, we obtain
results for the adiabatic-wall case. Fig. 2 shows how the drag varies with Mach
number; here the ratio of the actual drag to the drag under uniform-property
condition has been plotted, for the same value of the Reynolds number Rx. The fill
curve  represents our predxtion  and the dots display some experimental data collected
by Schlichtingl2. The agreement of the theory with experiment is very satx.factory.

Effect of Mach number and temwrrature  ratio. When flnlte  heat transfer
takes place thrcwgh  the wall, the temperature and density fields are affected;
consequently, the drag values change. We present some computations for the
isothermal-wall case with various wall-to-mainstream temperature ratios. In Fig. 3
the drag ratio 1s plotted against Mach number for different values of TS /TC. The
full lines show our predxtions; the broken curves represent the SpaldineChi
correlation, which is based upon a large number of experimental data. The
agreement may be regarded as satisfactory.

3.2 The flat-plate Stanton number

Uniform-property case. Once agam we begin with the case in which the
fluid properties remain almost unifurm. In Fig. 4 is shown the comparison of cur
Stanton-number prediction with the experimentalc'ata  of Reynolds, Kays  ad Kline'3
(which are in agreement with the Chi-Spaldin&  recommendation that the Reynolds-
analogy factor equals 1.16). We have chosen 0.9 as the value of the effective
Prandtl  number with reference to these data; obviously therefore, the agreement
is quite good.

Effect of temperature ratio. Even at low Mach numbers, non-uniformities
of density can be mntrcduoed  by large temperature differences across the layer.
In Fig. 5, we show the influence of wall-to-mamstream temperature ratio on the
Stanton number. It oanbe seen that a wall colder than the free stream is less
effective in increasing the Stanton number than is a wall hotter than the free
stream in decreasing it. We now compare, in Fig. 6, our predictions with the
experimental data of Chi
values of TdTS.

and Spaldir&,  obtzuned  at lav Mach number for various
The predictions agree well with the experiments1 results.

Effect of Mach number and temperature ratio. The ratio of the actual
Stanton number to the one under uniform-property conditions for the same Rx
has been plotted, in Fig. 7, against the Mach number far different temperature
ratios. The broken curves show the Chi-Spdding  correlations; these are drawn
only where the correlations  are based upon experimental data. The agreement,
once again, is satisfactory.

In all these computstions  the Reynolds-analogr factor was very nearly
equs.1  to 1.16 - a value, recommended by Chi and Spaldin&. The value of the
reaovery  factor was around 0.93, xvhereas  experznental  data suggest a value of

about/
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about 0.9. In this connection, It should be remembered that the value of the
recovery factor mainly depends upon the value of the effective Prandtl number;
it can be shown that the recovery factor should be larger than the effective Prandtl
number (see Ref. 14). Probably, if the effective Prandtl number of the turbulent
region were dropped to about 0.86, the recovery factor would be in good agreement
with experiment, and the heat-transfer prediction wculd be scarcely affected.

4. Conclusions

(1) Successful predictions of the drag and the Stanton number have been
obtained for a compressible turbulent bound.arg ladler  on a flat plate. The
predxtions  agree well with available experimental data and empirical correlations.

(2) What is more important than the particular results presented here is that
they have been obtained by use of a generally-applicable calculation method, based
on a single effective viscosity mothesis. Thus the presentwark  serves as a
demonstration of the capabilities of the solution procedure of Ref. 1, and of the
realism of the mixing-length Q-pothesis.

(3) The same equations  and the same set of hypotheses and constants, have
been used in Ref. 9 where the predictions have been shown to agree well with
experimental data for uniform-property flows  in the presence of various pressure
gradients and non-uniform wall temperature. The present paper deals with
non-uniform-property case with zero pressure gradlent. It can be reasonably
expected that the same  method and hypotheses will give good agreement with
experiment when the pressure, the fluid properties and the wall temperature are
all non-uniform.

5. Acknowledgements_

The author wishes to thank Pra?essor Spalding af Imperial College,
London for helpful advice and encouragement. Thanks are also due to I.C.I.(India)
Pvt. Ltd., for the tenure of a scholarship during the performsnoe of the work
reported here.

References/



-8-

References

No. Authodsl

1 S. V. Patankar and
D. B. Spalding

2 s. V. Patankar

3 D. B. Spalding and
s. w. chi

4 s. w. chi and
D. B. Spalding

5 L. Prandtl

6 Hudimoto,  B

7 M, P. Escudier

0 G. Maise and
H. MoDondd

9 D. B. SPalding

IO J. Xestin and
P. D. Richardson

Title, etc.

A finite-difference procedure for solving
the equations of the two-dimensional
boundary layer.
Int. J. Heat ad Mass Transfer, Vol. ?O,
pp.1 389-1411,  1967.

Heat and mass transfer =n turbulent
boundary layers.
Ph.D. Thesis, University of London, 1967.
Also as Imperial College, Mechanicsl
Engineering Department Report !lYF/R/5,  I 967.

The drag of a compressible turbulent boundary
layer on a smooth flat plate with axxl
without heat transfer.
J. Fluid Mech., p?J pt. 1,117-143,  1964.

Influence of temperatire  ratio on heat transfer
to a flat plate through a turbulent boundary
layer in air.
Proc. of 3rd International  Heat Transfer
Conference, Chicago, 1966, Vol. II, 41-49.

Bericht Uber Untersuohungen cur ausgebildeten
Turbulens.
=QJM,  2, 136, 1925.

Momentum equations of the boundary layer and
their application to the turbulent boundary
layer.
Xyoto University. Memoirs uf Fat. of Eng.
s, No.4,  1951.

The distribution of the mixing length in
turbulent flows near walls.
Imperial College Mechanical Engineering
Department Report TWF/TN/l, 1965.

Mixing length  and klnsmatic  eddy  ViscosiQ
in a compressible boundary layer.
United Aircraft Research Laboratories,
East Hartford, Connecticut, 1966.

Some application of a new calcdation
procedure for the turbulent boundary layer.
Imperial College, Mechanrcal  Engineedng
Departaent  &port TWF/TN/26.

Heat transfer across turbulent, inoompressible
boundary layers.
Id. J. Heat Mass Transfer, 5, 147-189,  1963.

11 /



- 9 -

& Author(s),

11 E. R. Van Driest

12 H. Sohliahting

13 W. C. Reyndds,
W. M. Kays,  and
S. J. Kline

Title. etc.

On turbulent flow near a wall.
J, Aeronaut. Soi.,  3, 1007, 1956.

Boundary layer theory.
4th Ed., MoGraw Hill, New York, 1960.

Heat transfer in the turbulent inoompressible
boundary layer.
I: Constontwall  temperalame.
NASA Memo. No. 12-I-50W,  1958.

Velocity and enthalpy distributions
in the oompressible  turbulent boundary layer
on a flat plate.
J. Fluid Meoh., 8, Pt. 3, 368-387,  1960.



Nomenclature
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T
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x

Y

ye

h

P
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drag coefficient
(
f *~~/(p~ui)

)

drag ocefficient under uniform-property condition

specific enthalpy

stagnation enthalpy

a mixing-length constant

the mixing length

mass-transfer rate across a boundary

pressure

length Reynolds number = P&“/cI,
>

the Stanton number

the Stanton number under uniform-property condition

absolute temperature

velocity in the x directian

distance  along the plate

distance from and normal to the wall

a charaoteristic  thickness of the layeri distance from the wall
of a point where u = 0.99 uGQ

a mixing-length constant

laminar viscosity of the fluid



'-kff

P

cr eff

T

JI

w

Subscripts

G

S
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effective nscosity

density of the fluId

the effective Prandtl number

local shear stress

8 stream fbnation  (a$ a pU dy)

dimensionless stream function ($ - kp, - $,I
>

free stream

wall
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