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SUMMARY

The problem of diffraction of an obligue shock wave has been
considered in this paper., The Investigations are devoted to the ceses when
the relative ocutflow behind the reflected shock before diffraction is
subsonlec and sonic, The distribution of pressure has been obtained for
finite and infinite shock strengths for both these cases,

Introduction

Tha problem of diffraction of a plane stgaight shock wave past a
small bend in a plane wall was solved by Lighthill/, The problem considersd
in this paper deals with the case of diffraction of an ¢blique shock wave,
For studying the case of diffraction of an oblique shock wave, knowledge of
the theeory of regular reflection from a rigid wall is necessary. In work on
shock reflection usually thres critical angles of lncidence are introducedd:

(1) o (sonic angle) is such that for angles of incidence o, <@

one gets supersonic relative outflow behind the reflected shock and, far
a, ? e subsonic and sonic flows are obtained respectively,

(2) a, 1s the thearetical extreme angle beyond whick regular
reflection 1s not possible,

(3) af, samewhat greater than a«_, is the limiting angle of incidence

beyond which regular reflection 1s not observed experimentally,

In the present problem the physical constants defining the problem
will be U the velocity of the point of intersection of inecident and
reflected shocks, Py Py the pressure and density of the still air, and &

the angle of the bend, The angle of the bend is assumed to be small and so
also are the variations of velocity and pressure, For the oblique shock
diffraction problem one has to consider two regions, one region being the
region between the incident and reflected shock and the 8ther being the
region behind the reflected shock., In an earlier paper” it has been

established/

*
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established that the region befween the incident and reflected shock remains
undisturbed for all incident shock strengths after the shock configuration

has crossed the corner. In Ref. 5 the work of Ref, 6 has been reviewed and
it has been argued there that for @ <o, Mach reflection would take place

after the shock configuration has crossed the corner., A referee of the
present paper has pointed out that the conclusion about Mach reflection in
Ref, 5 is incorrect as in this case also one would get a region of
non-uniform flow enclosed by arc of the unit circle, the wall and reflected
shock, even though the point of intersection of the incident and reflected
shock is ocutside the unit cirele., The case of diffraction for %, < e

therefore remains to be investigated; Dr, Ter-Minasyants of Moscow University
Computing Centre, in a private communication, states that he has done this,

The cases treated in the present paper refers teo subsonic and sonic
relative cuiflows, i.e., one has to be in the range o, < a < q,. Itis

necesssry to discuss the experimental and theoretical results in this range
in order to make a proper cheoice of data for carrying out the numerical work.

Bleakney and Taub1 have stated that the theory and experiment are confused
between sonic angle curve and a; curve but there is a good deal of evidence

which shows that the theory and experiment are in good agreement (e.g., in the
prediction of angle of reflection) for angle of incidence up to the
theoretical extreme angle curve for all inecident shock strengthszs « The
discrepancy between theory and experiment exists beyond @, = a3 in fact,

between it and another curve (experimental curve @, = a; for the onset of

Mach reflection) which 1s slightly above the theoretical extreme sngle curve;
in this region regular reflection appears to continue to take place,

However, the numerical computation carried out does not refer to this
troublesome range but to the range where theory and experiment agree well,

In the first instance the mathematical solution has been obtained
for both subsonic and sonic cases, The paper has been divided into three
parts, Part I and Part II deal with the theoretical solution for subsoniec
and sonic cases respectively, In Part ITI pressure distribution along the
wall has been cbtained for infinite and finite shock strengths for both
subsonic and sonic cases. The angle of the bend has been taken to be
01 radian,

Part T

Mathematical Formulation

The shock relations across the incident and reflected shock (Fig, 1)
before diffraction are given by equations (1) and (2) of Ref. 5.

After the shock configuration has crossed the corner, let the velocity,
pressure, density and entropy at any point be d;, ps, #2 and S;, Choose (X,Y)
axes with origin at the corner and X-axis along the original wall produced, By
the application of Lighthill's linearisation and by the help of the transformation
~

g |
X~-q,t Y q,
= X, _ = Yy — = i(1 +u)! v}
t t .
a‘ﬂ 8.2 qJ P ...(1)
P, -Pg
25 446y

the/
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the equatron of continuity and the equations of motion behind the diffracted
reflected shock give the following equations:

dp ép du Ov
x.—.+y‘-—-—=——+— 900(2)

ax ay ax ay

du 2! ap

X—4+y— = — eee(3)
ox ay ax

av ov ap
x_...+y._—- = — o-o(zl')
ax  dy oy

In the new axes the arigin is at a point on the original wall
produced, The straight part of the reflected shock lies along a fixed line
x = k~-y oot a, where k = (U - qa)/aa. The corner 1s at the point
(= M, 0) where M, = qg/a.z. Immediately behind the reflected diffracted shock
the conditions at a point will be given by the right-hand sides of equation (2)
of Ref, 5 if U¥* 1s replaced therein by the shock velocity normal to itself
and Ffi denotes the total velocity in the region between the incident and
reflected shock,

Now since the whole field suffers a uniform expansion in time about
the carner, the velocity on each point of the shock is (X/t, Y/t) in the (X,Y)
system of co—-ordinates, Hence the velocity of the shock normal to itself is
-

-
h where th 1s the vector perpendicular drawn from the corner to the tangent

to the shook at that point, 1In terms of h, the boundary conditions at the
shock are

oA
]
¥
7Y
+
| W

-3 [1- = _iﬁ;lf} ea(5)

5 - - a 5:
B = (R - DT -] en(6)
a 6 1 7
where %1 = q sin(0' + &) sin(oza + €), q, sin(8' + &) oos(aa + E),
€ being small,

Let the equation of the shock in the new co-ordinates he
x = k=yoota + f(y) where f(y)_' could be regarded as small as the

angle of bend 1s small, 1In Fig, 2 ON is th and is denoted by

dax aX

(X-Y—) sin?y, (X-Y—) sin ¥ cos ¥
ay ay

where V¢ = @ €. Therefore

th/
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dX
th ~ [(X -Y —) sin a, cos a, (tan a, + 2¢),
day

dxX
(X-Y——)(sina cos @ + € cos 2a )},
dY 2 2 2

Hence

b {U+ azf(y) - & yf' (y) + U sin 2a2f'(y)}ain2crz s
(U + &af(Y) - agyf'(Y))sin @, cos ¢ + U sina cos 2a9f'(y)},

As f£(y) is small,terms containing f£(y)f'(y), yif' (y)}:a have been neglected,
Now since the tangential veloclties are equal, squation (2) of Ref. 5 gives

3-1, - g(ﬁ,._gi){ _a.;_iﬁ____.ai)s} e

where

(E*--T;') (Vsinea_, V cos a_)
1 a? 2

. eea(8)
v

(U sin a, = qisin ar)

Now from equations (5), (6) and (7) one obtains after simplificaticn

u = AF + Bf'(y) eee(9)

v = AF 4+ B (y) eeo(10)

P = ABF + Baf'(y) o--(11)
where F = azf(y) - a yf' (y) - q, cos agf'(y)sin a, and A, A, A,

B, B and B are constants, At the shock boundary therefore we obtain

ap B, - A,G du B, -AG ov
_— = ..__._..._,._.2 $ —— = --—-—-—-2 2 ¢ — 0-0(12)

ay B-4AG a B, -AG 3y

where G = (a,y + q, cos a, sin @,). Now equations (2), (3) and (4) have
to be solved under the following boundary conditlons:

ony = 0 v = =-38& x>- M
v = 0 x < - My
On the shock boundary x = k - y cot a,, u, v, p are related by equations (12).

On the remaining boundary between the disturbed flow and uniform flow
u = v = p = 0.

Eliminati



Elimination of u and v

By eliminating u and v from equations (2), (3) and (4) we get a
single second order partial differential equation in p. The equation is

aap aap
(x—+y"—+1)<x_+y— = e — 000(13)
ax? ay®?

This equation is hyperbolic for x* +y® > 1 and elliptic for x + ¥ <4}
its characteristics ares all tangents to the unit circle x® + y® = 1. It
is, therefare, reasonable to assume that the reglon of dlsturbance will be
enclosed by an arc of the unit ecircle, and by the reflected shock.

As in Lighthill's paper we obtain

(a) M, <1
(1) On the wall y = O, % = O except at the corner, ...{(1L4)

At the corner

-M2+C ap
Lt
—--dx - H 6. .-.1
y"‘DO[ ay 2 ( 5)
~M~C

(411) On the odrcle ¥ +3y° = 1

p = 0, y >0, x<k=-yoota,. ess{16)
(v) M, > 1
ap
(1) On the wall — = O, eee{17)
ay
(11) On the.unit circle x* +3y° = 1
1
p = = M3 -1) , X <
p = O » x>-l-. ---(18)
Mz

On the shook boundary x = k = 3 cot @,y P satisfies the equation

ap ap
(k - y cot aa)[(k-ycot a,) —+y——}
ax oy
dp B - AG dp B, -~ AGdp
= __...y—--———+(k yoota)————. .ee{19)
% , - AG oy B - A6 dy

Now,/



Now, since v = -8 at (k,0)
ov B, - AG
bt dy = f — &P = 8 -00(20)
ay r Bs = AG

where T denotes the diffracted partion of the shoock starting from the wall,

We have, therefore, to obtain a value of p which satisfies the
boundary omditions (14), (1 5) (16}, (19) and (20) in the case M, <1, In

the case M, >1 (17), (18) (19) and (20) hold good on the boundarias.

Busemann's Transformation

Under the transformation x = roos 0,y = r sin 0 where

[ = (1 = x2)2]

0
[

r
equation (13) becames Laplace's equation

*p 19p 1 %

—_—t—— ¢~ —— = 0
p* pop p? 007
in (p,6) as polar co-ardinates,
Now the circle r = 1 becomes the olrele p = 1., Also we have
r:a—f%sothatthelinex=k-yoota2'beoanesanarcofthe

circle
2p sin(6 + a,)

1+ p°
Let the initial 1line be rotated through an angle ( > Yo (Fig. 3.) The

2
oircle = ?in(e :)“9) k sin o, 1s trensformed fnto the ofrele
+p
2p 603 ® = k sin q (1 + p?) vhich cuts the oircle p = 1 orthogonally at
cos & = ksina,

Following Lighthill we now have

ap/ax" K32 (1 - K"seoze)% op/én
—_— = — — tan 6 + eea(21)
ap/ay" (1 - k?) (1 - X2)  ap/as

where x', y' refer to new axes, 8 1is measured from the new initial line,
K = ksing, and dn and ds are elements normal and tangential to the

eircular are 2p cos 8 = k sin a=(1 + p?) respectively towards its centre
and away from the Initial 1line €6 = O,

Now/



Now
ap/d
ap/ox" a;ja; tan a,
ap/oy" tan o - /2%
*  ap/oy

Substituting the value of -%—P-/L-)l from (19) and using the fact that
ap/ oy

y = K[cos a, + sin o, tan €] we obtain

(ap/ax") C, + D, tan © + E, tan® © + F, tan® ©
T = ves(22)
(9p/05')  C! + D/tan © + E!tan6 + Etan’ ©

where C,,D,,E , F , C!, D!, E{ and F] are knom camstants.

From (21) and (22)

{-a"’-ﬁ-:-‘i} - sn ) = 2040, - 2))

where O 1In the second expression is measured froam the original position of
the initial line, The function f 1is knmown, Putting £ = p cos 0,
m = p sin 6 the condition heolding at the corner is

ap M 5
ag = —2 . eee(23)

WO (1-1)2

The other boundary conditions are unaltered.

Conformal Transformation

Now p 1s glven as & harmonic function satisfying certain boundary
conditions in a triangle ABC with AB and BC olroular arcs and AC a straight
segment as shown in Flg, 4,

To solve this problem conformal transformation is necessary. The
transformation Introduced is

2 = s am)s ';-f:m)]

where K2 + K'? = 1 and ¥4 = peie.
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On the shock boundary (p® +1)K = 2p cos 6 we get

voos?0 - K?
Z = 0-‘(2')"')
[K*cos & ~ K sin 8]

which 1s purely real and increases from

1
[sin?q, - K2]°

to + 00,
[K'sin «, + K cos a,]
Solving (24) we get
K' (22 - 1)
tan 8 = —_— e ooo(25)
K (22 +1)

On the unit oirelse X = 0 and Y varies from

K+ sin q,
to 4o

- T
1+K.s=inoz2 Kocm,a3

The wall gets transformed into the circle

. cos a, 2 K'?
X4 + (Y - ) = s
(X*sin ¢, + K cos as) [K'sin «, + K cos aa]a

The reglon enclosed inside the triangle in the Z-plane goes into the shadad
region of Z-plans (Fig. 5).

The transformation
™

1 bZ +1 bZ + 1 3
= = -{( ) +( ) ] 090(26)
* 2L\ bz -1 bZ - 1

K'sin ¢ + K cos « %‘
e (Snste

K'sin &, = K cos @,

>

where

co
). = Ootﬂi{ i aa l}
(sin%a, - K*)2

converts the shaded region in Z-plane into the lower half 3z -plane, The
shock boundary corresponds to the real gz -axis with 2z, > 1, The wall

beccmes/
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becomes a part of the real axis with z, < -1, The unit c¢ircle becomes the
part of the real axis with -1 < z_ <1 (Fig. 6). With this transformation
the shock boundary conditions transforms to
C, +D,tan @ + E, tan® © + F tan® © K2
- tan ©
C! + Dltan © + Eltan® 6 + Fltar® © (1 - K?)

1
2

1 - K?se0”® 8
. [ o (ep/ay,) oon(27)
(1 = KQ) (ap/axi)
for x, >1,,y1 = 0,
K' ZQ - 1
Hare tan 8 = X 1277 where Z 1is replaced by 3, = x,
from (26), The wall boundary condition 1s that % = 0 when
X, < =1, y, = 0. The discontimuity condition (23) now becomes
” ap M &
—yL-;to f - d-xi = . -1_ ...(28)
* 951 (1 -1)z
and holds at the point \
x (1 - BAIZ)W(.es:’L;uzczz2 - X?)
r 8
z, = x = -cosh[-—tanh } < =1 ...(29)
A (MK + sin a )
corresponding to the point
i 1
(1 - (1 -u3)% - (1-1)%
{-— sin a, + 1 cos az}
M2 Mg

in the Z-plane,

The condition on the third boundary con be writben 5‘1’3 = 0
Xy

when -1 < x , < 1. But when M, >1 this must be supplemented with the
condition

Lt ap M28
7,20 ) o T T ———H—(M: I .-+ (20)
which holds at the point
20m
zi = xo = OOS<T)> "1 010(31)

where/
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1
. (s:'t.n”::r=a - K2)Z , 1+ M (K sin a, = K'cos aa)]
A = tan” and 8 = tan"

cos a, b[(M sin a, + K) - RK'(2 - 1)%]

corresponding to the point

/(g - 1)

{(- sin a,+1cos aa)[ M:a-- —-—;————]}.

2

Soluticn

Now we shall find out a functlon which satisfies all the boundary
conditions. The solution 1s effected by the introduction of a function

ap ap
ox, 3y,

which is regular throughout the lower half-plane since p is harmonic, In
terms of @ the discontinuity condition (28) and (30) can be written

-

M3

T
w1 - M2)7

W~ - <1

(2, - x,) ’ *

} . ...(32)
1M
1

x(M? - 1)%
W~ - —(—2——-—-—- , ¥, >1

G, - %)

...J

Equation {20) becames

1B, - A6 3p

§ = dx, eee(33)
- B, ~ A G 9x,

vhere ¥y = K(cos a, + sin o tan 8) from the ssction on Busemann's

transformation and tan 8 is replaced by its value in terms of %, by the
help of (25) and {26).

We know that log o(z,) 1s such a funotion that the value of its
imaginary part is known on the real axis of the 3z,-plane, In such a case
an extension of Polsson's integral formula gives the value of log m(zi) as

log/
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(av/2,
olz) 1 e | (jisz

108 = - cca(jld-)
C1 L t - 3,

ap/a

where C is a real constant and [ta wt (—-E/—y-’l means that X, in
(2p/ox,) -

-y (ap/aY1 -
tan has been replaced by t.
(op/ox,)

Now when the above integral is evaluated for points on the real axls
due to the discontinuity in the cases M; >1 or M; <1 at the point

z, = X,  We get two other constants CB and D, TFinally in the expression

of w(z1) we will get two constants C and D, C belng determined by the
condition (32) and D 4s determined from the condition (33).

Part IT

U - q,
Sonic case ( = 1)

8,

In this case the boundaries in the Z-plane are different than in
(U-q,)

Qg

o =as the point €' of Z-plane (Fig. 5) shifts to the origin, the wall becomes

the ocase

< 1. Here in the Z-plane the shock boundary runs from ¢ to

1 1
the semi-c¢ircle of radius ————— with centre at {0, ——m and the
2 sin ag 2 sin a;

unit circle runs fram

- to oo on the imaginary axis. The boundaries
sin
3

are shown in Fig, 7.

Now a fresh transformation is to be Introduced for transforming the
boundaries from the Z-plane to z -plane,

The transformation introduced is

5, = cosh(q-t- 1 ) eeo(35)

Zsinaa

This transformation transforms the shaded region in the Z-plane into lower
half plane in the z,~plane, The shock boundary corresponds to the real

zi—a.xis with z > 1. The wall becomes the part of the real axis with
Z, <~ 1. The unit circle becomes the part of the real axis with =-1< Z, < 1.

The/
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The functiocn w(zi) defined before is the same for this case also,

Equations (27), (28), (30), (32), (33) and (34) hold good here alsc. However
the squations corresponding to (29) and (%) are

1M
Z, = X, = = cosh(-x cot a, ) < =1, M=§ <1 ...(36)
1 + M
3
and
M -1
z, = X = —cos(‘u cot @, ) > =1, M2>1 e o(37)
M, +1
respectively.

Part ITT
Numerical Solution

U -
Subsonic case ( < 1)

8y

The calculatlions have besn carried out for two shock strengths,
The table given below gilves the cholce of the data

Pc/ Py % g V-4 Ma
82
0 39.97° 32-97° 0* 94699 148137
0+5 yee 27t 51° é! 0+95765 0+67255

Now for determining the function w(z ), the integral on the

left hand side of (34) could be broken into three integrals ranging from
-co to -1, =1 to +1 and +1 to + o, Then applylng the boundary
condition ean (= 1) and simplifying we would obtain

[tan"‘- (ap/ey, )

c8[D(z, = x) =11 .7 .1 (op/ox,) x, =t=1
log w(zi) = log - — X ax.

(z, =z V(a2 -1) * ! (1 - xz,)

eee(38)

For/
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Por z, >1 we write

[tan_1 (ap/3y,)

(op/ox,) 1
f =% ax
A (1 = xz,)
[ _. (an/ay))
tan™ ! —— -8
ﬁfi dx 1 (ap/axi) x =t=1—
= — 1 X
R (1 - =,) =
(ap/ay,)
wher = s P
"7 [ta (op/ox,) 1
x1= —;.-.zi

y ; hg?.';%ng dona that we find after spproximate mumerical evaluation that for
a - »

4(~ 005779 = B)  2(0-05767 -~ RB)
+
(1 - 0°25z,) (1 - 0°5z,)

Z
w(zg) = exp —-—-—{(—1'5‘1698—}9)+
12=

+

4(0+18751 - B) L 8 g - x ) -
; ' (2 ﬁ)}}(zi"‘l)ﬂ- eiﬂ . cain( 1 o) 1]
(1 -0752,) (1 -2 (5, - x W(z2 = 1)

z, >1 ees(39)

L(- 0+05779)  2(0+05767)
+
(14 - 0°25z,) (4 = 0*5z,)

2
w(z) = exp|—-— {(-1-51698)+
121

4(0-18751) /2 c8[p(z, - x)) - 1]

+ + . y 2, <1,
(=0752) (1 -~32) 0 (3 -xW(z-1) ve o (40)

The function ® zig satisfies all the boundary conditions, The argument of
the funotion w(z,) far 3z, >1 1is g which one should get for the shock

boundary condition to be satisfied. w(z,) 1s purely imaginary for -1 < 2, < 1
and is purely real for z, < -1, The constants ¢ and D are known fram
conditions (32) and (33).

The expression far w(zi) for M, = 067255 1s

w(z,)/
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4L(- 0-00712 = g)  2(- 040698 - B)

+
(1 = 0°25z,) (1 - 0°5z,)

wze) = exp [- {(- 0°83807 -~ 8) +

Z1
12x

+

4(- 0°78184 = B) . (3-8 }] (s, - 1)1% gy c8[D(z, - x_) ~ 1] ’
(1 - 0-7521) (1 - zi) (21 - xo)\/(zi -1)

z, > 1 eeel(l1)

1

L(- 0°00712)  2(~ 040698)

Zs,
Wiz ) = exp [~— [- 083807 + +
12n (1 = 025z,) {1 - 0°57,)

L(~ 0+78184) /2 cs[p(z, - xo) - 1]
. ) 1.
CU o) (-5 }] (24 = x M (a3 - 1) ) <( )
LN B }+2

Pressure Distribution along the Wall

U -
At a point (x, 0) of the wall (-1 < x < _aﬂa ) the x,
co—ordinate is 2

= (1 - x2)
x, = - cosh[ — taph™® — Y4 - k’]

» (1 - kx)

which satisfies x, < -1,

The pressure derivative in this region is obtained fram (J+O) for
M, = 1°48137 and from (42) for M, = 0°67255. After integrating the
pressure derivative for different points of the wall, the pressure distribution
along the wall has been obtained, In Figs, 8 and 9 the value of

(P;; - Pg) 8,8,P,
22 = (- %) has been plotted for different points of the
8o, -2} (o, - p,) 5

wall, The disturbed region has also been shown, In the case M, = 148137

the pressure maintains a constent vaiue from the carner to the point of
intersection of unit circle and wall as it is given by Prandtl-Meyer expansion
theory., Fram the point of intersection of wall and unit circle to the pcint

of intersection of shock and wall we find that there is a monotonic decrease in
the value of (p} = p;)/8(ps ~ p,) (Fig. 8). 1In the case M = 0°67255 the
velue of (p! - p,)/8(p, - p,) which is zerc at the boundary increase to

infinity at the corner. From infinity it again decreases and finally rises
(Pig. 9).
(U-gq,)

2 ] )

Sonic case —_— =
aa

In this c¢ase also the numerical work has been carried ocut for two
shock strengths. The table given below gives the choice of data

P2, [
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U - q,
pc/P:L %o % a, M,
0 39°n° 3O AL 1 +00009 144938
0+5 42° 141 48° 52t 1 +00002 064616

The function w(z,) 1s determined from the equation (38). We find
here for M, = 1+44938

% = W~ 0*09153 = g) 2(- 0°311% - B)
wla) = em ["Tg}_c {(- 2 ﬁ>+ (1 - 0e253,) (1 - 0°52,)
L(= 0458272 - X _ g c8[D(z, -~ x ) =1
z, > 1. ees(43)
z1 % b~ 0°09153) 2(~ 0*31151)
wla) = exp[ 12n {- -2-+ (1 - 0*25z,) ¥ (1 = 0°5z,)

4(= 0+58272) x/2 D c3[p(z, - xo) -1] 1
z <1,

! (1 = 0-75z ) ’ (1 -32) . (7, = x W(z? ~1) ’ :
oo (Ud)

Similarly for M, = 0+64616

x L(- 004179 - B)  2(- 0+43690 - B)
wla) = e"‘"[ 12 {(" E'ﬁ> Y T -o255) (1 -053,)

14-(—0-81216-,@ ( == 8) -ﬂ. (s, - 1) s C8[D(z, - x,) 1]

i (1 = 0+752,) (4 - z,) (zi-xo)w/(zi—ﬂ ’
z, >1 o oo (45)
® 4{~ 0°0L179)  2(= 0°43690)
“m) = e l:_ [ E+ (1 - 0-25z,) ¥ (1 = 05z )}
L{= 081216} /2 H cs{p(z, - xo) -1]
+ + ™ ’ Zi <1,
(1 - 0-7531) (1 - zi) (z, - on(zi - 1) (46)

At/
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Pressure Distribution along the Wall

U -
At a point (x, 0) of the wall (-1<x<—-—c-l-3) the x,

aq
co~ordinete is x, = - cosh(m’. cot a, ’1 hd x) which satisfies x, < -1
1 =-x

The pressure derivative is obtained from (44) for M, = 144938

and fram (46) for M,
(p! - p) _ 2390,
8(p,-»,) (3, - p,)
wall,

case M

O*64616. In Figs. 10 and 14 the value of

2 ) has been plotted for different points of the

The disturbed region has also been showm, In the case M, = 1-44938

the value of (p! = p,)/8(p, = p,) after mainteining e constant value from the

corner to the point of intersection of unit eircle and wall decreases
monotamically to the point of intersection of shock and wall (Fig, 10). In the

= 0+64616 the value of (p! - p,)/8(p, ~ pi) increases from zero at

the boundary to infinity at the corner, TFrom infinity it again decreases and

finally rises (Fig. 11).
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Wall pressure distribution and shape of disturbed region (6=0-| radian,

)
f_!_lp:m’ a =39-97°, &x,=3297)




FIG. 9

3

5(,-p) [

}
il

5:7°

Wall pressure distribution and shape of disturbed region

(6 = 0l radian, P =2, x,=42°27, x, = 51° ¢')
p
0



LIARLARERRABERR AR AR NN

Wall pressure distribution and shape of disturbed region (6=0~I rqdicm,

P,/ P°=oo,oc°=59-9I°,o<2=3|°|4‘)
FIG. Il
3
5 \

1
Trrrrrrrrryrryrrrrrrrr oy T o7 5.70

Wall pressure distribution and shape of disturbed region
(6=0-1 radian, PL =2, & =42° 11", &, = 48° 52° )
Po







AR,C, . P. No, 1008
December, 1966
R. S. Srivastava

DIFFRACTION OF BLAST WAVE FOR THE OBLIQUE CASE

The problem of diffraction of an oblique shock wave
has been considered in this paper, The investigations
are devoted to the cases when the relative outflow
behind the reflected shock before diffraction is
subsanic and sonie, The distribution of pressure has
been obtained for finite and infinite shock strengths
for both these cases,

A.ROCl C.P. NO. 1008
December, 1966
R, S, Srivastava

DIFFRACTION OF BLAST WAVE FOR THE OBLIQUE CASE

The problem of diffraction of an oblique shock wave
has been considered in this paper. The investigations
are devoted to the cases when the relative outflow
behind the reflected shock before diffraction is
subsonic and sonic, The distribution of pressure has
been obtained for finlte and infinite shock strengths
for both these cases,

AR,C, C,P, No, 1008
Decenber, 1966
R, S. Srivastava

DIFFRACTION OF BLAST WAVE FOR THE OBLIQUE CASE

The problem of diffraction of an oblique shock wave
haes been considered in this paper, The investigations
are devoted to the cases when the relative outflow
behind the reflected shock before diffraction is
subsonic and sonic, The distribution of pressure has
been obtained for finite and infinite shock strengths
for both these cases.

LN ]

SAQUV) LOVIISHY WIIVHOVLIE(









© Crown copyright 1968

Printed and published by
HER MAJESTY’S STATIONERY OFFICE

To be purchased from
49 High Holborn, London w C 1
£3A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff c¥l 11w
Brazennose Street, Manchester M60 8as
50 Fairfax Street, Bristol Bs1 3DE
258 Broad Street, Birmmgham 1
7 Linenhall Street, Belfast BT2 8AY
or through any bookseller

Printed in England

C.P. No. 1008

C.P. No. 1008

$ O Code No 23-9018-8



