


















































The solution (74) still holds as also do the cond1t1ons (77) which; however, assume the’ followmg

form :- T S : -
gw,ﬁ . Lo, . B : o

| a=7r,  e=o ,\/( Tt ) . SEENETIET: (96)

In thls case, the coefﬁc1ent of £ in (93, 94) depends on o which is itself unknown, therefore. (96)

are not final answers ; they may, however, be treated as a system of equatmns for determining
a and . The solutlon is :

. N . 5 ) . o . )e
3;2J1+vg g) : L—Jl 1 =8 W)
where the s1gns of 4/(1 — g% are the only ones cons1sterlt with cond1t1ons at g = 0, and hence :
a_l—w(0—g)_"~ g ’
— . . . .. (98
” s TV —g) )
and the logarithmic decrement : _ 7 )
' an '
6__lnR_—2n;w T vl—g) . .. . . (99

All quant1t1es determined by (97 to 99) have a meaning only if g < 1, therefore the oscillatory
solution (74) seems to apply for, and only for, such values of g. If ¢ > 1, we might expect an
aperiodic solution but since the law of structural damping for aperiodic motions 1s completely
unknown at present, it would be futile to attempt to find the corresponding solution.

Formulae (97 and 98) are illustrated in Fig. 12 which shows that the frequency o decreases.
and the damping index a increases with increasing g, and so does, of course, the relative damping
ratio 1. This behaviour is as might be expected. However, ‘there is one striking difference
from the case of viscous damping (Fig. 11). In that case, the fimit of validity of the oscillatory
solution (74) coincided with the frequency w falling to zero, 2 becoming 1, and @/w reaching infinity,
so-that, in the limiting conditiens, the solution becomes just ape11odle (84) The complex
stab1l1ty root (—a -+ iw) afterwards sphts into two real roots (—a’) and (—a”), cf., (82). In the
present case, the limit of validity seems.to be 1 = w/w, = alo, = 1[4/2 = 0- 707l .50 that the
solution is still fully oscillatory .in these limiting conditions. This is. a very unusual result.
We come back to this question in Section 4.2:4.. S :

4.2.2. Collar’s method m complex notation, Zeadmg to Myklesmds formulae —The complex
notation may be again introduced, in exactly the same way as in Section 4.1.2, and the
differential equation will be obtamed on substituting the first of the relat1onsh1ps (88) into
(93,-94), in the forms :

Wm+k@—£ﬁng=op. e 100
or '

~£+w%-g+@%ﬁw SO @m@

The da,mplng term has formally disappeared, and the constant & in the subsequent term has
been replaced by

k@~ﬁ+@, T ”lfsmn

which is now the ° com;blex stiffness’ for the case of free oscillations with hysteretic dampmg It must
be stressed that, although the real part of this complex stiffness is now less than %, it does not
mean that the true stiffness has been modified. This is still %, as seen from equation (93) which
is exactly equivalent with (100). The modification of the real constant has taken place merely
because the motion is now an exponentially decaying oscillation, and not just simple harmonic,
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so that the complex ratio % : x is now (—a + i), instead of fw. The complex stiffness (101)
is more general, but it becomes again equal to £(1 4 4g) when @ = 0 as, for instance, in the case
of steady forced oscillations (Section 3.2).

The equation (100a) can, of course, be solved directly, by using the second of the relationships
(88), and then we obtain again the solution (96).

The vector diagram of Fig. 14 applies in the present case, with the only alteration that the
vector AB now denotes kg#/w (instead of c#). The inset diagram again illustrates the complex
restoring term, consisting of components OE and EB.

It may be mentioned that, in equation (100), although the imaginary part in the second term
is now known, the real part does depend on ¢ and o which are unknown until we find the solution.
We may, however, use this solution, e.g., form (98), to get rid of them. We find :

a
—E_vi-g, .. . (09
and hence the differential equation may be written in yet another form :
mi 4+ kR{v/(1 — g% +glx =0, .. .. .. .. . .. (108)

where the complex stiffness has the form identical with (64), which we encountered when

discussing Myklestad’s theory. It is seen to be applicable in the present case and, if we put
again :

g =sin2p,
then the differential equation becomes :
mE - Ry =0, .. .. .. .. .. .. (104)
and the formulae (97 to 99) assume very simple forms :
%:cos[)’, i:Z:sinﬁ, c—?:tanﬁ, 0 =2ntanpB. .. .. .. (105)

Myklestad’s concept of complex stiffness has thus been vindicated for the case of free oscillations
with hysteretic damping, of a single degree of freedom. It is not general, however, as it fails,
e.g., in the case of forced oscillations. It should, therefore, never be used in any other case
although, if g is small, the errors involved may only be small of 2nd order.

Considering the inset diagram in Fig. 14, we observe that, in the present case :

B=e. .. .. .. .. .. .. (108

4.2.3. Soroka’s method.—Soroka* wrote the differential equation of free oscillations with
structural damping in the following complex form :

mi-+k(1+ig)x=0, .. .. e .. (107)

which differs from (100) by having a simpler complex stiffness %(1 + 4g), just as in the equation
(67) which related to steady forced oscillations. Soroka quoted Theodorsen and Garrick®
as the source of his equation, although these authors applied this sort of complex stiffness only
in the problem of critical flutter, i.e., when the oscillation was simple harmonic.

Dividing by m, we may write (107) as follows :

E+to{l+gx=0. .. .. .. .. .. (107a)
It still admits of the solution (87) and, using (88), we obtain :
(to —a)* + w2 (1 +2g)=0. .. . .. .. .. .. (108)
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Equating to zero the real and imaginary parts :

0w —at=w,?, 200 =g w,}?, .. .. .. .. .. .. (109)
we find :
o  [VI+g)+1 a _ [vV1+4g)—1
E—J / , E"J X R ¢ 5 10)
and hence :
a g : 2mg
— = d=InhR= C. ..o (111
o VAT T SRV ( S )
This is Soroka’s solution which, if we put :
g = sinh 2y, . . .. .. ..o (112)
may also be written :
w a . a .
w—:coshy, A= —=ogsinhy, 6:2n;=2ntanhy. .. (118)

This solution, illustrated in Fig. 18, is paradoxical in the extreme. The formulae have a meaning
for any g, up to infinity, so it seems that the oscillatory motion would take place for any amount
of damping. The frequency increases with damping coefficient g, instead of falling.

The explanation of the error was partly given by Pinsker®®. Soroka’s solution corresponds
(unintentionally) to the case when stiffness is not constant but increases itself with g. This can
be shown easily by transforming the differential equation (107) back to the real form, by
using the first of the relationships (88), whereupon we obtain :

m¢+@x+k@+ﬁﬂx:o, L a1

w - . w

instead of the correct equation (93), where the stiffness is constant (k). Soroka’s stiffness is :
ke¢@+%y or K —=kJ(L+g), .. .. .. .. (115

thus increases indefinitely with g. With such a stiffness, the natural frequency (with no
damping) would be expressed by :

0, = oL, o e e 18

N 6 V)

It is seen that the square of frequéncy has increased by a certain amount owing to the rise
of stiffness, and then lost half of this increment due to damping.

The above calculation is illustrated in Fig. 15, where the triangle OAB of Fig. 12 is replaced
by OA’B’. The increased stiffness %’ is shown, and the resulting damping angle ¢’ is less than e.

so. that :

2 2 2

W — o, =

[

(@,

It is remarkable that Soroka’s assumption is completely analogous to that made by Myklestad
in the case of forced oscillations. In the latter case, the complex stiffness % ¢*#, applicable to
free oscillations, was used for the steady forced ones. In the present case, the complex stiffness
% (1 + 4g), applicable only to simple harmonic oscillations, was used for the free, i.e., decaying,
oscillations. = The procedure cannot be accepted because the concept of stiffness increasing
with g in an artificial manner (cf., (115)), to which the theory really applies, has no theoretical

or practical meaning.
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4.2.4. An alternative solution based on a plausible assumption on energy dissipation.~—~We have
seen in Section 4.2.2 that the simple solution based on equation (98) and illustrated in Fig. 12,
is somewhat doubtful for large values of g. The reason for that is that the law of hysteretic

damping for decaying oscillations is not known, and therefore it was not quite a legitimate
generalization to extend the validity of the assumption (12) o

cow = kg

into the field where it has never been proved experimentally. The only reliable answer can be
supplied by further experiments whose difficulties should not be underestimated. It may be

permissible, however, to try to speculate about the possible alternative generalizations of the
law of hysteretic damping.

In the case of sinusoidal oscillations, it was found that the energy dissipated per period through
hysteretic damping did not depend on frequency » and was proportional to the square of
amplitude x* (which was constant throughout the motion). A plausible generalization for
decaying oscillations will be that the mean energy dissipated per period will not depend on
either o or a, but will be proportional to the square of some mean amplitude x, (provisionally
unspecified), because it seems unreasonable to make it proportional to the square of x* which
now denotes the imtal amplitude. Referring to (20), this will be written :

az 1 . e-llna/w ’
%2 “ — oy 2 i
" (1 + wz) Daa— =R, oL
and hence : -
co = kgN, .. .. . . .. . .o (119)
where : . /
X, drnaw S
— " ()
N P o) ([ .. .. .. (120)

N is a certain function of afw, becoming obviously = 1 for @ = 0. The differential equation
then takes the form :

mo’c'—{—]%vx—{—kx:() .. .. .. .. .o (121)
or
x+w,,2<1—fﬂaf‘+igzv)x:0. .. (21w

Using (88), this leads to :
(i — a)f + 0,2 (1 AL igN) =0
or, separating the real and imaginary parts :

gNaw,}

Zaw = gNo,®,  a'—o' ol =0... .. (122)
Eliminating gN, we obtain
o+ at =02, . .. ce e .. .. .. (123)
and hence : - |
g%ng. e e 12

Comparing (120) and (124), we obtain finally :

x*21 . e—4na/w

Sty O 6 )
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The last three equations will solve the problem, once we decide on the definition of %,. The last
word depends on experiment, but we may attempt some trial definition. The simplest and
most plausible seems to be that x,? is the arithmetical mean of the squares of amplitudes at the
beginning and end of a cycle, i.e.

X = F &% (1 et . c .. . .. (126)
We then obtain from (125) :
ng = tanh 2# —g ,
or :
a 1 AP S B 7
and from (123) and (124) : _
1 + =g
L. n LIy - M T—mg (128)
wn"— . 21+ng): wn"‘“ '_/\/( , 21+ng);-- .o
J(187 +1n e 16 + Int ;7%
and
8—ﬂlnl 7
N — 2naw g 1 —=ng 199
~ (0® + @%) tanh 2najo — 167* 1 11121 + mg’ (129)
~ 1 —ag

All the above formulae have a meaning only if

g<%=0-3183 .. .. .. . .. .. (180)
and, if g tends to this limit, we have N — 0, @ — 0, A— 1, as it should be. For greater values
of g, the motion should be aperiodic. This solution is illustrated in Fig. 16, where o/w,, 2 and gN
are plotted against g. It is seen that » decreases slowly with increasing g, to fall very rapidly
to 0 near the limiting value, while 1 rises first nearly in proportion to g and then shoots up to 1
near the limit. As to gN, it attains its maximum value 1 at g very little less than the limiting
value, and then drops very rapidly to 0.

It may be mentioned that, for small values of g, the above solution agrees with that obtained
in Section 4.2.1, up to terms of second order in g. Expanding (128), we get :

Lo, gzz:g+og”” N O £: 1)

ki k]

and identical expansions, to this order, will be obtained from (97). The first of Soroka’s
formulae (110), however, leads to wjw, =1+ g*/8 . ...

It must be clearly stated that the assumption (126) and formulae (128) are not proposed as a
proved solution. They are merely given as an example, to show that it is possible to make the
frequency fall to 0 at the limiting value of g, on making an assumption at-least equally plausible
as that made in Section 4.2.1. It is impossible to obtain a reliable solution without further
experimental work. ‘
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4.3. Summary of Formulae—The following table summarizes all relevant formulae for free
oscillations, derived and discussed above. Soroka’s formulae are included for completeness.

References
olw, alw, é to text and
Figures
Viscous _ a2 A Section 4.1.1
damping VL —#) A 2 V(1 — ) Figure 11
After T+l —g) _ 1 -+ —g) _ 9 g _ ,
pollar- 9 - 2 - 1+ /0= Secjclon 4.2.1
Bishop, or Figure 12
o0 Mylklestad = cos B = sin = 2ntan f
g
A Jw _ Jmizi N P S |
kS After 2 2 Vg1 Section 4.2.3
9 Soroka : Figure 13
E = cosh y = sinh y = 2m tanh y
)
t% ‘ In 1+ =g
Solution of 4n 1 — =g iln 1+ ng Section 4.2.4
Section 4.2.4 2771 — Figure 16
,\/(16912 el T ”g) \/(167:2 tpeltme ”g) & gl
1—ng 1 —ng

5. Conclusions.—The main conclusions of the present Paper are as follows :

A. Simple harmonic oscillations, single degree of freedom.

(1) The equation (1) of steady forced oscillations may be transformed to the complex form (44),
so that the damping and stiffness terms are combined into a single ‘ complex-stiffness term’,

the complex stiffness being
k4 icw . . .. .. .. (a)

(2) The expression (a) is convenient in the case of viscous damping when the damping coefficient
¢ is constant (independent of frequency »). In the case of hysteretic damping, however, when ¢
is inversely proportional to frequency according to (8), the complex stiffness assumes the

appropriate form : .
k(1 + ig), . .. . . ..o (b)

and the equation of forced oscillations become (57).
(8) The alternative expressions of the complex stiffness
ke® or ket .. .. . .. . (c)

are only admissible if g (or ) is very small, and second order effects can be neglected. Using
these expressions for larger values of g and deducing effects involving higher orders, as suggested
by Myklestad, leads to erroneous results because it implies an artificial assumption that the
real stiffness % is replaced by k+/(1 — g%, varying with g (see (71)). Myklestad’s formulae
(68 to 70) for the amplitude and phase delay angle are misleading and should not be used.

B. Decaying oscillations, single degree of freedom.

(4) The equation (72) of free oscillations may again be transformed to the comﬁlex form (89),
but the complex stiffness then becomes different from (a), v2z. : :

(h—ac) +ico. .. .o ()
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(5) The expression (d) applies directly in the case of viscous damping but offers no advantage
in practice, as it contains @ and w, both quantities being originally unknown in the typical
problem of free oscillations.

(6) The law of hysteretic damping in decaying oscillations is unknown, because all experiments
have hitherto been restricted to simple harmonic oscillations. Assuming, however, that the
previous law (3) still applies, the complex stiffness becomes :

k(—§+@,” @

which differs from (b). On this assumption, the solution of the problem of free oscillations
is given by the formulae (97). The solution is plausible for small values of g, but is doubtful
for larger values.

(7) Myklestad’s expression for complex stiffness in the case of hysteretic damping :
k¥ .. . .. .. .. . . ()

leads to the same solution as (e), provided g = sin 28. This expression is therefore admissible
in the problem of free oscillations.

(8) Using the complex stiffness in the form (b) in the problem of free oscillations, as proposed
by Soroka, leads to erroneous results, because it implies an artificial assumption that the real
stiffness % is replaced by %24/(1 4 g%), increasing with g. Soroka’s formulae (110) are misleading
and should not be used. '

(9) A tentative alternative solution of the problem of free oscillations with hysteretic damping,
based on a plausible assumption on energy dissipation, is given in Section 4.2.4. Its validity
depends on experimental confirmation.

C. Dawmped oscillations with many degrees of freedom.

(10) The complex stiffness in the form (a) or (b}, in the cases of viscous or hysteretic damping,
respectively, may also be used for systems of many degrees of freedom, provided only an
oscillation in a single simple harmonic mode is considered, z.e. :

(i) either for steady forced oscillations, where all exciting forces are simple harmonic of the
same frequency,

(ii) or for steady self-excited oscillations, e.g., flutter in critical conditions.

In both cases, the form (c) for complex stiffness should be avoided, unless only first order effects
of damping are considered.

(11) Whenever the oscillation consists of several modes, whether simple harmonic or decaying,
the law of hysteretic damping is unknown. The law applying for a single simple harmonic
mode cannot be used, simply because it involves the frequency, and becomes senseless where
there are several frequencies. Any attempts to use the concept of complex stiffness in such
problems would lead to meaningless solutions.

(12) The general law of structural damping can only be found by new experiments. Such a
law should be applicable to any motion, periodic or aperiodic. The difficulties of the experimental
technique are very serious, especially as it cannot be anticipated in advance that the law will be
linear. The problem will have to be faced if high (artificially augmented) structural damping
is to be widely introduced.

D. Remarks on definitions and nomenclature.

(13) To avoid misunderstandings, it is suggested that an oscillation should be termed
‘damped ’ whenever there are damping forces in the system, 7.e., dissipative forces opposed
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to velocity, irrespective of whether the amplitude decreases or remains constant. The terms
“steady ’ or ‘ decaying’ oscillation should-be used to indicate that the .amplitude is constant
or decreases as time increases. : : '

(14) In a simple harmonic oscillation with viscous damping the amplitude of the damping
force (cwx®) is proportional to that of velocity (wx*), the coefficient ¢ being constant. In the
case of hysteretic damping, however, ¢ is assumed to be inversely proportional to frequency o
(see form. (3)), and hence the amplitude of the damping force (kgx*) is proportional to that of
displacement (x*), % and g being constant. This has led some authors to describe the hysteretic
damping force as ‘ proportional to displacement but in (counter) phase with velocity ’. The
expression is wrong, but its use seems plausible when one considers the equation of motion in
complex form (e.g., equation (57), where the term igkx represents the damping force). It must
be understood that the damping force varies in proportion to the velocity throughout the motion

(see equation (46)), and only its amplitude is proportional to that of the displacement.
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LIST OF SYMBOLS

Damping index of a decaying oscillation, see (74)

Damping indices of an aperiodic motion, see (82)

Damping coefficient, see (1) -

Critical damping coefficient, see (26)

Energy lost per cycle of an oscillation

Energy dissipated by damping in a decaying oscillation, per cycle
Energy dissipated by damping in a simple harmonic oscillation, per cycle
Amplitude of applied external force |

Resisting force, resultant of restoring and damping forces

Dimensionless coefficient of hysteretic damping

Stiffness (spring constant)

- Mass

Coefficient, see (119)
Magnification factor for constant amplitude of exciting force

Magnification factor for amplitude of exciting force proportional to frequency
squared (centrifugal excitation)

Ratio of amplitudes at beginning and end of a cycle
Frequency ratio, see (29)

Time

Period

Displacement

Displacement amPlitudé in simple harmonic oscillation, or initial amplitude
in decaying oscillation

Velocity

Acceleration

Initial phase angle of the exciting force
Myklestad’s angle for hysteretic damping
Auxiliary parameter, see (112)

Logarithmic decrement

Damping angle

Phase delay angle in forced oscillation
Relative damping ratio

Actual frequency in free or forced oscillation

Natural frequency
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APPENDIX (to Section 2.2)

Details of Calculating the Energy Dissipation in an Exponentially

Decaying Harmonic Oscillation

To evaluate the integral in (17), we transform :

: . e 2 2 2 2
—wcos(wt—i—(p)—asin(wt»—f-@g =% —;—a+w 2aCOSZ(wt—{—qo)—awSiHZ(wzf—{—(p)
w?® 4+ a® w? — a

= 4+ ( 5 €Os 2¢ — aw sin 299) cos 2wt —

_‘(wz—az

o sin 2p + aw’ cos 2¢) sin 2wt .. (A1)

The formula (17) then becomes :

E, = —z—cx*z[(w% + a®) I, + {(0?* — @) cos 2p — 2aw sin 2¢} I, —

— {(® — &%) sin 2p + 24 cos 2p} I}] .. .. (A9
where the three integrals are : |
e —2at 1 —Analw
Ilzfo e dp = (L—e), . (A3)
I, = fznlw e~ cos 2wt dt = S S .oz + (o sin 2wt.— a cos 2wt) e~ .
S PR S 1 - i
(1 gy, . (A.4)
T o s e . . . . .
27w ot ’ . —1 R ot 2njw
I, = ,[0 e~ sin 2wt df = N T o o — (o cgs 20t 4 a sin 2wt) e .
. _L_ — p—inalw -
f’_2(cz2—|—w2)(1 i) I e . .. (A'S),

Substituting (A.3, 4, 5) into (A.2), and simplifying, we obtain (18).
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after Myklestad.
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Fic. 8a and b. Example of resonance and phase delay

curves at high damping, viscous or orthodox hysteretic or
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FiG. 18. Characteristics of free oscillation with
hysteretic damping after Soroka.
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