


































Thes01ution_(74) still holds, as als9 do the Conditions (77)which; howeVer, assume the following 
form • 

a - -  2co ' - o ) = c o  . 4 c o 2 ]  . . . . . . .  

In this case, the coefficient of 2 in (93, 94) depends on ~o which is itself unknown,  therefore (96) 
are not final answers ; they may, however, be treated as a system of equations for determining 
a and ~o. The solution is • 

Z (97) ~o,~ 2 ' w ,; • 2 ' 

where the signs of ~/(1 -- g') are the only ones consistent with conditions at g = O, and hence • 

a 1 ---g') • g 
g 7 1 + C(1 

and the logarithmic decrement • 

d = l n R = 2 ~ - - a  = 2~g 
o) 1 + ~ / ( 1  - -  g~)-'  "" 

(98) 

. . . .  (99) 

All quantities determined b y  (97 to  99) have a meaning only if g ~< 1, therefore the oscillatory 
solution (74) seems to apply for, and only for, such values of g. If g > 1, we might expect  an 
aperiodic solution but since the law of structural damping for aperiodic motions is completely 
unknown at present, it would be futile to at tempt  to find the corresponding solution. 

Formulae (97 and 98) are illustrated in Fig. 12 which shows that  the frequency ~ decreases 
an d ,the damping index a increases with increasing g, and so does, of course, the relative damping 
ratio ~. This behaviour is as might be expected. However, there is one striking difference 
from the case of viscous damping (Fig. 11). In that  case, the limit of validity of the oscil!atory 
solution (74) coincided with the frequency co falling to zero, ~ becoming 1, and a/o) reaching infinity, 
so-that ,  in the limiting iconditions, the solution becomes just aperiodic (84). ~Zhe complex 
stability root (--a + ioJ) afterwards splits into two real roots (--a') and (--a"), cf., (82). In the 
present case, the limit of validity seemsto  be ~ = ~o/~o,, = a/o),~ - :  a/~/2 = 0.707!, ,so that  the 
solution is still fully oscillatory i n  these limiting conditions. This i s  a v e r y  unusual result, 
We Come back to this question in Section 4.2:4.. 

4.2.2. Collar's method in complex notation, leading to Myklestad's formulae . - -The  complex 
notation may be again introduced, in exactly the Same way as in Section 4.1.2, and the 
differential equation will be obtained, on substituting the first of the relationships (88) into 
(93; 94),~ in the forms • 

+ k - + - -  0 , .  (lOO) 
\ o) / 

o r  

, . 2  -}-o~ ~ (1 ----ag + ig I x 0 . . . . . . .  . . .  . .  (100a) 
\ fo / 

The damping term has f~ormally disappeared, and the constant k in the subsequent . term has 
been replaced by 

k ( 1 - -  ag + ig) ' C o  . . . . . . . . . .  (101) 

which is now t h e '  complex stiffness' for  the case or free oscillations' with hysteretic damping. I t  must 
be stressed that,  although the real part of this complex stiffness is now less than k, it does not 
mean that  the true stiffness has been modified. This is still k, as seen from equation (93) which 
is exactly equivalent with (100). The modification of the real Constant has taken place merely 
because the motion is now an exponentially decaying osci!]at!on, :and not just simple harmonic, 
, . . . . .  t 
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so tha t  the  complex ratio ~ • x is now ( - -a  + ico), instead of ico. The complex stiffness (101) 
is more general, bu t  it becomes again equal to k(1 + ig) when a : 0 as, for instance, in the  case 
of s teady forced oscillations (Section 3.2). 

The equat ion (100a) can, of course, be solved directly, by  using the  second of the  relationships 
(88), and then we obtain again the  solution (96). 

The vector diagram of Fig. 14 applies in the  present case, with the  only al terat ion tha t  the 
vector  AB now denotes kg~/co (instead of c~). The inset  diagram again illustrates the complex 
restoring term, consisting of components  OE and EB. 

I t  may  be ment ioned  that ,  in equat ion (100), a l though the  imaginary  part  in the second te rm 
is now known, the  real par t  does depend on a and co which are unknown until  we find the solution. 
We may,  however,  use this solution, e.g., form (98), to get rid of them. We find • 

1 g a  _ % / ( 1  - -  g 2 ) ,  . . . . . . . . . .  (102) 
co 

and hence the  differential equat ion m a y  be wri t ten  in yet  another  form • 

+ k { % / ( 1  - + i g ) x  = o ,  . . . . . . . . . . . .  ( l O 3 )  

where the complex stiffness has the form identical  with (64), which we encountered when 
discussing Myklestad's  theory. I t  is seen to be applicable in the  present case and, if we put  
again • 

g ----- sin 2/~, 
then  the  differential equat ion becomes • 

m #  + k e ~i'  x : 0 . . . . . . . . . . . . .  (104) 

and the  formulae (97 to 99) assume very simple forms • 

co a a 
- -  ---- cos fl ,  - -  ---- ~ ---- sin/~, - ---- tan  fl, ~ : 2~ tan  fl . . . . . . .  (105) 
co ,~ co n co 

Myhlestad's concept of  complex stiffness has thus been vindicated for the case of  free oscillations 
with hysteretic damping, of  a single degree of freedom. I t  is not  general, however, as it fails, 
e.g., in the  case of forced oscillations. I t  should, therefore, never  be used in any other  case 
although, if g is small, the  errors involved may  only be small of 2nd order. 

Considering the  inset diagram in Fig. 14, we observe that ,  in the  present case • 

= . . . . . . . . . . . . .  ( 1 0 6 )  

4.2.3. Soroka's method.--Soroka 1~ wrote the  differential equat ion of free oscillations with 
s tructural  damping  in the  following complex form : 

m# + k (1 2_ ig) x ---- O, . . . . . . . . . . . .  (107) 

which differs from (100) by  having a simpler complex stiffness k(1 + ig), just  as in the equat ion 
(57) which related to s teady forced oscillations. Soroka quoted  Theodorsen and Garrick 1~ 
as t h e  source of his equation, a l though these authors applied this sort of complex stiffness only 
in the  problem of critical flutter, i.e., when the  oscillation was simple harmonic.  

Dividing by  m, we ma y  write (107) as follows : 

X + ~ o , ~ ( l + i g )  x = O  . . . . .  

I t  still admits  of the solution (87) and, using (88), we obtain : 

(ico --  a) 2 + co2 (1 + ig) ----- 0 . . . . .  

18 

. . . . .  (107a) 

. . . .  ( l O S )  



Equat ing to zero the real and imaginary parts • 

we find " 

and hence • 

0)2 _ _  a 2  = 000~ 2 , 2 a 0 )  = g co,,  2 , 

000 ~ / , V ' ( 1  + g2) + 1 
0).  2 ' 

a g 
000 + + 1' 

_ = a  j V ( 1  1 .. 
COn 2 ' 

= In R ---- 2~g 
V ( l + g ~ ) +  1" 

(lO9) 

(11o) 

(111) 

This is Soroka's solution whick, if we put • 

g = sinh 2),, 

may also be written • 

..  (112) 

000 _ c o s h r ,  2 _  a __s inhT ,  ~ = 2 ~ - a = 2 ~ t a n h T .  . .  (113) 
(.O n (D~ 000 

This solution, illustrated in Fig. 13, is paradoxical in the extreme. The formulae have a meaning 
for any g, up to infinity, so it seems that  the oscillatory motion would take place for any amount 
of damping. The frequency increases with damping coefficient g, instead of falling. 

The explanation of the error was part ly given by Pinsker 15. Soroka's solution corresponds 
(unintentionally) to the case when stiffness is not constant but increases itself with g. This can 
be shown easily by  transforming the differential equation (107) back to the real form, by  
using the first of the relationships (88), whereupon we obtain • 

m£:+gk2000 + k ( 1  + ~ ) x = 0 ,  . .  ( 1 1 4 )  

instead of the correct equation (93), where the stiffness is constant (k). Soroka's stiffness is • 

thus increases indefinitely with g. 
damping) would be expressed by • 

or k' = k~/(1 + g~), . . . . . . . .  (115) 

With  such a stiffness, the natural  frequency (with no 

+ , . . . . . .  . . . . . . . . . .  (116) 
so tha t  : 

000 2 . . . . . . . .  _ 0)~  = ½(0) ,2 _ 0),2) . . . . . . . . .  (117) 

I t  is Seen t ha t  the square of frequency has increased by a certain amount owing to the rise 
of stiffness, and then lost half of this increment due to damping. 

The above calculation is illustrated in Fig. 15, where the triangle OAB of Fig. 12 is replaced 
by OA'B'. The increased stiffness k' is shown, and the resulting damping angle e' is less than e. 

I t  is remarkable that  Soroka's assumption is completely analogous to that  made by Myklestad 
in the case of forced~oscillations. In the latter case, the complex stiffness k e 2~, applicable to 
free oscillations, was used for the steady forced ones. In  the present case, the complex stiffness 
k (1 q.- ig), applicable only to simple harmonic oscillations, was used for the free, i.e., decaying, 
oscillations. The procedure cannot be accepted because the concept of stiffness increasing 
with g ~n an artificial manner (cf.,: (115)), to which the theory really applies, has no theoretical 
or practical meaning. 
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4.2.4. A n  alternative solut ion based on a plausible  a s sumpt ion  on energy d i s s ipa t ion . - - -We have 
seen in Section 4.2.2 tha t  the  simple solution based on equat ion (93) and i l lustrated in Fig. 12, 
is somewhat  doubtful  for large values of g. T h e  reason for tha t  is tha t  the  law of hysteret ic  
damping  for decaying oscillations is not  known, and therefore it was not  quite a legi t imat  e 
generalization to ex tend  the val idi ty  of the  assumption (12) : 

co) = kg 

into the  field where it has never  been proved experimentally.  The only reliable answer, can be 
supplied by further  exper iments  whose difficulties should not  be underest imated.  I t  may  be 
permissible, however,  to t ry  to speculate about  the  possible al ternat ive generalizations of the 
law of hysteret ic  damping. 

In  the  case of sinusoidal oscillations, it was found tha t  the energy dissipated per period through 
hysteret ic  damping  did not  depend on frequency co and was proport ional  to the square of 
ampli tude x* (which was constant  th roughout  the  motion).  A plausible generalization for 
decaying oscillations will be t ha t  the  mean  energy diss ipated per period will not  depend on 
ei ther  co or a, but  will be proport ional  to the  square of some mean  ampl i tude  x,,~ (provisionally 
unspecified), because it seems unreasonable to make  it proport ional  to the  square of x* which 
now denotes the  in i t ia l  ampl i tude .  Referring to (20), this will be wri t ten  : 

and  hence • 

where " 

a S) 1 - -  e -a~ lo  
~cmx *~ 1 q- - j  T ~ / ~  --  ukgx,, 2 , . . . . . . . .  (118) 

c~o = k g N  , • . . . . . . . . . . . . .  (119) 

N -  x , )  4~ao) 
x (a  2 + ,o 2) (1 - e  ": " . . . . . . .  ( 1 2 0 )  

N is a certain function of a /o ,  becoming obviously = 1 for a = O. 
then  takes the  form • 

m 2  + kg N d; + kx  = 0 . . . .  
(.o 

o r  

£ q_ co,~( 1 gNaco q- i g N )  x = 0 .  

Using (88), this leads to ' 

(ico --  a) ~ + co,) (1 

or, separat ing the real and imaginary  parts  • 

gNao, ~- i g N )  = 0 

Eliminat ing  g N ,  we obtain 

2a~o = gNo~. ~ , a 2 _ (D 2 ~ -  o),~ 2 

The differential equat ion 

. . . . . .  (121) 

. .  (121a) 

gNao),)  _ 0 . . . . .  (122) 
co 

and hence • 

02 2 - ~  a 2 : ( .0 ,2  

2aco 
o) ~ + a~ - -  g N .  Q 0 

. .  ( 1 2 3 )  

. .  (124) 

Comparing (120) and (124), we obtain finally • 

g _ m x *~  1 - -  e -4~"/~  

Xm 2 27C 

2O 

( 1 2 5 )  



The last three equat ions wil l  solve the  problem, once we decide on the  definition of x~. The last 
word depends on experiment ,  but  we m a y  a t t emp t  some trial definition. The simplest and 
most  plausible seems to be tha t  x,. ~ is the arithmetical mean of the squares of amplitudes at the 
begimdrag and end of a cycle, i.e. • 

x,,? = ½ x *~ (1 + e- '~° /° ) .  . .  (126) 

We then  obtain from (125) • 

o r  

~g = tanh  2~ - a 
(D 

a 1 tanh_ l u g =  1 1 + ~ g  
o) 2~ ~ In 1 --  ~ . . . . . . . . . . . . .  (127) 

and from (123) and (124) • 

a n d  

co 4z 

o),  16  ~2 + In 2 1 - -  

In 1 + j  

a _ Z  1 - - ~ g  (128) 

J (  , + o~ 16~2 + In ~ 1 --  

8 z l n l  + z g  
2~ao~ _ g 1 - -  ~g 

N = (cos + a~ ) t anh  2~a/o~ --  16 z~ + in ~ 1 + z____gg . . . . . . . . .  (129) 
1 - -  ~ g  

All the  above formulae have a meaning  only if 

1 
g < - = 0.3183 . . . . . . . . . . . .  (130) 

and, i f g  tends to this limit, we have N - +  0, co --+ 0, 2 -+  1, as it should be. For greater  values 
of g, the  mot ion  should be aperiodic. This solution is i l lustrated in Fig. 16, where co/o9,, 2 and g N  
are p lo t ted  against g. I t  is seen tha t  co decreases slowly with increasing g, to fall very  rapidly 
to 0 near  the l imit ing value, while 2 rises first nearly in proport ion to g and then  shoots up to 1 
near  *he limit. As to gN, i t  at tains its m a x i m u m  value 1 at g very  little less t han  the  l imit ing 
value, and then  drops very  rapidly to 0. 

I t  m a y  be men t ioned  that ,  for small values of g, the  above solution agrees wi th  tha t  obta ined 
in Section 4.2.1, up to terms of second order in g. Expanding  (128), we get • 

= 1 - ~ g ~ . . . ,  _ a  _- z - -  ½g + o g~ . . . ,  . .  . . . . . .  (131) 
CO n (5) n 

and identical  expansions, to  this order, will be obta ined from (97). The first of Soroka's 
formulae (110), however,  leads to co/o), = 1 + g~/8 . . . .  

I t  must  be clearly s ta ted  tha t  the  assumption (126) and formulae (128) are not  proposed as a 
proved solution. They  are merely  given as an example,  to show tha t  it is possible to make  the  
frequency fall to 0 at the  l imit ing value of g, on making  an assumption at. least equally plausible 
as t ha t  made  in Section 4.2.1. I t  is impossible to obtain a reliable solution wi thout  fur ther  
exper imental  work. 
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4.3. Summary of Formulae.--The following table summarizes all relevant formulae for free 
oscillations, derived and discussed above. Soroka's formulae are included for completeness. 

bJO 

~J 

(D 

Viscous 
damping  

After  
Collar- 

Bishop, or 
Mykles tad  

After 
Soroka 

Solut ion of 
Section 4.2.4 

V (  1 _ ~2) 

• / 1  + ~/(1 --g2) 
2 

= C O S  fl 

N/C0  + g~) + 1 _ 

2 

= c o s h  y 

4~ 

J ( 1 6 a ~  , , ~ l + a g ~  -t- m y ~ - - ~ }  

t~/rD n 

J 1 - -  ~/(1 - -  g2) 
2 

= sin 

2 

= sinh y 

l n l  + zrg 
1 - - : z g  

2 2~ ~/(1 -- ~.2) 

2~ g 1 + V(1 --g2) 

= 2~ t an  fi 

2~ g 
~ / ( l + g ~ ) +  1 

= 2~ tanh  y 

{ l n l +  ag 

References 
to t ex t  and  

Figures  

Section 4.1.1 
F igure  11 

Section 4.2.1 
Figure  12 

Section 4.2.3 
Figure  13 

Section 4.2.4 
Figure  16 

5. Conclusions.--The main conclusions of the present Paper are as follows : 

A. Simple harmonic oscillations, single degree or freedom. 

(1) The equation (1) of steady forced oscillations may be transformed to the complex form (44), 
so that  the damping and stiffness terms are combined into a single 'complex-stiffness term ', 
the complex stiffness being 

k + i c c o  . . . . . . . . . .  (a) 

(2) The expression (a) is convenient in the case of viscous damping when the damping coefficient 
c is constant (independent of frequency co). In the case of hysteretic damping, however, when c 
is inversely proportional to frequency according to (3), the complex stiffness assumes the 
appropriate form : 

h(1 + i g ) ,  . . . . . . . . . .  (b) 

and the equation of forced oscillations become (57). 

(3) The alternative expressions of the complex stiffness 

ke'  or  k e  . . . . . . . . . .  (c) 

are only admissible if g (or/~) is very small, and second order effects can be neglected. Using 
these expressions for larger values of g and deducing effects involving higher orders, as suggested 
by Myklestad, leads to erroneous results because it implies an artificial assumption that  the 
real stiffness k is replaced by k v ' ( 1 -  g~), varying with g (see (71)). Myklestad's formulae 
(68 to 70) for the amplitude and phase delay angle are misleading and should not be used. 

B. Decaying oscillations, single degree or freedom. 

(4) The equation (72) of free oscillations may again be transformed to the complex form (89), 
but the complex stiffness then becomes different from (a), viz. : 

( k - a c )  + icco . . . . . . . .  . .  : . .  (d) 
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(5) The expression (d) applies directly in the case of viscous damping but offers no advantage 
in practice, as it contains a and m, both quantities being originally unknown in the typical 
problem of free oscillations. 

(6) The law of hysteretic damping in decaying oscillations is unknown, because all experiments 
have hitherto been restricted to simple harmonic oscillations. Assuming, however, that the 
previous law (3) still applies, the complex stiffness becomes : 

which differs from (b). On this assumption, the solution of tile problem of free oscillations 
is given by the formulae (97). The solution is plausible for small values of g, but is doubtful 
for larger values. 

(7) Myklestad's expression for complex stiffness in the case of hysteretic damping: 

k e . . . . . . . . . . . . . .  ( f )  

leads to the same solution as (e), provided g = sin 2/~. This expression is therefore admissible 
in the problem of free oscillations. 

(8) Using the complex stiffness in the form (b) in the problem of free oscillations, as proposed 
by Sor0ka, leads to erroneous results, because it implies an artificial assumption that the real 
stiffness k is replaced by kV'(1 + g~), increasing with g. Soroka's formulae (110) are misleading 
and should not be used. 

(9) A tentative alternative solution of the problem of free oscillations with hysteretic damping, 
based on a plausible assumption on energy dissipation, is given in Section 4.2.4. Its validity 
depends on experimental confirmation. 

C. Damped oscillations with many degrees or freedom. 

(10) The complex stiffness in tile form (a) or (b), in the cases of viscous or hysteretic damping, 
respectively, may also be used for systems of many degrees of freedom, provided only all 
oscillation in a single simple harmonic mode is considered, i.e. : 

(i) either for steady forced oscillations, where all exciting forces are simple harmonic of the 
same frequency, 

(ii) or for steady self-excited oscillations, e.g., flutter in critical conditions. 
In both cases, the form (c) for complex stiffness should be avoided, unless only first order effects 
of damping are considered. 

(11) Whenever the oscillation consists of severM modes, whether simple harmonic or decaying, 
the law of hysteretic damping is unknown. The law applying for a single simple harmonic 
mode cannot be used, simply because it involves the frequency, and becomes senseless where 
there are several frequencies. Any attempts to use the concept of complex stiffness in such 
problems would lead to meaningless solutions. 

(12) Tile general law of structural damping can only be found by new experiments. Such a 
law should be applicable to any motion, periodic or aperiodic. The difficulties of tile experimental 
technique are very serious, especially as it cannot be anticipated in advance that the law will be 
linear. The problem will have to be faced if higtl (artificially augmented) structural damping 
is to be widely introduced. 

D. Remarks on definitions and nomenclature. 

(13) To avoid misunderstandings, it is suggested that an oscillation should be termed 
' d a m p e d '  whenever there are damping forces in the system, i.e., dissipative forces opposed 
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to velocity,-irrespective of whether the  amplitude decreases or remains ,constant. The terms 
' s teady '  or 'decaying '  oscillation should~ be used to indicate that the amplitude is constant 
or decreases as time increases. 

(1.4) In a simple harmonic oscillation with viscous damping the' amplitude of the damping 
force (cmx*) is proportional to that of velocity (~ox*), the coefficient c being constant. In the 
case of hysteretic damping, however, c is assumed to be inversely proportional to frequency 
(see form. (3)), and hence the amplitude of tile damping force (kgx*) is proportional to that of 
displacement (x*), k and g being constant. This has led some authors to describe the hysteretic 
damping force as 'proportional to displacement but in (COUllter) phase with velocity '. The 
expression is wrong, but its use seems plausible when one considers the equation of motion in 
complex form (e.g., equation (57), where the term igkx represents the damping force). It must 
be understood that the damping force varies in proportion to the velocity throughout the motion 
(see equation (46)), and only its amplitude is proportional to that of the displacement. 
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LIST OF SYMBOLS 

Damping index of a decaying oscillation, see (74) 

Damping indices of an aperiodic motion, see (82) 

Damping coefficient, see (1) 

Critical damping coefficient, see (26) 

Energy lost per cycle of an oscillation 

Energy dissipated by damping in a decaying oscillation, per cycle 

Energy dissipated by damping in a simple harmonic oscillation, per cycle 

Amplitude of applied external force 

Resisting force, resultant of restoring and damping forces 

Dimensionless coefficient of hysteretic damping 

Stiffness (spring constant) 

Mass 

Coefficient, see (119) 

Magnification factor for constant amplitude of exciting force 

Magnification factor for amplitude of exciting force proportional to frequency 
squared (centrifugal excitation) 

Ratio of amplitudes at beginning and end of a cycle 

Frequency ratio, see (°9) 

Time 

Period 

Displacement 

Displacement amplitude in simple harmonic osciilation, or initial amplitude 
in decaying oscillation 

Velocity 

Acceleration 

Initial phase angle of the exciting force 

Myklestad's angle for hysteretic damping 

Auxiliary parameter, see (112) 

Logarithmic decrement 

Damping angle 

Phase delay angle in forced oscillation 

Relative damping ratio 

Actual frequency in free or forced oscillation 

Natural frequency 
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A P P E N D I X  (to Section 2.2) 

Details of Calculating the Energy Dissipation in an Exponentially 

Decaying Harmonic Oscillation 

To evaluate  the integral in (17), we t ransform " 

l,m cos (mr + ~ ) -  a sin (rot.+ ~o) --  m2 +2 a2 + m~--2 a2 cos 2 (mt + ~o) --  am sin 2 (mr q- 9) 

) = -  + ~ cos 2~0 -- am sin 29 c o s 2 m t - -  

_ _  a 2 

( c°~ 2 

The formula (17) then becomes • 

= 1 , 2  2 = -  Ed -2cx [(m + a ~ ) l ~  + { ( m ~ - - a 2 ) c o s 2 ~  2 a m s i n 2 ~ } I ~ - -  

- -  {(m ~ --  a 2) sin 2~ + 2a(o cos 2~} 13], 

where the three integrals are • 

- -  sin 2~o + am cos 29) sin 2rot (A.1)  

(A.2) 

f 2~1~ I1 = e -2~'  d t  = ( 1  - -  e - ~ / ° ' )  , 
d O  

. .  (A.3) 

d O  

e-2V t cos 2~ot dt --  2(a~ + m2 ) a + (m sin 2 r o t -  

a (1 - -  e - ~ I ~ )  
- - . 2 ( a  ~ + m~) 

a cos 2,t). e -~~t i ~fo 

(A.4) 

I~ = .-o e -~'  sin 2mr dt --  2(a~ + co~) m --  (o~ cos 2~ot q- a sin 2rot).e - ~  
2~r](o 

0 

(D 

_ 2(a~ + m~) (1 - e - ~ ° ) .  . .  

Subst i tut ing (A.3, 4, 5) i.nto (A.2), and simplifying, w e  obtain (18). 

(A.S) 
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