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Summary..--Spoilers, split flaps and sometimes (with thin aerofoils) incidence alone cause the flow to separate from 
the aerofoil surface. This flow often reattaches to form a closed bubble of virtually stationary air at a fairly constant 
pressure. The paper sets out a mathematical  theory of the subsonic inviscid flow external to the bubble whose position 
is assumed. The influence of the bubble on the lift and moment  coefficients is calculated and some comments are made 
about the stalling of thin aerofoils. 

1. Introduct ion.--Recent ly  interest has arisen in flows about aerofoils and wings in which 
separation of the flow followed by reattachment has occurred. Ref. 2 describes tunnel tests 
at low speeds of a delta wing fitted with split flaps, i t  was found in these tests tha t  for small 
flap angles a type of flow exists in which the flow reattaches to the wing surface behind the flap, 
a type of flow also observed by Pearcey and PankhursO, ~ for aerofoils fitted with spoilers. 
Kiichemann 1 has observed the same type of flow, although in his experiments the flow separation 
was not  produced by spoilers or flaps, but  by simply placing thin wings and aerofoils at high 
incidences. In this case flow separation occurs very close to the leading edge and for a certain 
range of incidence reattaches to t he  upper surface forming a closed bubble. In general as the 
incidence increases so does the bubble length, until  eventually the flow does not reattach but  
forms aninf ini te  wake. This phenomena in the case of aerofoils is known as the ' thin aerofoil 
stall ', since the stall occurs at some stage between the first appearance of the bubble and the 
incidence at which reatta~chment fails to occur. A detailed experimental investigation of the 
thin aerofoil stall is presented in Ref. 3. 

With sharp leading edges, spoilers and split flaps, the point of flow separat ionis  clearly fixed, 
but  the point of flow reat tachment is, in general, initially unknown. I t  may be possible to use 
viscous flow theory to determine the reattaehment point of the Separated boundary layer 6 but  
this difficult problem has not yet been solved. With rounded-nose aerofoils the point of flow 
separation-for the leading-edge stall will be quite close to the leading edge, but its precise position 
will be unknown until  a boundary-layer calculation has been made. In this paper the positions 
of both flow separation and reattachment will be assumed known. 

The bubbles observed on aerofoils are not entirely at constant pressure. For example the 
leading-edge bubble is at constant pressure for about half of its length, and then some pressure 
recovery occurs over the rear portion up to the reattachment point. This has been explained 
thusl The boundary layer is laminar at separation and remains essentially laminar over the 
constant-pressure portion of the bubble. Transition then occurs resulting in some turbulent 

* Now Nuffield Research Professor of Mechanical Engineering in the New South Wales University of Technology, 
ST~dney, Australia. 
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mixing over the rear part  of the  bubble. Tiffs turkulent  mixing is responsible for the observed 
pressure recovery. The theory  given in this paper  could be made  to allow for this pressure 
gradient,  but  in the  absence of theoret ical  or empirical es t imates  of i t s  magni tude,  and of the 
posit ion of transition, the au tho r  has developed the theory for constant-pressure bubbles only. 

Fig. 1 gives an idea of the fairly general problem solved in the  paper. A B is a spoiler or split 
flap~ of length h and deflection angle ~1 while EF is a normal  type of flap. The flow separates 
from A and reat taches on the flap at G, so tha t  A G is a constant  pi-essure streamline. If the 
flap is deflected downwards,  or if the point  A is well above the aerofoil surface, the  r ea t t achment  
is unlikely to occur, and the bubble  will be open to infinity. The theory of the flow external  to 
such bubbles, usually t e rmed  ' wakes ', has been given in Ref. 7. In the special case when the  
flap is undeflected and the  spoiler is at  the  Ieading edge and of zero length the theory  becomes 
appropriate  to the  case of the thin-aerofoil  stall. 

The theory  developed below applies to subsonic compressible flow only. 

2. Solutio~ of Laplace's Equation withi~ the U~.it Circle with Mixed Boundary Coraditio~s.-- 
As shown in section 3 the de terminat ion  of the compressible subsonic flow about  an aerofoil can 
be approximate ly  reduced to the solution of Laplace s equat ion within the uni t  circle. Al though 
this solution (Poisson s integral) is well known when the boundary  conditions are simple, it is not  
in the  case when the boundary  conditions are mixed. However,  the required solution is easily 
derived from a result on mixed boundary  conditions recently given by the author  s. 

The result referred to is tha t  within the strip -- oo ~< ~ ~< oo, 0 ~< c ~ 0,/2, a complex harmonic  
function, f = r -b iO, is related to the boundary  values of its real and imaginary parts by: 

f(¢) . . . .  {00 cosech (~* -- ¢) + r~ sech (b* -- ~)] d3* . . . . .  l) 
--oo 

where ¢ = d 2- ie, and 0o and r, are the  values of 0 and r at d -= d*, on e = 0 and c ~/2 respec- 
tively. The C-plane is shown in Fig. 2a. 

Now it is easily verified tha t  the  infinite strip i n  the ~-plane is mapped  outside the uni t  circle 
in the  t-plane, shown in F g. 2b, by: 

a n h "  = - - i t a n h l  - - r e  it0 
1 - ] -  t e ly0 ' (2) 

w h e r e  = _ r 2 )  . . . . . . . . . . . . .  ( 3 )  

)10--- ½-()11 --~ ~)2) . . . . . . . . . . . . . .  (4) 
and ~1 and 72 are defined in Fig. 2 .  The elimination of ¢ between equations (1) and (2) :yields 
the required solution of Laplace s equat ion with mixed boundary  conditions within the unit  circle. 

On the circle, I = - -  e-;;', where ~ is measured in a clockwise direction from CO (Fig. 2b), and 
equat ion (2) yields: 

- -  t an  k 
t anh  ~ = t an  {(y -- y0) . . . . . . . . . . .  (5) 

on the surface A B, and 

on CDA. 

coth d = --  tan k 
t a n  ½(;~ - -  7 0 )  . . . . . .  " 

For the purposes of this paper a spoiler is defined as a projection having a small value of h and large valu'e of~i, 
whereas a split flap has large h and small ~.. 
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3.. Compressible Subsonic Flow About an AeroJoil .--The following notation will be Used in the 
remainder of the paper :  
(x, y) The physical plane .- , 

Z 

/4, S 

= x + i y  

Distances measured normal to and along a streamline respectively 

(q, 0) 

P, Po 

o o  

Velocity vector in polar co-ordinates 

Local and stagnation densities respect!vely 

As a suffix to denote values at infinity 

V z qoo 

M Local Mach number 

= ' (1 - -  M~)I./2 

..&.¢,'t" / 

~ ~ - ~  

FIG, 1. 

0 0 

F E 

~: = ~ / 2  

r C = O  

D C B 

~' - pla.ne 

FIG. 2a. 

• A ,-£ " ' ,  a 

~ . ~  

' pique 
FIG. 2b. 

C.S A G 

D E 

- p l a n e  

Fro.. 2c. 

F 
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(¢ Plane of equipotentials (¢ = constant ) and Streamlines (~0 constant ), for zero 
circulation where: 

r defined by: 

d¢  = q ds,  dw - -  - -  O q d u  . . . . . . . . . .  
Po 

r = ¢~ d(log U/q)  . . . . . . . . . . .  
q = U  

f defined by f - :  r + i O  . . . .  

(7) 

(8) 

(9) 

m defined by m = 3 0_2, (10) p " "  . :  . . . . . . . . . .  

w defined by w = ¢ + i m , w  . . . . .  

Other symbols will be introduced as required in the text. 

(11) 

Now it has been shown 1° tha t  a good approximation to the differential equation of com- 
pressible subsonic flow is obtained by putt ing m = m .  (yon K~rm~n's approximationn). Then 
we find that :  

O V +  1 a=f 0 
a¢ e m ~  ~ a w  ~ -  , 

so that  from (11) we see that  f is approximately an analytic function of w. This approximation 
is the basis of the following theory (the theory is exact in incompressible flow). 

First consider the case of zero circulation. The w-plane (Fig. 2c) is transformed into the 
t-plane (Fig. 2b) by: 

w = a( t  + l / t )  . . . . . . . . . . .  (12) 

and the .t-plane is in turn transformed into the C-plane b y  equation (2). F r o m  the analytic 
character of these transformations it follows that  f is an analytic function of ¢ (or approximately 
so) and is therefore given in terms of its boundary conditions by equation (1). On w = 0, 
t = -e-iL and (12) yields: 

¢ = -- 2a cos y . . . . . .  . . . . . .  (13) 

We now make a basic approximation,--the ' m a p p i n g '  approximation, which is that  the 
overall mapping from the z to the ¢-plane is only negligibly, affected by small values of the 
incidence (~), flap deflection (~), and spoiler height (h) or split flap angle ($l). In other 
words we calculate the first-order effects of small values of ~, ~, h (or ~1) in the ¢ and t-planes 
for zero circulation and ignore the second-order effects of these _quantities on the actual mapping 
itself. The same type of approximation was successfully employed in Refs. 7 and 9, a n d  it is 
also commonly used in unsteady aerofoil theory. 

Integrating equation (1) by parts we obtain: 

2 f  ~ f ( ¢ )  = rA + i0.4 + 2 ~ tanh - - 1  {exp (3* ¢)} dOo (3*) ~ ~ . . . .  - - -  -- tan -1 / exp (3* -- ¢)} dr,  (3*),  

. . . . . .  (14) 
where, by  the mapping approximation, ~ and d* refer to the C-plane derived from the z-plane of 
zero circulation, and where ra and 0A are the values of r and 0 at 3 = m, i.e., at point A in Fig. 2. 
For a constant-pressure bubble lying between A and G, dr~ = 0, and the last term of (14) vanishes. 
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This case will be assumed in  the remainder  of the p a p e r .  However,  if a theory  is developed to 
give the posit ion of the boundary- layer  t rans i t ion point  on the bubble  and the subsequent  
pressure gradient,  the last  t e rm of (14) could be re ta ined to allow for this. For  the  constant-  
pressure bubble case: 

f(¢) = rA + iO~ + 2 f ° t anh  =~ {exp (8* ~)} dOo (15) _ - -  . o • • 

A condit ion not  ye t  men t ioned  is t ha t  changes at  the  aerofoil can have  no effect on the flow 
direction at  infinity,  i.e., 

l imf(z) = O, 
z ~ a o  

assuming directions of flow to be measured from the direction at  infinity.  Now z -+ oo impl i e  s 
w -+ oe, t ha t  is from (2) and (12), ¢ -+ ik. Thus the bounda ry  condit ion at inf in i ty  is, from (15)" 

in terval  85 --  ~4, as shown. 
Joukowski  condition. 

rA + iOA -- ~-2 f~ ~,=_~ t anh  -~ {exp~ (8* --  ik)} dOo (~*) . . . . .  (16) 

E q u a t i o n s  (15) and (16) apply  to an  aerofoil of any  thickness,  but  in order to s implify the  
a lgebra ,  we shall now confine our a t ten t ion  to t h in  aerofoils. This will enable us to calculate 
the first-order effects of the  bubbles on aerofoil performance in quite simple forms. T h e '  skeleton'  
of  our th in  aerofoil will thus  appear  as in Fig. 3a. T h e  values of 00 due to the incidence flap and 
spoiler (or split flap) are clearly those shown in Fig. 3b. In  general  the f ront  s tagnat ion  point  
will be displaced from the leading edge C, result ing in the  reversal in the  flow direction in a small  

The rear s tagnat ion  point  will remain fixed in accordance wi th  the  

J 
i 

C ¢~ I[~ A~ 

FIG. 3a. FIG. 3b. 

Pu t t i ng  the values of 0o s h o w n i n  Fig. 3 into (15) and (16), we obtain" 

f(¢) = rA --  i(~ -- ~1) ---2~ t a n h _  1 {exp (~3 --  ¢)} + 2 t anh  -1 {exp (di --  ¢)} 
g ~  

and  

--  2 t anh  {exp (b5 --  ~)} + 221 t anh  {exp (86 ~)}, 

r~ --  i(~ --  21) --  
22 t anh  - I  {exp (t3 --  ik)} --  2 taI~h -1 {exp. (8~ --  ik)} 

• I (17) 

since c l e a r l y  . .  

+ 2 t a n h - 1  {exp (85 --  ik)} --  22___~ t anh  {exp (86 --  ik)}, 

OA = ~1 -- 0~. 

(18) 



The  va lues  of d. a n d  d, d e p e n d  on the  posi t ions of the  flap a n d  spoiler  hinges.  If  these  posi t ions 
are  def ined b y  m a n d  7, in the  t -plane (the angu la r  co-ord ina tes  (see Fig. 2b) ), t hen  f rom (5): 

- t l  - t l  . . . .  ( 1 9 )  
t a n h  ~ = t a n  ½()'2 - -  70) ' t a n h  OG = t a n  ½(m - -  70) ' 

where  tl = t a n  k . . . . . . . . . . . . .  (20) 

In  the  fol lowing analys is  it  will  be a s s u m e d  t h a t  ({) 71 ~< 72 ~< 71 + ~, and ,hence  f rom (3) a n d  (4), 
k ~ 1(72 - -  yo) ~< a /2  + k, so t h a t  f rom (19), a2 < 0, a n d  (ii) t h a t  y2 - -  ~ ~< y6 ~ y~, w h e n  f rom (3), 
(4) a n d  (19), d6 > 0. U n d e r  these  condi t ions  we  deduce  f rom (19) that"  

- -  t l  

s inh 02 = V { tan~ ½(73 - -  r0) - -  t2} ' (21) 

t l  :' ( 2 2 )  
a n d  sinh ~G = V /{ t an  2 {(y6 - -  7o) - -  t~} ' " . . . . .  

resul ts  w h i c h  are r e q u i r e d  later .  F r o m  Figs. 2 a n d  3 i t  is a p p a r e n t  t h a t  7 = 0 : w h e n  O =  05; 
t hus  f rom e q u a t i o n  (5): 

t a n h  ~5 = tl/to . . . . . . . . . . . .  : (23)  

where  to = t a n  17o . . . . . . . . .  
, r 

tl - , c o s h  ~5  - -  to " H e n c e  s inh ~ = -/(to2 _ t~ 2 ~/(to. _ tl 2 . . . . .  

I t  r ema ins  0n ly  to fix t h e  va lue  of d4. 

A s ,  

' ( cosh  d -}- cos k~ ( s i n k  ~ - - i = ' ( d  > 0) 
2 t a n h  -1 e e-~k = ½ log \ c o s h a  - -  cos k /  + i t a n  -1 \ s i n h  d / +  0 (~ < 0) 

e q u a t i o n  (18) yie lds  the  two  equa t ions  

( 2 4 )  

( 2 5 )  

log (oosh ~,~ + cos (cosh ~, + cos + ½ log \~-5-N g - -  cos 
2~ \ cosh  d.~ - -  cos, - -  ½ !og \ cosh  O~ --  cos 

a n d  

\ s i n h  ~3/-}- 

~l log(C°sh  ~6 + c°s kk) 
2~ \cosh~6 + cos ' 

1( sink ( sink  '1 ( sink 
t a n -  \ s i n h  d J  - -  t a n - 1  \ s i n h  ~ 5 / +  -~ t a n - 1  \ s i n h  dG/' 

. .  ( 2 6 )  

. .  (27) 

since we h a v e  a s s u m e d  02 < 0 a n d  ~, > 0. E q u a t i o n  (27) can  be w r i t t e n  

s inh  (% ----- sin k ( s i n h  ~4 + sin k t a n  Z) 
sin k t a n  X s inh ~ ' 

( 2 8 )  

where g ~ a - -  - t a n _  1 (  s i n k ~ _  
\shah ~2/ 

( sin k 
~-~ t a n - 1  \ s i n h  (~6/ . .  (29) 
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E l i m i n a t i o n  of s inh  d~ f r o m  (25) a n d  (28) gives:  

s inh  d~ = sin k cot  (z + ~ ) ,  . . . . . . . . . .  (30) 

whe re  ~ = t a n  -1 (~/(t0 ~ - -  tl ~) cos k ) .  

E q u a t i o n s  (29) to  (31) fix t he  v a l u e  of ~ .  

(31) 

4. The  Pressure  Dis t r ibu t ion  

F r o m  e q u a t i o n s  (21), ( 2 2 ) a n d  (29): 

z = ~ + ~ t a n - l [ ~ / { t a n ~  1(73 - -  70) - -  t~ 2} cos k] ~ t a n - I  [@{tan  2 ½-(76 - -  7 0 ) - -  t~ 2} cos hi. 

. . . .  (32) 

I n  t~{e case of a spl i t  f lap ~ / ~  will b e  smal l  (see f o o t n o t e  to  sec t ion  1, para .  4) a n d  s ince it  has  

been  a s s u m e d  t h a t  ~ a n d  ~ are small ,  i t  fo l lows f r o m  (32) t h a t  z is a sma l l  n u m b e r ,  of t he  first  
order ,  say.  On t he  o t h e r  h a n d ,  s u p p o s e  t h a t  i n s t e a d  of a sp l i t  f lap we h a v e  a spoiler .  I n  th i s  
case ~ / ~  will  n o t  be  smal l ,  b u t  t h e  spoi ler  h e i g h t  h will be. In  sec t ion  5 it  is s h o w n  t h a t  h is 
p r o p o r t i o n a l  to  ~, Where ,t - -  ),2 - 7°. i f  we n o w  a s s u m e  tha tZ  is of t he  first o rde r  in  sma l lness  
we can  wr i te :  

1 ~ / ( t a n  ~ ~(;"0 - -  70) - -  t~} = sec k ~/(Z t a n  k) . . . . . . .  (33) 

to  first  order .  H e n c e  (32) can  be  w r i t t e n :  

Z = c ~  - -  - t a n - l [ c o s / %  ~/{tan" ½ ( 7 3 -  7 0 ) -  t l ~ } ] -  -- W((i tank) . . . . .  (34) 

T h u s  in  e i t he r  case z is a sma l l  first  o rde r  q u a n t i t y .  In  t he  r e m a i n d e r  of t h i s  p a p e r  s econd  o rde r  
t e r m s  in z will  be  ignored .  

T h e  a p p r o x i m a t i o n  ~ = ¢? ~ in e q u a t i o n  (8) y ie lds  r ---- f t .  log (U/q).  T h u s  if Cp is t he  p re s su re  
coefficient ,  @ -"- 2r/flco. I n  p a r t i c u l a r  if Cp is t he  p r e s su r  e coeff ic ient  in t he  bubb le ,  i t  fol lows 
f r o m  (26) t h a t :  

• / ÷ 1 o, + ÷ 
Cp := ~ - -  ~ log \ co sh  ~3 - -  cos \ c o s h  ~4 - -  cos + ½ log \ c o s h  ~ - -  cos 

/ log \ ~  _ cos " 

W i t h  the  a id  of e q u a t i o n s  (21) to  (25) a n d  (29) to  (31) th i s  can  be  r e d u c e d  to:  

~( ~ ( t a n  ~(7~ - 7°) + c o s  k ~ / { t a n  2 ½(7~ - -  7o) - -  t?}~ 
Cp = - -  z co t  ½ ~'0 - -  ~ log \ t a n  ½(7~ - -  70) - -  cos k v / { tan  ~ ½(7~ - -  7o) - -  t12}/ 

~1 log ( t a n  ½(7o - -  76) + c o s k  ~ / { t a n  ~½-(7o - -  ~),) - -  t12}~/ (35) 
2~ \ t a n  ½(7o - -  7~) - -  cos k ~ / { t a n  2 ½(~o - -  y~) - -  tl~}J J " 

I n  t h e  p a r t i c u l a r  case of a spoi ler  a n d  no  t r a i l i ng -edge  flap, f r o m  (34) 

x = ~ - - V ( ~  t a n  k) . . . .  (36) j -~  J ° ° ° ° 
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and )'o - -y0 = 2k + ,~, so that  to first order in ~/1, (35) yields: 

{ sin (½to ~- k) ~1 } 
, Cp-- f i2  ~co t½YO+s in½ros ink  ~ ~ / (Ztank)  z . . . . .  (37) 

On an aerofoil without a bubble the :pressure at r = y0 due to incidenee alone is well known 
to be: 

2 Cp- c o t ½ r o ,  

so that  it is interesting to note from the first term on the right-hand side of (37) that  the pressure 
in a~ bubble produced by'incidence alone is equal to the value it would have at the mid-point of 
the bubble (in angular measure) in its absence. 

On the ' wetted ' surface of the aerofoil ~ = b + i ~/2; hence from the real part  of (17) the 
pressure coefficient is: 

C , - - C , = ~  log - - -  -- tanh½(8~ -- ~ log ] tanh ½(83 8)[ 
" "' £5 

log I tanh ½(00 -- 8)11. .. (38) Yg J 

We shall not express this in terms of the angular co-ordinates in the tJplane, as it is more con- 
venient tO calculate the lift and moment using d as the independent variable. However, before 
calculating CL and C,,, it is convenient to derive the relationship between h and ~ for a spoiler. 

5. The Spoiler Height . - -The  spoiler height is given by: 

l , ;  f f  1 d¢(6) 
~c~6 q 

Hence, from (13) hU f °  U 4a -- ½ --sin ~ d~,(O) . . . . . . . .  (39.) 
=¢56 ~ " 

From (17) it follows that  on the spoi!er I i.e., in d0 ~ 8 ~ 0% 

f q ~1 
r =  / 3 d ( l ° g U / q ) - ~ - - l o g l c o t h ½ ( ~ 6 - - 8 ) l + r A  . . . . . . .  (40) 

q = U  Sg 

selecting only the dominant terms on the sPOiler. 

In the range of integration of (39) q varies from 0 at 8 = 80 t o  approximately U at 8 = 0% so 
that  an average value of/3 in the rangeis  approximately ½(1 + ~ ~). To make algebraic progress 
at this point it  is necessary to replace/~ in equation (40) by this average value. This enables us 
to write: 

U U 
- -  = coth ~ {½(8, -- 8)}, 

q q 

in 86 ~ 8 ~ 0% where ~ is the (constant)velocity on the free streamline of the bubble, and: 

6 ~  • 

If c is the aerofoil chord, it is apParent from (13) that:  

4a -"- Uc , 

8 

(41) 

(42) 



Hence (39) can be writ ten:  

c = ~ q ~ =~ __ e_~/e_~° / sin y dy(6) . (43) 

After some algebraic manipula t ion  of e q u a t i o n  (5) we f i n d t h a t :  

2 cos 2 ½re(to t anh  ~ - - t d ( t a n h  ~ + hto) 
sin y = (tanh~ ~ + t~ ) (44) 

2t~ sech 2 ~ dd 
a n d  d7 = ( t a n h ~  + t12). . .  

In  the neighbourhood of 6 = 0% (44) is approximate ly :  

Hence equat ion (43) yields: 

2 cos 2 ½to(to --  ti)(1 + txto) 
sin ~ = .~(1 + t,') " 

/3 = 8 c°s* ½rotl(to - -  tl)(1 + tlto) 2 
c (1 + ha) * e% F* ' 

where { f f  1 (11 +__~y ) ' y ~-~/2 

. .  (48) 

.. (46) 

and  the second order terms arising from 
t h a t  from (5): 

t anh  ~e = 

U / (  1 have been 

tl cot (k + 

neglected. N o w ~ , 0 - - y ~ = 2 k + 2 ,  so 

i.e., 1 --  2e -  %-'~ 1 
sin 2 k '  

or  e - ~6 
2 sin 2k" 

This  result enables us to reduce the equat ion for h/c to: 

2 sin (yo - -  2k) 
h/c = F~ 2 .  (47) 

The funct ion F(8) has been t abu la ted  in Ref. 7, where it arose in a similar calculation. I t  is 
reproduced below. 
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. The Li f t  Coej~cient . --The lift coefficient is given by:  

CL = - -  lc ~ Cp cos 00 ds, 

- -  c 1 ~ (C, C,) cos 00 

9 

2a sin 7 dr 
q 

, b y  Oa) 



where  

and  

/ 4a', r~'~ C -~  - ~ [ ~ ) j ~ .  ( ,  - c , )  sin ~, d~; ' : ' . .  ...... : . :  : i  ~' (~8) 

wi th  neglect  of second-order  t e r rKs ,a f id  making: .use  of the  f a c t " t h a t  C, - -  (2~ van i shes  over  the  
b u b b l e  s u r f a c e .  F r o m  (38), (42), (44), (45) a n d  (48) we f i n d ~ t h a t :  

. ~ T  s - - I 4 - - - [ ~  I ,  , . . . . . .  (49) 

' ' 2  . ,1 . • ' 
f ,  

I ~ - -  F(~)  l o g  t a n h  ½-(a~- a)l da, 
- -  O 0  ; -  

% 

c o s  ~ ½70 sec 1~ ~(to t anh  a - -  t , ) ( tanh  ~ + t,to) 
' ~ ,  ( t a n h ~ 8  + tl~) ~ ,, :.,,,,,,: ..... ,:, , 

The in tegra l  i,: can be eva lua t ed  b y  i n t eg ra t i ng .F (z )  log t a n h  ½(*L --  z) a round  the  infini te  
r e c t a n g l e  - -  oo ._< x ~- c~, y = 0; - -  6o ~ x ~ oo, y = i~; s i~ i tab ly  i n d e n t e d  t o  e l i m i n a t e  t h e  
l oga r i thmic  s ingular i t ies .  I t  is found  tha t :  ~:... .-. !:. ,.-,.~.~:.:..-. . . . .  

. = .  q "  • , 

_ ( c o s y 0  Cos # s inh  a~ - ~ s i n  k sin ~0 cosh ~i/ 
2 s inh  ~ a; + sin ~ k / . . . . .  (50) 

Making  use of (]9) to (25), (30), (31), (32) and  (50) we find, af ter  some reduct ion ,  t h a t  (49) can  
be writtei1: 

icos  _,oi 
/ ~ c O  ' ' :  

. . , "J  • . 1  
% 

- -  (cos ~ -4- cos ~o) ~ , / ( tan 2 ½(73 ~'o) - -  t,2}) 
/ 

_ . y -  

L ' " '  , . , .  " " ' 

8, 2 cos '# t a n - *  [cos k ~ / { t a n  ~ ½(~6 - -  yo) - -  t,'2}] 
2a  

- -  (cos ~ + c 0 s : ¢ 0 ) ~ / { t a n  ~ ½ ( ~  - -  70) - -  t~ ~} , . . . . . .  (51) 

In  t h e  case  w h e n  the  spl i t  f lap reduces  f o - a  s p o i l e r  arid ' ~ . =  0 i  'we f i n d  f rom (33) a n d  t h e  
d e f i n i t i o n  of Z t h a t  (51) reduces  to" 

/] CL - -  z---- ~ cos k - -  cos k - -  cos  (70 - -  k)} 1 / (2  tal l  k . 

U s i n g  (47) to  e l i m i n a t e  2 w e  arrive  at: 

. . . .  (52) 

1' - ' , - i  }, " j 

cL - : I Y 2  ~ cos k - - {cos k - cos (7o k).}:~ 2 sin,,,(~0 % 

Special Cases 
(a) No Bubble at a l L - - I n  th is  case h = 0, and ~rom Fig."3 i t  is:clear; t h a t  i f  the  bubb te  vanishes 

we m u s t  have 76 = 7o, and ~3 = 2~ - -  ~o (see parag raph  fo l l ow ing  equa t ion  (20) ) .  I n  th is  case 
(51) reduces  to t h e  w e l l - k n o w n  resu l t "  .... : . 

, "~ ,! I ,  2 a {  ~ (~ ~_ 7o + sinTo) l cZ - ~ y ~  ~ .+,. ~ ,. 

!.0 



(b) Bubble Starting from Leading Edge.--From equat ions (3) and  (4) we tind tha t  in this case 
k 1, This case is qui te  impor tan t  as it is appropriate  to the ' thin-aerofoil  stall ' discussed 

: g )  o .  . 

in the  introduction.  Equa t ion  (51) reduces to: 

2~{  ~ (  ~/{sin ~ 1 __ ~ sin (~r~ 2k)} 
C L = ~ .  ~cos  2 k + -  cos ~ k t a n - ~  1 cos (~r~ -- k) 

- + . .  

Some consequences of this result are discussed in section 8. 

(c) Bubble Closing at the Trailing Edge.--Consider, for simplicity, t h e  case of the  spoiler only. 
Subst i tu t ing y0 = ~ 2k in (53)we obtain '  

. . .o. .  { )} 
: C L -  i ~  ~ c o s / ~ - -  cos21~ (55) ~z W\2c . -  . . . . . .  '1 

I t  is interest ing to compare this result with one obta ined in ReL 7 f o r a  spoiler b e h i n d  Which• 
extends a constant-pressure bubble  of infinite extent .  In this case the pressure in the bubble o~ 
wake will equal the value at infinity outside the wake. The result referred to, in the notatiol-i 
of this- paper  reads: " 

CL =/3--~ cos h c~ cos ~ k -- ~ -- F cos 2 k . . . . . . . . .  (56)" 

On comparison Of (55) and (56) i-t is apparent  tha t  a l though having the bubble open to infinity 
improves  the spoiler effectiveness it reduces the lift slope due to incidence. . 

7 .  Moment Coefficient About Mid-chord Point . - -The m o m e n t  coefficient about  the  mid-chord 
po in t  is: : 

) ' 1 " Ysin0o c~ds d¢ dr, Cm = 7 cos 00 + c de dr 

when the origin of the (x, y)-plane is at the mid-chord point: For thin aerofoils Ux -'- --  2a cos r, 
y ~'- 0. 

l(4a~2~Uc, sinycosrdr Therefore Cm = -- ~\Uc} 

f 
t ' 2  . ,  

_ _  1 (Cp Cp) sin y cos 7 dr , .. or Cm 4 
Yl 

with neglect of second-order terms. From equat ion  (5): 
L 

cos y o (tan h2 a --  tl 2) 2_ 2 sin yot~ tanl i  8 
cos y = t anh  2 a _1_ t~ ; 

I 

thus  using (38), (44) and (45) we c a n w r i t e  (57) in the form: 

where 

j i  __ f ~ cos ~ ½)'o(to t anh  ~ --  tl) 
- -  c o  

. .  . .  ( 5 7 )  

' tanh ~ + tlto){COS 7o (tanh 2 ~ --  tl ~) + 2 sin rotltanh ~} 
cosh ~ ~(tanh ~ $ + t~) 3 

× log]tanh ½(a, --  ~)!d& 

11 



E v a l u a t i n g  this  in tegra l  b y  a m e t h o d  s imi lar  to t h a t  for the  cor responding  in t eg ra l  (13 of t he  p r e v i o u s  sec t ion  we find:  

cos 4 k {sin k cosh ~ sin 270(2 t a n h  2 ~ + t~ ~ t a n h  2 at - -  t~ 4) - -  cos k s inh  ~e cos 2 yo(2t, 4 + t, 2 - -  t a n h  2 ~)} 
J~ = 4 ( t anh  ~ ~} + t~ ~) (sinh ~ ~,. + sin ~ k) " " 

(ss) 

F r o m  (23) to (2s), (30), (31) a n d  (58) i t  is f ound  tha t ,  to first o rder  in z: 

J5 - -  J4 = a . 1 cop  k)z, sin k cos ~ k(cos 70 - -  

while  f rom (19) to (22) a n d  (88)" 

-J3 
_ _  _ _  y 2 _ _  = ~/{sin ~ ½(73 7o) - -  sin ~ k}[cos I(73 70) cos 27o - -  cos I(73 + 370)lcos k + cos (y3 70)}], 4 t a n  k 

J~ 4 t an  k ~/{sin~ ½(Te - -  70) - -  s in2 k}[cos I(76 - -  70) cos 27o - - c o s  .~(y~ + 370){cos ~ k + cos (76 - -  70)}]- 

Subs t i t u t i ng  these  va lues  in t he  e q u a t i o n  for Cm we ob ta in  finally: 

=( Cm -- ~ cos 4 k(1 - -  2 cos 7o t a n '  k)z 

+ ~ ~/{sin ~ 1(y3 - -  70) - -  sin ~ k}[cos }(Ta - -  70) cos 270 - -  cos ½(73 + 37o){COS 2 k + cos (73 - -  70)}] 
7g 

~i ~¢({sin 2 1(76 _ y0) - -  sin 2 k}[cos 1(y, y0) cos 27o = cos ½(y6 + 37o){COS = k + cos (76 - -  7o)}]), 

where  g is g iven b y  e q u a t i o n  (32). 

i n  the  case w h e n  the  aerofoi l  is f i t t ed  w i th  a spoiler  on ly  it is found  f rom (34), (47) a n d  (60) t h a t :  

Cm - -  
cos k [ 
2/?~ cos 3 k(1 - -  2 cos yo t a n  ~ k)~ 

~1 ~{  (h/c) tank }{ }]  
+ F 2 sin (70 - -  2k) cos 2k cos (27o - -  k) + sin k cos k sin (270 - k ) . -  cos a k(1 - -  2 cos 70 t a n  s k) . 

Special Cases 
(a) No Bubble at all.--In t he  s a m e  w a y  as in the  cor responding  pa r t .o f  the  p r ev ious  sec t ion  we  f ind f rom (60) t h a t :  

C m = ~  ~ + - ~ ( ~ - - 7 o + s i n 7 o C O S T o )  , 

Which agrees w i th  the  s t a n d a r d  resul t  for an  aerofoil  w i th  a h inged  flap. 

(s9) 

(6o) 

. .  ( 6 1 )  



(b) 
e q u a t i o n s  (34) a n d  (60). 
(60) y ie ld :  

Bubble Starting from Leading Edge.--This specia l  case is f o u n d  b y  p u t t i n g  k = ½r0 in 
Cons ide r  for  s i m p l i c i t y  t he  case w h e n  # = ~1 ---- 0. E q u a t i o n s  (32) a n d  

F o r  th is  case (54) reads :  

C., ---- 28 ~o c°s2 k(2 - -  5 cos ~ k + 4 cos 4 k)~ . . . . . . .  (62) 

27g 
C~ = ~ cos ~k~,, .. . .  ( 6 3 )  

so t h a t  t he  m o m e n t  coeff ic ient  a b o u t  t he  l ead ing  edge,  C~', is 

c j  = c~  - -  ½Cz, 

i.e., C f  - -  28~ c°s* k(5 - -  4 cos ~ k)~ . . . . . . . . .  (64) 

F r o m  (63) a n d  (64) t he  cen t r e  of p re s su re  is a t  a d i s t a n c e  ~ f r o m  t h e  l ead ing  edge  g iven  by :  

cos* k 
c - -  ~ (5 - -  4 cos ~ k) . . . . . . .  . . . . .  :(65) 

(c) Bubble Closing at the Trailing Edge.--Putting m = ~ - -  2k in (61) we f ind:  

C m - -  ~r cos k { cos3 k(1 + 2 cos 2k t a n  2 k)~ 

+ ( os sin' cos - }co  
E . 

. .  (66) 

8. Thin A erofoil Stall*.--!n th i s  case t h e  b u b b l e  s t a r t s  f r o m  t h e  l ead ing  edge  3, a n d  a s s u m i n g  
t h a t  t he  con t ro l s  are unde f l ec t ed ,  f r o m  (37), (55), (62) a n d  (65), we f ind  t h a t  t h e  a p p r o p r i a t e  
e f fua t ions  are" 

~p _ 2~ cot  k, (½to = k in th is  case) . . . . .  (67) 
8 0 0  

CL = 8~o c°s~ k, . . . . . . . . . . . . . .  (68) 

C,, = 2-fl-~ c°s2 k(2 - -  5 cos 2 k + 4 cos 4 k), . . . . . .  (69) 

a n d  ~ cos 2 k 
c =  4 ( 5 - - 4 c o s ~ k ) .  (70) 

T h e  l e n g t h  (lc) of t h e  b u b b l e  is g iven  b y  (see Fig.  4)" 

el  = c s i n  2 2 k  . . . . . . . . . . .  ( 7 1 )  

* See  Ref. 11 for a more recent account, which differs in some details from that  given here. 
that  Ref. 12 includes a closure condition (of the bubble on to  the aerofoil) not given here. 
modifications to the equations in this sect ionbut  the general conclusions are unaffected. 

I3 

The principal change is 
This results in small 



F r o m  (67) arid: (71) 
9Z 

c~ = ~-2 {1 + V ( 1  - z)}~. 

FIG. 4. 

. .  (72) 

From these equations it is apparent  tha t  further  progress requires a knowledge oi the relation- 
ship between the l e n g t h  of the bubble and the incidence. At present there is insufficient 
exper imenta l  data  on this relationship. 

Fig. 5 shows the (l, ~) relationship obta ined exper imental ly  a for a 4.11 per cent thick d o u b l e  
wedge and a 6 per cent th ick  symmetr ical  aerofoil. I t  will  be not iced tha t  the. !ength of constant  
pressure in the bubble is much smaller than  the total  bubble length (over which reversed flow. 
occurs). The theory  of this paper  is based on the  assumptio n of a constant  pressure over the whole 
bubble  length .  For purposes of a rough calculation we will take the average of the two lengths 

This average length is approximated  to quite well by the 

0 
~ t  . .  . .  (73) X ( ~ - -  ~) ~ . > ~ j '  -" " 

to be tha t  appropriate  to our theory. 
s traight  line: 

l =  

and ~.~ being constants.  

The stalling incidence ~, is the incidence at Which ~ C s / ~  = O, i.e., the incidence corresponding 
to CL ms.,, From (72) and (73) it is fotind that :  

I 

. 

~s = ~ -  {2 @" 3~¢t I -~- V ( 4  @- 3~0~1)} , 

1 
z, = § {4 - 3 z ~  + 2 V ( 4  + 3 x ~ ) } ,  

(74) 

. .  (75) and 

where /s is the bubble length when ~. = ~,. The relation between l, and Z~.l is given in the  
following table: 

0 1 2 3 

0.89 0.70 0.48 0.25 

Clearly when i cq />  4 the  stall will occur immedia te ly  the bubble starts to grow, and since ,t is 
large these stalls will occur quite suddenly .  They are known as ' l e a d i n g - e d g e '  stalls and are 
considered to be distinct from thin aerof0il stalls. It  is the author 's  opinion tha t  they  are merely 
a l imit ing case of the th in  aerofoil stall. This view would be s t rengthened if it  could be demon-  
s t ra ted  tha t  ,1~1 increases wi th  aerofoil thickness from its value of abou t  0.75 (cf. Fig. 5) for very  
th in  aerofoils, to a value of about  4 for aerofoils with thicknesses of the order of 10 per cent, 
which are known to stall suddenly. Above this thickness the stall is quite a different type, 
known  as the trailing-edge stall, and the theory  given in Ref. 7 is more appropriate. 
, If we put  ,1~1 equal t o  its exper imental  value o f  about  0.75 in (75), we find tha t  l , - " -0 .75 .  

1 hence  f r o m  Fig. 5, ~s --- 7,~ deg for the double Wedge and ~ = 10 deg for NACA. 64A006. These 
values agree within  ½ deg with the exper imental  values given in Ref. 3 .  

14 



From equations (70) and (71) it follows that  t he  centre of pressure is related to the bubbIe 
length by: 

__ 1 {1 + v/(1 --/)}{3 -- 2 ~/(1 --/)}. (76) 
C 8 " " . . . . .  

This relation is plotted in Fig. 6. The maximum rearward position of the centre of pressure is 
found to be at ~ = (25/64)c, and this occurs when I = 15/16. For an infinitely long bubble it 
follows from the theory given in Refl 7 that  ~ = (5/16)c. As the end of the bubble moves off 
the aerofoil surface with increasing incidence, the centre of pressure moves forward again• The 
same phenomena probably occurs when the bubble is due to a split flap or spoiler (if desired this 
point  could Be checked from the theory of  this paper and Ref. 7) and if th~s is so it provides a 
possible explanation of the nose-up moments that  have been experienced when the split-flap 
deflection increases beYond a certain critical value• 
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