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Summary.—Spoilers, split flaps and sometimes (with thin aerofoils) incidence alone cause the flow to separate from
the aerofoil surface. This flow often reattaches to form a closed bubble of virtually stationary air at a fairly constant
pressure. The paper sets out a mathematical theory of the subsonic inviscid flow external to the bubble whose position
is assumed. The influence of the bubble on the lift and moment coefficients is calculated and some comments are made
about the stalling of thin aerofoils.

1. Introduction.—Recently interest has arisen in flows about aerofoils and wings in which
_separation of the flow followed by reattachment has occurred. Ref. 2 describes tunnel tests
at low speeds of a delta wing fitted with split flaps. It was found in these tests that for small
flap angles a type of flow exists in which the flow reattaches to the wing surface behind the flap,
a type of flow also observed by Pearcey and Pankhurst®® for aerofoils fitted with spoilers.
Kiichemann® has observed the same type of flow, although in his experiments the flow separation
was not produced by spoilers or flaps, but by simply placing thin wings and aerofoils at high
incidences. In this case flow separation occurs very close to the leading edge and for a certain
range of incidence reattaches to the upper surface forming a closed bubble. In general as the
incidence increases so does the bubble length, until eventually the flow does not reattach but
forms an infinite wake. This phenomena in the case of aerofoils is known as the ‘ thin aerofoil
stall ’, since the stall occurs at some stage between the first appearance of the bubble and the
incidence at which reattachment fails to occur. ‘A detailed experimental investigation of the
thin aerofoil stall is presented in Ref. 3. '

With sharp leading edges, spoilers and split flaps, the point of flow separation’is clearly ﬁxed
but the point of flow reattachment is, in general, initially unknown. It may be possible to use
viscous flow theory to determine the reattachment point of the separated boundary layer® but
this difficult problem has not yet been solved. With rounded-nose aerofoils the point of flow
separation for the leading-edge stall will be quite close to the leading edge, but its precise position
will be unknown until a boundary-layer calculation has been made. In this paper the positions
of both flow separation and reattachment will be assumed known.

The bubbles observed on aerofoils are not entirely at constant pressure. For example the
leading-edge bubblk is at constant pressure for about half of its length, and then some pressure
recovery occurs over the rear portion up to the reattachment point. This has been explained
thus. The boundary layer is laminar at separation and remains essentially laminar over the
constant-pressure portlon of the bubble. Transition then occurs resulting in some turbulent
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mixing over the rear part of the bubble. Tlis turtulent mixing is responsible for the observed
pressure recovery. The theory given in this paper could be made to allow for this pressure
gradient, but in the absence of theoretical or empirical estimates of its magnitude, and of the
position of transition, the author has developed the theory for constant-pressure bubbles only.

Fig. 1 gives an idea of the fairly general problem solved in the paper. AB is a spoiler or split
flapt of length 4 and deflection angle &, while EF is a normal type of flap. The flow separates
from 4 and reattaches on the flap at G, so that AG is a constant pressure streamline. If the
flap is deflected downwards, or if the point 4 is well above the aerofoil surface, the reattachment
is unlikely to occur, and the bubble will be open to infinity. The theory of the flow external to
such bubbles, usually termed ‘ wakes ’, has been given in Ref. 7. In the special cdse when the

flap is undeflected and the spoiler is at the leading edge and of zero length the theory becomes
appropriate to the case of the thin-aerofoil stall.

The theory developed below applies to subsonic compressible flow only.

2. Solution of Laplace’s Equation within the Unit Circle with Mixed Boundary Conditions.—
As shown in section 3 the determination of the compressible subscnic flow about an aerofoil can
be approximately reduced to the solution of Laplace’s equation within the unit circle. Although
this solution (Poisson’s integral) is well known when the boundary conditions are simple, it is not
in the case when the boundary conditions are mixed. However, the required solution is easily
derived from a result on mixed boundary conditions recently given by the author®.

The result referred to is that within the strip — o0 < 6 < 00, 0 <Le < xnf2 a compléf«z harmonic
function, f = » - 10, is related to the boundary values of its real and imaginary parts by:

Ay =17 (0 cosech (0% = ) + r,sech (5% — o)y o, .. .. (1)

where C = 0 -- 1¢, and 6, and 7, are the values of 6 and 7 at § — 0% one = 0ande = 7|2 respec-
tively. The {-plane is shown in Fig. 2a.

.. Now it is easily verified that the infinite strip in.the ¢-plane is mapped outside the unit circle
in the ¢-plane, shown in F g. 2b, by:

. . 1 — ¢ e ‘
anh::—wtankm, .. .. . (2)
where k=4 —yp), .. e ce e (3)
vo =130+, .. o .. o (4)

and y, and y, are defined in Fig. 2. The elimination of ¢ between equations (1) and (2) yields
the required solution of Laplace’s equation with mixed boundary conditions within the unit circle.

On the circle, / = — e~ where y is measured in a clockwise direction from CO (Fig‘. 2b), and
equation (2) yields:

— tan %

tanhé=m, " “ . .  .. . (5)
on the surface A B, and
— tan % '

on CDA. ‘ :

T For the purposes of this paper a spoiler is defined as a projection having a small value of % and large value ofé,,
whereas a split flap has large 4 and small &,.
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- 8.. Compressible Subsonic Flow Abom an Aerojml —The following notation will be used in the
remamder of the paper:

(%, ¥) The physical plane

z | = x4+ Y

n,S . Distances measured normal to and alc;ng a streamline respectively
(g, 9) Velocity vector in‘polar co-ordinates

Py Po Local and stagnation densities respect_ively

w“ As a suffix to dénote values at infinity

U = 4o

M Local Mach number

;

= (1 — My

Fia. 1.

FiG. 2a. Frg. 2b.
c B A G
=== N
D E F
~ w-plane
Fi1c. 2c



(4 ) Plane of equipotentials (¢ = constant) and streamlines (y = constant), for zero
' circulation where: ' :

dr;S:gdS,dzp::.[—f-qdn.. . . S (7)

7 defined by: - a '

. q

7:f g dlog Ulg), .. .. .. .. .. (8)

¢=U ’
f defined by f=r4d0 .. . (9)
m  defined by m:ﬁ? O £ 1))
w defined by w=¢ +imyy. .. . . . . (11)

Other symbols will be introduced as required in the text. -

Now it has been shown" that a good approximation to the differential equation of com-
pressible subsonic flow is obtained by putting m = m_ (von Karman’s approximation"). Then
we find that:

1 @
aT{zUTz#::O’

so that from (11) we see that fis approximately an analytic function of w. This approximation
is the basis of the following theory (the theory is exact in incompressible flow)

First consider the case of zero circulation. The w-plane (Fig. 2¢) is transformed into the
t-plane (Fig. 2b) by: S

w=alt+ 1/, .. .. .. .. .. (12

and the .t-plane is in turn transformed into the ¢-plane by equation (2). From . the analytic
character of these transformations it follows that f is an analytic function of ¢(or approximately
so) and is therefore given in terms of its boundary conditions by equation (1). On y = 0,
¢t =-e~% and (12) yields:

¢ = —2acosy. .. e L (13)

We now make a basic approximation—the ‘ mapping’ approximation, which is that the
overall mapping from the z to the ¢-plane is only negligibly. affected by small values of the
incidence («), flap deflection (£), and spoiler height (k) or split flap angle (¢,). In other
words we calculate the first-order effects of small values of «, &, % (or &) in the ¢ and #planes
for zero circulation and ignore the second-order effects of these quantities on the actual mapping
itself. The same type of approximation was successfully employed in Refs. 7 and 9, and it is
also commonly used in unsteady aerofoil theory. '

Integrating equation (1) by parts we obtain:
2‘ =]

- tan —'{exp (6-* — &)} dr, (6%),
(14)

where, by the mapping approximation, ¢ and 6% refer to the ¢-plane derived from the z-plane of
zero circulation, and where 7, and 6, are the values of » and 8 at 6. = o, i.e., at point 4 in Fig. 2.
For a constant-pressure bubble lying between 4 and G, dr, = 0, and the last term of (14) vanishes.

4
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This case will be assumed in the remainder of the paper. However, if a theory is developed to

give the position of the boundary-layer transition point on the bubble and the subsequent

pressure gradient, the last term of (14) could be retained to allow for this. For the constant-
pressure bubble case:

: 2

J&) =74+ 10, +7_v

" fanh t{exp (0% — &)} d8, (%) . .. .. (15)

A% = —

" A condition not yet mentioned is that changes at the aerofoil can have no effect on the flow
direction at infinity, i.e.,
' lim f(z) =0,

2= o

assuming directions of flow to be measured from the direction at infinity. Now z — oo implies
w — 00, that is from (2) and (12), ¢ — ¢k. Thus the boundary condition at infinity is, from (15):

7A+io,,=_§ di tanh " {exp (6% — i)} 40, (%) . .. .. (16)

‘Equations (15) and (16) apply to an aerofoil of any thickness, but in order to simplify the -
algebra,” we shall now confine our attention to thin aerofoils. This will enable us to calculate
the first-order effects of the bubbles on aerofoil performance in quite simple forms. The © skeleton’
of our thin aerofoil will thus appear as in Fig. 3a. The values of 6, due to the incidence flap and
spoiler (or split flap) are clearly those shown in Fig. 3b. In general the front stagnation point
~ will be displaced from the leading edge C, resulting in the reversal in the flow direction in a small
interval 6; — d,, as shown. The rear stagnation point will remain fixed in accordance with the
Joukowski condition. : ‘

60 .
L—S
Vi
3
e :
r*i——' & &) | l6.4 [5: 11
G} E o] N c: B Aco
. F16. 3a. Fic. 3b.
Putting the values of 6, shown in Fig. 8 into (15) and (16), we obtain:
f@) =rvy — t{a — &) +~%§ tanh ' {exp (0; — {)} + 2>tanh—1 fexp (8; — &)}
o %, . R :
— 2 tanh {exp (65 — &)} + = tanh {exp (6 — 0)}, . RNV
and. ) '
ra— il — &) = — = tanh~* {exp (3 — ik)} — 2 tanh =" {exp. (3, — i%)
+ 2 tanh " {exp (8 — #4)} — =2 tanh {exp (3, — ik}, .. (18

since clearly



The values of 4, and é; depend on the p051t10ns of the ﬂap and spoiler hinges. If these positions
are defined by y, and v In the {-plane (the angular co-ordinates (see Fig. 2b) ), then from (5):

— % tanho, — —h a9

tanh §y = ———>——
ST tan Ly, — yo) tan 3(ys — vo)

where - t, = tan k. .. .. .. .. o .o (20)

In the following analysis it will be assumed that (i ) Y1 K ys < yl —l— 7, and hence from (3) and (4),
k< %(h — yo) < @/2 4 k, so that from (19), 6, < 0, and (ii) that y, — 7 <y < y,, when from (3),
(4) and (19), 6, > 0. Under these conditions we deduce from (19) that:

—4

\/ {tan® L(y; — yo) — tz} ’
2

— oV tan® s — 7o) — tz}

* results which are required later. From Figs. 2 and 3 it is apparent that y = Orwhen & = ds;
thus from equation (5): :

smh d,

(21)-

and ' sinh d, (22)

tanh o = hffe, .. .. .. .. .. (23).
where _ | ' ty = tan 4y, . . . .. . | L (24) '
Hence : sinh ¢; = + ; cosﬁ 85 = ——#————2 . (25)

V(@ — 4° Vit — &
It remains only to fix the vaiue of ¢,.
As.

2 tanh—1 &~ — 1 log (coshé + cosk

<sink> —in (5 > 0)
cosh.éd — cos'k

o :
>+”an sinhs/ 4+ 0 (5 < 0)
equation (18) yields the two equations

. £ Io (cosh 83 - cos k) 1 <cosh 3, 4+ -cos k) L1lo (cbsh' 85 + cos k)

Vyg= — = 5
4 2 cosh 8; — cos & e cosh 8, — cos & cosh 8; — cos &

& (cosh 8¢ - cos k) |
97 98 \cosh 8¢ -+ cos &/’ (26)
and | ' , ‘
_ & _1<smk> 1<sink> _1<sink> & _1<sink>
i tan - tan sinh 6,/ tan sinh += t_an sinh 6,/ °° (27)
since we have assumed 8, << 0 and 8, > 0. Equation (27) can be written
) _ sin k(sinh 6, + sin % tan y) '
sinh §; = Snk — fangsnhoe, ' . .. . (28)
. _§ _1<Sink>_é _1<sink>,< S \
where | x =a—~tan b, = tan : o o (29)

sinh J,
6 ,



Elimination of sinh é; from (25) and (28) gives:

~sinhd, =sinkcot (y +4), .. . .. (30)
where po=tan"'{4/(&" — &%) coskt. .. L .. .. (31
Equations (29) to (31) fix the value of 5,.

4. The Pressure Distribution
From equations (21), (22) and (29):

q = oc + %tan‘l[\/{tanz %(y;— vo) — 1%} cos B] — % tan —* [4/{tan® (ys — y,) — #*} cos &].
| (32)
In the case of a split flap &,/ will be small (se¢ footnote to section 1, para. 4) and since it has

been assumed that « and & are small, it follows from (32) that y is a small number, of the first
order, say. On the other hand, suppose that instead of a split flap we have a spoiler. In this
case &, /7 will not be small, but the spoiler height % will be. In section 5 it is shown that % is

proportional to i, where 4 = y, — y,. If we now assume thati is of the first order in smallness
we can write: ’ ‘ '

A/{tan® Iy — vo) — 4% = seck /(A tan k), .. L. (39)

to first order. Hence (32) can be written:
y=a — f?tan“l[cos ka/{tan® (ys — yo) — 4%] — % ‘(Atan &) . .. .. (34)

Thus in either case y is a small first order quantity. In the remainder of this paper second order
terms in y will be ignored.

The approximation § = g, in equation (8) yields » = g, log (U/g). Thus if C, is the pressure
coefficient, C, == 27/8,. In particular if C, is the pressure coefficient in the bubble, it follows
from (26) that: '

A~ 20 & <cosh 8 4 cos k) oy (cosh 8, - cos k) 1 <cosh 85 + cos k
€, = 8o { 2 log cosh 6, — cos &  log cosh 8, — cos & + 3 log cosh 85 — cos k)

ElAl <cosh ds + COS k)}

, ™ 2 %8 \cosh 8 — cOS & .
With the aid of equations (21) to (25) and (29) to (31) this can be reduced to:

0= 2 1y, — = <tan 3(ys — vo) + cosk o/ {tan® J(y; — »,) — 4%
Cp - ﬁoo { x cot 7 Yo 9 ]-Og tan %(Vg —_ 70) — Ccos k ,\/ {tanz %(')}3 — 7/0) — t12}>

%(7’0 — 7-/6) — lff})\ (35)
tan %(70 - '}’s) —cosk '\/ {tan2 %(70 — 'Vs) _ tlz} J .

_ & lo <tan $(yo — 7s) + cosk 4/ {tan *}
2 08

in the particular case of a spoiler and no trailing-edge flap, from (34)

., & |
¥ =« n\/(ltank), - .. . - (36)
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and y, — y; = 2k 4 4, so that to first order in 14, (35) yields:

< 2. o osin(dy, — k) & :
Cp:_ﬁ?;‘ “COt%yO"_}—Sﬁl—(g)‘;ﬁﬁ—k)\;ﬂl- (Atank)}x o ‘e (37)

On an aerofoil without a bubble the Ppressure at y = y, due to incidence alone is well known
to be:

C,= — EZ— a cot Ly,
so that it is interesting to note from the first term on the right-hand side of (3’7) that the pressure
in a bubble produced by'incidence alone is equal to the value it would have at the mid-point of
the bubble (in angular measure) in its absence. - ‘

On the ‘ wetted ’ surface of the aerofoil ¢ = 6 + ¢ /2; hence from the real part of (17) the
pressure coefficient is:

‘| tanh $(8; — 9) 3

< 2 L
Cp_Cp—“—{log W-é—) —y—zlog]tanhg(63——6)'

B

_—%mg[tanh%(as_an}. .. (39

We shall not express this in terms of the angular co-ordinates in the t-plane, as it is more con-
venient to calculate the lift and moment using é as the independent variable. However, before
calculating C; and C,, it is convenient to derive the relationship between % and 2 for a spoiler.

5. The Spoiler Height—The spoiler height is given by:

b= f; §d¢(6),

Hence, from (13) %:%fw gsinydy(é). @9
) 0 =4g

From (17) it follows that on the spoiler, i.c., in 8, < § <o,

y = fq . d(log U/q) ﬁ%log[coth%(as — )+ g, .. .. (40)
q= .
‘selecting only the dominant terms on the spoiler.

In the range of integration of (39) ¢ varies from 0 at 6 = &, to approximately U at 6 = o0, so
that an average value of f in the range is approximately 4(1 4- §,). To make algebraic progress

at this point it is necessary to replace § in equation (40) by this average value. This enables us
to write: ‘ ‘ '
U

U '
—_— = = ths 1 (56 _— (5 N
7 g coth® {( )}

In 6 < 6 << 00, where § is the (cohstant) velocity on the free streamline of the bubble, and:

2

=, 41
T § ) (41)

- If ¢ is the aerofoil chord, it is apparent from (13) that:
4a == Uc, .. .. .. .. ..o (42

8



Hence (39) can be written:
h 1 —8[a—0\¢ ) ) o
E=%gf <1j:4ﬂJsmy@wy L 3

After some algebraic manipulation of equation (5) we find that:

2 cos® Ly,(t, tanh & — #;)(tanh 6 -+ £,4)

sin y = [Ganb? s I &) , (44)
, 2t, sech? 6 dé
and dy (fanhis ¥ 43) (45)
In the neighboﬁrhood of 6 = o0, (44) is approximately:
2 cos® Iyo(te — ) (1 + i)
| siny = T -
Hence equation (43) yields: ‘
' h 8 cos® $yoti(te — L)(1 + tite) 2
c (1 + £,%)* e F*
‘ 1 —1/2
where B F@:{gyﬁ+§)@} , L e
N . 0 .

and the second order terms arising from U/§ have been neglected. Now y(,:——~ ye = 2k 4 4, s0
“that from (5):
tanh 8, = ¢, cot (£ + }4),

A

) ’ —_— W] — ———
i.e., | 1 — 2e 1 T

A

. Cws,
- or © 2sin 2%

This result enables us to reduce the equation for hjc to:

2 sin (yo — 2k)
FZ

hjc = (47)

The function F(s) has been tabulated in Ref. 7, where it arose in a similar calcuia.tion. It is
reproduced below. :

& 0 0-1 0-2 0-3 0-4 05 0-6 0-7 0-8 0-9 1-0

F 2-000 | 1-807 | 1-612 | 1-423 | 1-238 | 1-058 | 0-883 | 0-700 | 0-534 | 0-347 - 0

6. The Lift C oeﬁiczent —The lift coefficient is glven by

(,‘Lz—-—é;c cos 0, ds,

I

2a sin y dy b
q H

(o - C,) cos 6, y (13)
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= — (éi)f €= Cosinydy, T L)

with neglect of second-order térris, dfid makmg use of the fact that C — C, vanishes over the
bubble surface. From (38), (42), (44) (45) and (48) we find that:

4tank | N & & STV L e
G= {(1? ~L=(h— I } S 9
where I, = J F(o log [tanh 16, — 6)| as,
sy COS® 4y, sech? 5 (t tanh §d — t)(tanh d + tlto)
and () == —(tanh®s ¥ &) .
The integral /; can be evaluated by integrating F(z) log tanh 3(6, — z) around the infinite
rectangle — oo < £ <Loo, y=0; —oo<x<00, y=1inr, sultably 1ndented to eliminate the

1ogar1thm1c smgularltles It 18 found that . . L R T
J O ¢os? /v {cos yo cos ]v smh 0 —|— sin /e sin y, cosh 0 (50)
T2 smhzél—l—smzk | " o

p

Making use of (19) to (25), (30), (31), (32) and (50) we find, after some reduction, that (49) can
be written: ‘

C, = 27 ;05 k

{ os & 4 5 <2 cos o tan - [cos F /{tan® L(y; — 7/"0);'—:.%2"}] y

— (cos ys + COs 7’0) \/{tan2 1(V - '}’0) — b })

&
2

— (coS ¢ -+ €08 ') 4/{tan? %(ys — y.,)‘ — tf})} ;.. .. .. (81)

<2 cos k ’can‘1 [cos /e\/{tan2 Hve — vo) — 7]

In the case when the splif flap reduces to a spoilei- and ‘¢'= 0; we find from (33) and the
definition of A that (51) reduces to: -

ZW'BCOS]E Sk— _{COSk—— COS( — k)}\/(/l tan k):l - .. (52 :

CL ==
Using (47) to eliminate 1 we arrive at: | S S

cLZZ’”;OSk[acosk— {cosk—cos( —k}F\/<231ﬁ/Cytan§k)‘)] .. (53)
i Pe L o 0 L ;

Spééé'él Cases i
(@) No Bubble at all.—In this case # = 0, and from Fig.'3 it is’ ‘cleaf that if the bubble vanishes

 we must have yg = y,, and y, = 27 — y, (see paragraph followmg equation (20) ). In this case
(51) reduces to the well-known result

CL :/%i; {QC —|—§Z(n = Yo -+ Sin?’o)}_ .



(b) Bubble Starting from Leading Edge.—From equations (3) and (4) we find that in this case
k = Ly,. This case is quite important as it is appropriate to the ‘ thin-aerofoil stall * discussed
in the introduction. Equation (51) reduces to:

‘ % o2 oy A/{sin 1y, sin ( — 2k)}
C, = ﬁm {oc cos* k- = <cos % tan cos (s — k) |
— cos Hys + 2k) v/{sin 1y, sin ({y; — 2R)] )} . oo (54

Some consequences of this result are discussed in section 8.

(c) Bubble Closing at the Trarling Edge—Consider, for simplicity, the case of the spoiler only.
Substituting y, = « — 2k in (53) we obtain: '

CLZZn/;:osk[ cosk—flf\/<-c052k>}. . ”_ ('55):

™

R [o4]

It is 1nt61est1ng to compare thls result with one obtained in Ref. 7 for a spoiler behind. whlch

extends a constant-pressure bubble of infinite extent. In this case the pressure in the bubble or

~ wake will equal the value at infinity outside the wake. The result referred to, in the notation

of this. paper reads: E

: CL—% coS /e{oc cos® b — &1 Fx/<@cos2k>} .o ',-(56)‘

On comparison of (55) and (56) it is apparent that although having the bubble open to mﬁmty
improves the spoiler effectiveness it reduces the lift slope due to incidence.

7 M omem‘ Coefficient About Mid-chord Pownt.—The moment coefﬁment about the mld chord
pomt is: , 3

R UVET v . ) ds dé
Cm—gj§<gcoséo+55m60 deqs 2 dy,

when the origin of the (x, v)-plane is at the mid-chord pomt; For thin aerofoils Ux === — 24 cos y,
y==0. _ ‘ :

_ 4a\' (U . .
Therefore C n= %(m) 56—42—@, sin y cos y dy

' . : Vo 5 } . .
or c,,,:_%f C,—C)sinycosydy, .. .. .. .. (57)
71 .
with neglect of second-order terms. From equation (5):
cos 7, (tanh? 8 — #2) - 2 sin y¢, tanh ¢

COS = : - - )
4 . tanh® 6 1- 4,2 ’

thus using (38), (44): and (45) we can write (57) in the form:

o= _ ' 2/’3[lank{]5 ]4__]3__ 6})

where

7 = f cos? 27/0 (o tanh & — ty) (tanh & -+ zflto){cos Vo (’canh2 § — 4 ) + 2sin yeftanh 8}
- cosh? 6(tanh® 6 + £?)® ' '

- X log|tanh 3(6; — 8)| 6.
o 11



Evaluating this integral by a method similar to that for the corresponding integral (I,) of the previous section we find:

7, = z cos* k {sin & cosh §; sin 2y,(2 tanh® é; - #,* tanh® §; — 4,*) — cos & sinh é; cos 2 7)0(2_1514 4 t? — tanh? 8,)}
P 4(tanh® & - £, (sinh® é; 1~ sin® &) '

- From (23) to (25), (30), (31) and (58) it is found that, to first order in y:

5 — 47= Esinkcoszk,cos;z0 — L cot® R)y,
2 2
while from (19) to (22) and (58): '
Jo = g, VSint §(rs — o) — sin® B}cos b{ys — 74) cos 2ye — cos ¥(ys 4 Bpo)icos® & + cos (vs — yi)}l,

Je = 4——;:]3 VAsin? I(ys — 7o) — sin® k}[cos L(ys — y.,) cos 2y, — €OS (y6 + 3yg){cos® & + cos (ys — vo)}].

Substituting these values in the equation for C,, we obtain finally:

o~ 4 — 2
: C,= zﬂw (cos k(1 — 2 cos y, tan® k)

+ ; y/{sin® §(ys — vo) — sin® k}[cos 4(ys — »,) cos 2y, — cos (7/3 + 3yo){cos® k + cos (ys — vo)}]

ol

— % VASin® §(ys — 7o) — sin B){cos 3(ys — vs) cos 2y, — cos }{ys + Bya){cos® k + cos (ve — '}’o)}]),
where z is given by equation (32).
- In the case when the aerofoil is fitted with a spoiler only it is found from (34), (47) and (60) that:

C,,, = nzclg)s_{e cos® k(1 — 2 cos y, tan® B)«
& \/{ (hfc) tan k }{ o o o }:I
-+ - Fyl\5 sin (, — 2F) cos 2k cos (2y, ,k) -+ sin (z_cos ksin (2y, — k). — cos® k(1 — 2 ;05 votant )} | .
Special Cases

(@) No Bubble at all.—In the same way as in the corresponding part.of the previous section we find from (60) that:

Cm—%; {a+ (e 'yo—}—‘sinyo CQSyO)},

which agrees with the standard result for an aerofoil with a hinged flap.

(60)

. (61)



(b) Bubble Starting from Leading Edge.—This special case is found by putting & = 3y, in
equations (34) and (60). Consider for simplicity the case when é = &, = 0. Equations (32) and
(60) yield: : , , ]

Cn= Qﬂ_ cos® B(2 — 5 cos® k + 4 cos* B)a. . . .. (62)
For this case (54) reads:
C. %—coszku O 1

so that the moment coefficient about the leading edge, C,/, is

Cm, = Cm - %:CL»

ie., | | Cf = — g cos k(5 —dcos B .. .. .. .. (64

From (63) and (64) the centre of 'pressure is at é. distance ¥ from the leading edge given by:-

—— 2 - o
%=0054k(5—4c052k) . . . Lo .. (65)

(c) Bubble Closing at the Trailing Edge.—Putting y, = n — 2k in (61) we find:

7 cos k

Cn=gp

A { cos’ k(1 + 2 cos 2k tan® k)«

(66)

cos & sin? k& cos 4k — cos 3k cos? 2k)} :

+aF \/{%(h/c) sec 2k} ( s

8. Thin Aerofoil Stall*—In this case the bubble starts from the leading edge®, and assuming
that the controls are undeflected, from (37), (55), (62) and (65) we find that the appropriate
equations are:

: s

C,= — 7 cot &, (370 = % in this case) .. .. .(87)
2ma 2 : . '
CL:'E COS k, .o e o .o . L e (68)
C, = 2731 cos k(2 — 5costk 4+ 4cos*k), .. .. .. (69
e . vl 2 . ‘ .
and | %:ka(5—4cos?k). Y ()

The length (Ic) of the bubble is given by (see Fig. 4):
cl = csin® 2% . . .. .. (71

* See Ref. 11 for a more recent account, which differs in some details from that given here. The principal change is
that Ref. 12 includes a closure condition (of the bubble on to. the aerofoil) not given here. This results in small
modifications to the equations in this section but the general conclusions are unaffected.
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‘F'mn} (67) and (71): : R ; . |
- cL:—_ﬂl{1+\/(1—Z)}a_ O %))

From these equations it is apparent that further progress requires a knowledge of the relation-
ship between the length of the bubble and the 1nc1dence At present there is insufficient
experimental data on this relationship. '

Fig. 5 shows the (/, «) relationship obtained experimentally® for a 4-11 per cent thick double
wedge and a 6 per cent thick symmetrical aerofoil. It .will be noticed that the length of constant
pressure in the bubble is much smaller than the total bubble length (over which reversed flow .
occurs). The theory of this paper is based on the assumption of a constant pressure over the whole
bubble length.. For purposes of a rough calculation we will take the average of the two lengths

to be that appropriate to our theory. This average length is approximated to qu1te well by the
straight line: _ o S ‘ ,

o 0 o < oy
Z_l(a—ocl) o > oy’ (73)

and «, being constants.

The stalling incidence «, is the incidence at which 6C, /6« = 0, 7.e., the incidence corresponding
to Cp e From (72) and (73) it is found that:

0= o 124 Bhay + /(4 + B2}, R 2)
and lx:é4—32<x1—1—2\/(—{—32a1.)},' L )

where /, is the bubble length when o = «,. The relation between /, and 1« is given in the |
followmg table: ‘

Ay 0 1 2 3 4

L 0-89 0-70 0-48 0-25 0

Clearly when A«, > 4 the stall will occur immediately the bubble starts to grow, and since 1 is
large these stalls will occur quite ‘suddenly. They are known as ‘ leading-edge” stalls and are
considered to be distinct from thin aerofoil stalls. It is the author’s opinion that they are merely
a limiting case of the thin aerofoil stall. This view would be strengthened if it could be demon-
strated that A« increases with aerofoil thickness from its value of about 0-75 (cf. Fig. 5) for very
thin aerofoils, to a value of about 4 for aerofoils with thicknesses of the order of 10 per cent,
which are known to stall suddenly. Above this thickness the stall is quite a different type,
known as the trailing-edge stall, and the theory given in Ref. 7 is more appropriate.

If we put Ae, equal to.its experimental value.of about 0-75 in (75), we find that /, == 0-75,
hence from Fig. 5, «, === 74 deg for the double wedge and «, = 10 deg for NACA 64A006 These
values agree Wlthm deg with the experimental values given in Ref. 3.-
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From equations (70) and (71) it follows that the centre of pressure is related to the bubble
length by:

SRR

:%{1+V{(1—~Z)}{3—2\/(1—Z)}. L)

This relation is plotted in Fig. 6. The maximum rearward position of the centre of pressure is
found to be at ¥ = (25/64)c, and this occurs when / = 15/16. For an infinitely long bubble it
follows from the theory given in Ref. 7 that ¥ = (5/16)c. As the end of the bubble moves off
the aerofoil surface with increasing incidence, the centre of pressure moves forward again. The
same phenomena probably occurs when the bubble is due to a split flap or spoiler (if desired this
point could be checked from the theory of this paper and Ref. 7) and if this is so it provides a
possible explanation of the nose-up moments that have been experlenced when the split-flap
deflection increases bevond a certain critical value.
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