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Summary.--A new law of similarity is given, valid for slender profiles in mixed transonic flow with negligible viscosity, 
according to which the cube of tile Prandtl factor of any critical Mach number is proportional to the thickness ratio. 
It  is shown that this rule, and that of yon Kfirm~in for flow at sonic speed, are valid for shock-waves within the range 
over which the shock loss is proportional to the cube of the pressure rise. Experimental pressure distributions plotted 
according to this rule show good agreement, except for the position of the shock-wave on the surface. 

1. Introduction.--In this note a new law of similarity~: is deduced for slender profiles in 
transonic (mixed sub and supersonic) flow with negligible viscosity. It relates flows for which the 
cube of the Prandtl-Glauert factor ~ / ( 1 -  M0 ~) is proportional to the profile thickness ratio. 
A derivation is also given of a recently obtained rule of von K~rm~n, that  at near-sonic velocity 
the forces on an aeroIoil are proportional to the § power Of the thickness ratio. 

The differential equation of compressible flow in two dimensions is first replaced by a simplified, 
approximate form valid for small transverse velocity perturbations, which is more general than 
the equations from which the new law is derived. This derivation uses an even more simplified 
form valid only for near-sonic velocities. The form assumed by the ' shock polar '  and the 
characteristics in near-sonic flow is discussed in section 3. 

In section 4 we are able, by considering a general multiplicative transformation of the potential 
function and the ordinates, to use the simplified equation to deduce yon Kgrm~n's result. 

In section 5 a special case of the transformation leads to the new similarity law. 

We discuss in section 6 the changes in shock-waves, Mach lines, etc., associated with the simi- 
larity law. It is deduced that  this law, and von K~rm/m's result, are valid for flow with shock- 
waves within the range over which the increase of entropy across the shock is proportional to 
the cube of the pressure increase. 

Any critical Mach number Me is, in the new law, changed so that  (1 -- Me2) a/~, the cube of 
the Prandtl-Glauert factor, varies as the thickness ratio. 

*The author having left the country before arrangements for publication were put in hand, this report has been 
revised for publication at the Royal Aircraft Establishment. 

R.A.E. Tech. Note Aero 1902, received 23rd August, 1947. 

:~ Since this paper was written tile writer learns that this law has also been found by G. Guderley (Die Ursache fur 
das Auftreten von Verdiehtingsst6ssen in gemischten Unterschall-Uberschallstr6mungen, l~{.o.S. (A) Volkenrode 
Reports and Translations No. 110) and appears also to have been stated by yon Kfirmfin. 
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A comparison with experiments shows good agreement as to pressure distribution, but less 
good agreement as to shock-wave position, on aerofoils related through the similarity law. 

2. Equation for Transonic Flow.--For two-dimensional flow with small inclination the equation 
for compressible flow is of the form 1 

t t (1 - -  M ) 4 , ,  + ¢ , ,  = 0 . . . . . . . . . . . . .  (1) 

where M is the Mach number and ¢' the potential function 

u = ¢ / ; v  = ¢ /  . . . . . . . . . . . . . . . . .  (2) 

In the Prandtl-Glauert rule, for the local Mach number M, the Mach number M0 of the un- 
disturbed flow would be taken. I t  is then possible to apply methods of incompressible flow to 
subsonic flow. 

In transonic flow for 1 -- M 2 we can never take 1 -- M0 ~, because 1 -- M~ changes sign at 
sonic speed and the Prandtl  rule is not valid in general for transonic flow. 

The Nach number depends on the absolute value of velocity w 

Following our approximation we put for w its x -- component u and get 

+ ( 4 )  

In equation (4) ul  is the x-component of speed at the Mach number M1. It  is not necessary 
that  ul  be the velocity in the undisturbed flow. Put  

u - u l = 4., .  ; v = ¢,  . . . . . . . . . . . . . . .  ( 5 )  

equation (1) can be written 

( l - - M 1  ~ ) ¢ , ~ + ¢ , , = 2 M ~ 2 < 1  + ' ~ M I - - 1  2)<ulU - - 1 )  ~x(U--U~) 

Putt ing the right-hand side of equation (6) equal to zero gives the Prandtl  equation with 
M t chosen as the value in the free stream. Equation (6) differs from the Prandtl  equation in 
tha t  it depends very slightly on the Mach number chosen. On changing M~ in equation (6), 
the first member on the left-hand and the member on the right-hand side change in the same 
direction. But equation (6) has tile great disadvantage of not being linear. 

Put t ing M~ = 1, u~ = c* (c* = u* -- critical velocity) we get in effect the simplified equation 
for compressible flow in Ref. 1. " 

We can get equation (6) also by approximating the mass flow in terms of the difference of speed 
in an equation of the second order 

d-'(~p) 
d(~p) (~ _ ~ )  + ~ (~ _ ~ ) ~  + . . . .  up = u~p~ + ~ d u -  d u  ~ 

We get 

K . d ( u P ) _ _ l _ M  ~ 
up du 

and 

up du 2 2 
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t 

' t hus  

- -  x z - -  - - t  + . . . .  (7) up I = ( 1 - - M ~  2) u _ 1  ~Mx [ 3 + ( 7 '  2)M~ *] u 
U l p  1 

Fig. 1 shows tha t  for Mach number  0.833 equat ion (7) gives a very  good approximat ion  over a 
large range of velocity. The P rand t l  rule corresponds to an approximat ion  of the  mass flow b y  a 
s t ra ight  line. The accuracy of this rule is given by  a ratio formed by  the two terms of the right-  
hand  side of equat ion (7). For  subsonic and t ransonic  speed we get for this  rat io 

__ (7' -{- 1 ) M 1 2  A u  . . . . . . . . . . . . . .  (8) 

1 - -  M~  2 u~ 

Approximat ing  the mass flow by  a parabola  by  pu t t ing  M~ ---- 1, equat ion (7) becomes 

u p T ' + l ( u  )2 1 1 u*p*--~ ~ - -  1 - - 2 ( 7 '  + 1) ( M s -  1)2 . . . . . . . .  (9) 

and  e q u a t i o n  (6) b e c o m e s  

1 
- -  (7' + 1) ~-~ ¢~ . ¢ ~  + ¢yy = O; . . . . . . . . . . . .  (10) 

where 

3. Shock Polar 2 and Characteristics for Transonic Flow.--The terms of the first order in the  
shock polar expansion near Mach number  M = 1 are 

c *~ 2 

u 1 is the veloci ty before the  shock (v 1 = 0) and u, v are the veloci ty  components  after  the shock. 

There is no deflection of flow if 

v = 0 . . . . . . . . . .  (12) 
o r  c ~ - -  qA 1 : U - -  C ~ .  

corresponding to the  Mach line and to the  normal  shock-wave. 

The speed after the  shock is sonic if the  y component  v* is given by  

(v*h  - c *  ' 7' . . . . .  ( 1 3 )  ) + 1  
. . . . . .  o . o 

Using equations (13) and (11) we can write 

: 1  (u~ --  c-*) --  ( u :  - -  c * /  + (u~ --  ~ )  + . . . . . . . .  (14) 

According to equat ion (13) shock polars can be t ransformed into one another  by  increasing 
the v-components as the  { power of the differences between u-components  and crit ical veloci ty  c*. 
The centre of the t ransformat ion  is u : c*, v : 0. 

In  our approximat ion  the point  wi th  the  m a x i m u m  deflection is the  point  wi th  the largest  
v-component after the shock. Different iat ing equation (14) we get the m a x i m u m  for subsonic 
flow at  

u =  (ul - -  c* ) ;  - -  . . . . . . . . . . . . .  
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The equation of the characteristics for two-dimensional isentropic supersonic flow near ,the 
point w = w x, ~ = 0 (~ = angle of flow) of the hodograph gives 

( ; ,  ), " : ' - , ) ' - ;  • ~ = ( M , , _  ~)1:, w 1 + ~  ( ~ 1 ' - ~ ) " '  1 . , ~ ( ~ [ , _  1 ) " ' k G  

' ' . , i '  • J . . . .  ' , ' '  ' : .  

where f (M d is a rat ional  function of M~, With the value at critical speed , ,  . 

f(1) = 7 -  

Observe. tha t  the first and the second terms ill the series for characteristics are equal to the 
corresponding terms of the series for a shock polar at the same point of the hodograph. But all 
these expansions are insufficient at transoni~c flow. The power of thePrandt l  factor/~ = % / ( M 1 2  1) 
in the denominator of the terms of the expansion equation (16)' increases, so the convergence 
becomes very poor as M~ approaches 1. 

, , , 

If characteristics were a good approximation for shock polars in transonic flow, we would obtain 
the maximum deflection at the critical speed but not at the point given by equation (15). At sonic 
speed, of course, characteristics in the hodograph have the direction of the velocity, so the 
tangent to the characteristic goes through the point u = 0, v = 0. 

For transonic flow the characteristics are to be expanded at the critical speed'. We find 

v~ ~(y'~2 1)i/~ ( ;  ~ ;8 /~[1_  ~ ~ (5 2 , ) ( 5  22 i ) @ :  • "] . . . .  (17) 

and inverting equation (17) 

. , . . . .  o * . -  . . . .  - = . \ , . V ( ~ , , + i ) ~ . .  1, + - . l O  " -} V(;, + r------~ ~ , : +  , .  . .... . . . .  (18) 

Table 1 shows the first and second approximation for speed given by' equation i8) and the 
e x a c t  value for ~, -- 1.405. 

2 

~9 (deg) 

~9 (radians) 

F 1 st approx. 

w __ 1 -{2nd  approx. 
/ 

exact . .  

TABLE 1 

Expansion of Charac'ter~stlcs at M:  
1" 2 

0'017 0"035 

0.066 0.105 

0.068 0,107 

0.068 0.107 

, 

4 6 

0.070 0-105 

0.165 0.218 

0"171 0,228 

0.173 0.227 

S 10 
0.140 0.174 

0.263 0 .302  

• 0.278 '0.B22 

0"276 0"322 

12 

0"209 

0"342 

0"367 

0-366 

r :  
, , ,  , t ; '  ' i  ' 

14 ' 16 ' 

0"243 0"279 

0-380 0"418 

0:4'1t, ', 0"456 : 

0"407 0"448 

For small angle of inclination the' first approximation is quite good. Thus we can write the 
equation of the  characteristics for transonic f low ',, : . : . ,  

(c-;) - - ~ ( ~ - t -  1 ) ( ~ . ~ . - - 1 )  ' -b  :" • • . ;  . . . .  . ' ; "  ' . . '  ~ . . " '  : . .  ' ( 1 9 )  

putt ing v equal to 'zero at the critical speed. P u t t i n g  v equal to zero at veiocity' u ~ u l the 
characteristics have the form ' ' . . . .  

v or,,, )'i (° )"] c * - ~ ( ~  + 1)1/2 L',~--  1 ~ i - '  ~ -  1 + • • • . .  . .  (20) 
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There is an essential difference between equation (20) and  the shock polar equation (11)0 

c°rfesp°ndin~g t0  equation (14) we can give equation (20) the f o r m  

v ( u  -- c* ~3/~ 
v* -- 1 , , ~  2 ) . /  . . . . . .  . . . . . . . .  . . .  (21) 

As for the shock polar, the equations of characteristics can be transformed into one another by  
increasing v* proportionally to (ul -- c*) 3/2 ' 

do Von Kdrmdn 's  Rule Concerning the Influence of Thickness at Sonic Speed . - -We  will consider 
here a rule formulated for the first time by yon KArmAn in Paris, 1946. 

For a thin profile with small inclination, the equation for the potential function is given by 
equation (10) with the boundary condition £t infinity 

~ / ( x  2 + y 2) > co • ¢~ = u - -  c *  - - - . +  0 ; ¢ ,  = v - - - - >  0 . . . . .  ( 2 2 )  

The boundary conditions at the profile should be replaced as usual by  boundary conditions 
on the x-axis. This approximation is the better, the closer the Mach number approaches 1, 
because of the small change of flow across the streamlines at the speed of sound. At y = 0 
the v-component must be given by 

¢ ,  
c *  - -  f ( x )  . . . . . . . . . . . . . . . . . . .  ( 2 3 )  

The flow 'is determined by equation (10) with the boundary conditions (22) at infinity and (23) 
on the x-axis and by  the shock-wave conditions if existing. I t  is possible that  there are solutions 
depending on the Reynolds number or on the initial conditions. It  is also possible that  there is 
no steady solution. 

Assuming a new potential function 

¢(x,y) = a.¢'(x,y') . . . . . . . . . . . . . . . .  (24) 

and a new ordinate 

~.y = y '  . . . . . . . . . . . . . . . . . .  (25) 

where a and ~ are constant, we find the following relation between the derivatives 
¢.~ = a.¢~' ; ¢, = a. ¢ / =  a.~¢',, ; 

. . . . . . . .  ( 2 6 )  

= 4 , ,  ' • = a . f l  ¢ y , y ,  . 

The gas dynamics equation has the same form (10) for ¢' and y '  if 

a = p~ . . . . . . . . . . . . . . . . . .  (27) 

The boundary condition at infinity are for ¢' and y '  automatically the same as for ¢ and y. 
The boundary conditions on the x-axis becomes 

¢,,' 1 1 
(x )  - f (x )  - - f ' ( x ) ,  . . . . . . . . . .  ( 28 )  

e* 

where f ' ( x )  is the inclination at a ' r e d u c e d '  profile. For a certain shape of reduced profile 
we get a number of different flows depending on the ~ or a chosen• From equations (26), (27) 
and (28) the difference between velocity and critical velocity, (u --  c*), is proportional to the 
-~ power of the profile inclination and therefore, also of the thickness ratio t. Thus all forces and 
pressures are proportional to t 2/a. The v-component is proportional to t itself as expected. 

Following equation (25) the distance of corresponding points from the x-axis is proportional 
to t -I/~ ; thus corresponding Points approach the x-axis with increasing thickness ratio. 

According to the boundary conditions on the x-axis the profile shape changes to a first approxi- 
mation by affine transformation. This approximation is not very good, because there are great 
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changes in speed due to small changes in inclination in transonic flow. Thus the slope of the 
profile contour depends not only on v but  also a little on (u -- c*). A second approximation to 
the contour can be obtained if the pressure distribution is known. The same question arises in 
the next section. 

Shock-waves will be discussed in  section 6. 

5. A New Law of Similarity for Transonic Flow.--I f  the speed in the undisturbed flow differs 
from the critical velocity within the range of validity of equation (10) (roughly 0.6 < M < 1.35) 
the boundary conditions at infinity become 

( x2+y~)  ~/2 > ~ ' ¢ , = u - - c *  , u o - -  c* ;$y  , 0  . . . . .  (29) 
This becomes for the potential function 4' and the ordinate y' 

~' - -  C'* C'* 
- -  > ; ,b~' > 0 • . .  ( 3 0 )  (x  2 + y~ )~ /2  .__,,. ~o . ~ '  a ~, + 1 ' "" 

if we put 

. . . . . . . . . .  (31)  

13 now becomes the Prandtl  factor. 

Equation (27) also should be right here so equation (10) should be the same for 4' and y ' .  
Following equation (31) the boundary condition on the x-axis becomes 

~,,' 1 

c* - - ( 1  - -  Mo~) a/2f(x) = f ' ( x )  . . . . . . . . . . . . .  (32) 

As in section 4, we get, for the same reduced shape, the same differential equation and the Same 
boundary conditions. As in yon KArmAn's rule profiles must be in an affine relationship to a 
first a.pproximation. While we compare in von KArmAn's rule profiles with different thicknesses 
ill sonic flow, in this rule a smaller thickness ratio corresponds (in subsonic flow) to a higher speed 
in the undisturbed flow. The profiles compared must have the same reduced thickness ratio 

¢ 
t' = (1 -- Mo2) ~ / ~  const . . . . . . . . . . . . .  (33) 

From equation (26) and (27) the difference between speed and critical velocity (u -- c*) is pro- 
portional to/~ 2. This is also true for all differences of velocities and pressures in the flow. The 
v-components change as the thickness ratio. Corresponding points approach as fl-1 to the x-axis 
with increasing thickness ratio. There is no transition possible to yon KArmAn's rule. According 
to equation (33) thickness ratio becomes zero at the velocity of sound. 

Note that  the new rule is valid for mixed flows. We can apply it also to supersonic speed in 
the undisturbed flow. 

The Prandtl-Glauert rule within its validity gives the same results as the new law. Following 
Prandtl 's  analogy the change in speed at corresponding points of the flow round profiles in 
affine relationship is proportional to the thickness ratio and to the reciprocal Prandtl  factor : 

t 

If the thickness ratio increases according to the new rule with the cube of t3, the velocity 
difference increases with the square of ~ as required. 

The law of similarity treated, and von K~rmAn's rule, form a bridge over the forms of Prandtl-  
Glauert analogy valid for pure subsonic and supersonic flow only. Note the assumption v <  <c*  
when comparing profiles. 
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6. Shock Polar and Mach Line in the Law of Similarity.--We have shown that  the difference 
between speed and critical velocity, (u -- c*), is proportional to the § power of the v-component. 
The angle of a shock wave to the x-axis is given (Fig. 2) by  

u 2  - u l  - c * )  - ( u l  - c * ) ,  . .  ( 8 4 )  tan ~' . . . . . . . .  
V 2 V2 

where suffixes 1 and 2 are related to the flow before and after the shock-wave and v 1 is assumed 
to be zero. 

Transforming the profile, the inclination of a shock-wave, according to equation (34), and 
the changes of velocity components must change proportionally to 1//% The shock-wave has 
just this inclination as the corresponding points approach the x-axis according to the trans- 
formation. 

Thus shock-waves are transformed into one another in flows parallel to the x-axis, as for example 
the shock-wave at the leading edge at supersonic speed. 

The transformation is also right for a flow parallel to the x-axis after a shock-wave, as for 
example at the trailing edge in supersonic flow. I t  seems not to have been noted tha t  the parts 
of t he curve given by  the shock equation 2 but always omitted from the shock polar diagram are 
the shock polars for a given state behind the shock and an unknown state before the shock 
(Fig. 3). Thus the shock equation has physical significance in all the parts of the hodograph within 

[ 1 1~2 the maximum velocity w/c* <~ (~ + 1)/(r -- 1) In a similar way to equation (34), the angle 

between the shock-wave and the x-axis is now 

t a l l ¢ ' - - u l - - u 2  _ ( u l - - c * ) - -  (u2--c*)  . . . . . . . .  (85) 
V l  V l  

The curves (11) and (14) contain also the polar for a given state after the shock (Fig. 3) for 
transonic flow. Thus the transformation of shock-waves should be correct for flow parallel to the 
x-axis after the shock also. 

Generally the inclination of the shock-wave to the x-axis is 

t a n ( ~ ' + ~ l ) - - u 2 - - u l - -  ( u 2 - - c * ) - -  ( u l - - c * )  . . . . . . . .  (36) 
U 2 - -  7) 1 7) 2 - -  V l  

Transforming (u -- c*) and v according to equation (26), all transformations are correct except 
tha t  of the shock polar (Fig. 4). The shock polar should be transformed by a change in direction 
proportional to v and by an alteration in the direction of the axis of symmetry and normal 
to it as in the first and second case. Within our approximation, however, this is the same as a 
transformation in the direction of and normal to the u-component. 

Note that  a normal shock-wave is expected to remain normal after transforming the flow. 
Thus its inclination must change as v. On the other hand the inclination of the shock-wave must 
change with the alteration of the ordinate proportional to 1/~. Thus it is not surprising that  
there are small deviations from the direction perpendicular to the flow. This is no fault within our 
approximation. Note also that  there is in general no difference between the direction of the 
ordinate and the direction normal to the flow in our treatment. 

The inclination of the Mach line too shows small deviations when the flow in inclined. But 
there is only a small change in speed when the Mach angle c~ is changed 

dM : ( 1  ~1"~ 1¢2 - -  M 22 do~ . . . . . . . . . . . . .  (87)  

Remember further that  Mach lines in the linear supersonic theory have constant inclination. 
Moreover, this theory gives good results for small thickness ratio: Hence the inclination of the 
characteristics is Calculated from the coefficients of the hyperbolic differential equation and in 
general a small error in the coefficient of the equation is not so important  as an error of the same 
size in the boundary conditions. 
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Thus von K~rmim's rule and the law of similarity treated are valid for mixed,transonic flow 
with shock~waves and small inclinations of the streamlines. , ~ . 

Irrotational flow has been assumed~ and,  tl{er6~ore, small change Of entropy across the flow. 
I t  is not necessary that  the shock-waves themselves are assumed to be {sentropic. The rules 
discussed are valid also for shocks having an entropy increase proportional to the cube of the 
pressure increase. . . . . . . . . . .  

I t  has been shown how" the drag of bodies can be expressed by the entropy increase in the 
flow ~. Essential for the losses is the product of entropy increase in the .shock and line element 
normal to the flow" this will. be shown in a following p a p e r .  The pressure increase, like the 
increase in speed,' .is.proportional ~to ~ 2. Hence the entropy increase is proportional to/36: The 
ordinates alter as/~-1. Thus the losses change proportional to/~5. The drag changes wi th  the 
the same power, being proportiona! to the pressure differences and the thickness ratio, equation 
(33). 

Strong shock-waves appearing at higher Math numbers have losses smaller than those given 
by the power law use& Hence the' drag of'thicker aer0foils with higher speed on the surface is 
less than expected. Thus  strong shock-waves move upstream with increasing thickness ratio 
on corresponding profiles. (Concerning Stream losses and shock-wave: position see also section 5.) 

7. Critical Mach numbef.-=-Using the law,of similarity i t  is possible to say how certain critical 
flows depend on the thickness ratio of slender aerofoils. Of course the critical state must not 
be. caused by  ~,-iscdslty effects but  only' by  effects of compressibility as treated in this paper. 

The example best known is the critical Mach number, that  is the Mach number of' the undis- 
turbed flow causing a maximum speed on the surface of the aerofoil equal to a Mach number 
exactly 1. A second critical point is to be expected, if at the point with greatest thickness of the 
profile the mass flow of the undisturbed flow is reached. In any of these cases, assuming slender 
bodies, the thickness ratio of aerofoils in affine relationship is according to equation (33) pro- 
portional to the power 3 of the Prandtl  factor • 

(1 - Mo'2)  2o  . . . . . . . . . . . . . . . . .  ( a a ' )  

8. Comparison with Tests.--In this section, we apply the law of similarity to tests made by  
G6thert on NACA aerofoils with maximum thickness at 30 per cent and thicl~ness ratios between 
6 per cent and 18 per cent. Choosing a reduced thickness ratio (equation (33)) of 

t' : 0.55 

we get the  following Mach numbers depending on the thickness ratio t 

t 0.06 0.09 0.12 0.15 0.18 

M0 0.88 0.84 0.80 0.76 0-72. 

The slenderest profile has very great losses measured in the wake by G6thert. Compared 
with this the losses of the other aerofoils are quite small. At 18 per cent thickness there are no 
tests at the corresponding Math number. Thus in Fig. 5 only the aerofoils with thickness ratios 
of 9, 12 and 15 per cent are compared. 

All the tests were made at small angles of incidence and the test points of the upper and lower 
surface are plotted. Taking a mean of these, we get approximately the pressure distribution 
at zero lift. The test points before and after the shock-wave form quite.a good curve. But there 
are distinct deviations in the position of the shock-wave. The deviations of the two aerofoils not 
plotted here are of the same ldnd. On the profile with 6 per cent thickness ratio the shock-wave is 
near the trailing edge. 

The shock-wave moves upstream wi th  increasing thickness ratio. Note that  the position of the 
shock,wave on the upper surface of the ,  12 per cent aerofoil, which has the smallest angle of 
incidence, is the  same as the shack-wave position of the 15 per cent aerofoil, and that  on the 
lower surface as the 9 per cent aerofoil. . ,~ ,.. 
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The pressure coefficient cp is proportional ' to ~ like' the pressure itself. Dividing c~ by the 
Value of cp at sonic speed we get the comparable pressure distribution. According to the theory 
the speed of sound must be reached at the same points of course. 

The tests are near the limits of the applicability of our theory. The v-components should be 
small ' enough bt~t there are large differences in speed, so it is doubtful whether  equations (4), 
(9) and (31) aresufficiently good approximations.  Comparing our expansions with the corres- 
ponding exact functions Wemust  expect deviations at first caused by the simplification of the 
shock polars. The change .of shock-waves in Fig.  5 is of this kind. But  there are also other 
sources for the lack of agreement of tests and theory-: Considering tests concerning critical Math 
numbers me find deviations from the rule in  equation (33'). 

Certain!y the bouiidary layer may have an influence on pressure distribution in transonic 
fl0w. According 'to tests made by Ackeret,~ Feldman and Rot t  7 we should not expect boundary- 
layer effects ahead of ttie sh0ck-w~/ve a t  the high Reynolds numbers used by G6thert. But  the 
change in displacement 'thickness near the 'shock-wave is so important  that  some influence of 
the boundary layer:on sh0ck-wave 'position is qilite possible. 

Further  it is possible:that t h e  tunnel correction applied near IKach number 1 is not sufficient. 
All :tunnel corrections .used un t i l  now have been calculated using the Prandtl-Glauert analogy. 
Hence the displacement caused by the local  'supersonic fields is not taken into consideration. 
Thus the .Much number  0I t h e  undisturbed flow Mo may be a little higher than calculated, 
especially, at high'Mach numbers. . . . . .  

Tests on very slender aerofoils with corresponding tunnel corrections should be very interesting 
in relation to  the' rrile discussed. Thus tunnel  height would be decreased proportionally to 
8-1 with decreasing Mach number. In this way we should get the influence of the boundary 
layer at high Much numbers. 

9. Some remarks co~cer~ing True, sorbic Flow.- - I t  is evident tha t  we can compare thicker 
profiles at smaller Much number M0 with thinner profiles at higher M0 having mixed flow only 
when the shock-wave and the sonic line meet the profile at the same points. 

Not less important  than the critical Mach number will be another Mach number which has the 
same mass flow at maximum thickness and ill the undisturbed flow. Between a state near this 
Mach number and the speed of sound the velocity at the maximum thickness is expected to fall 
with increasing speed in the undisturbed flow. 

We must assume the flow to be of a kind such that  the aerofoil produces a minimum flow dis- 
placement. Thus the mass flow at maximum thickness may never be much less than the mass 
flow ill the undisturbed flow. In supersonic flow about slender bodies the Mach number and the 
mass flow at maximum ordinate and in the undisturbed flow are the same ; in pure subsonic 
flow the mass flow at maximum thickness is higher than in the undisturbed flow, hence near 
Mach number 1 the Mach number at maximum thickness is expected to approach 1 from the 
supersonic side if M0 approaches 1 from the subsonic side. 

Coming from higher supersonic speed we can consider the flow at sonic speed. Remember 
tha t  we have at supersonic velocity on slender profiles the same state in the undisturbed flow 
and at maximum thickness. Upstream the velocity decreases, downstream the velocity increases 
and in the trailing wave resumes the velocity of the undisturbed flow. There is no connection 
between the flow before and after the maximum thickness. With falling M0 the wave at the 
trail ing edge becomes more erect but always begins on the trailing edge. Obviously it begins there 
also at sonic speed in the undisturbed flow. Hence it is possible to compare by yon K~rm~n's rule 
different profiles at the speed of sound. On the aerofoils compared, the point with Mach number 
1 must always have the same position near the maximum independently of the thickness ratio. 
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