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S u m m a r y . - - I n  this report a process is given for the solution of linear differential equations with constant coefficients. 
The operative artifice is closely akin to Routh's method of Isolation by means of which the constants of integration are 
found separately for each root of the characteristic equation. 

Introduction.--Heaviside (1850-1925) appears to have decided that  the recognised conventional 
methods for solving linear differential equations with constant coefficients were not the most 
efficacious in application to the analysis of electric networks in practical problems ; and thus it 
was in quest of a more direct process of solution that  he devised his operational calculus. But 
because of Heaviside's unconventional procedure and obscurity of presentation his work did not 
receive favourable attention. Bromwich (1875-1930) did much to elucidate Heaviside's peculiar 
calculus by the agency of the theory of functions of a complex variable. 

Another important  deviation from the standard method has become known as the Laplace 
transformation method. An interesting account.of the development of the Laplace artifice is 
given by Carslaw and JaegerL 

In this report a total ly different process is proposed for the same problem. It  is closely akin 
to Routh 's  method of IsolationK An important  feature of the process is the simplicity with 
which the constants of integration associated with the various roots of the equation for the comple- 
mentary  function are found by separation and isolation. 

1. Equations with One Dependent Variable.--1.1. We first consider the equation 
F(D) x = f(t) . . . . . . . . . . .  (1) 

where F(D) = a l l  + bnD 3- c . D  ~, . . . . . . . .  (2) 
a~l, b~l, c l ,  are constants, f(t) is a function of t only; and D represents the operator d/dt. Regarding 
D as a parameter let m~, m2, be the two roots (real or complex) of the equation F(m) = O. 

T h u s  (a~l 3-  bl~ ml  3- e~  m~ 2) x~ ---- 0, . . . . . . . .  (a) 

(al~ 3 -  b ~  m2 3-  c1~ m2 2) x~ ----- O, . . . . . . . .  (4) 
where x .  x2, are for the present quite arbitrary. 

* R.A.E. Report S.M.E. 4036--received 19th April, 1948. 
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W e  easi ly der ive  f rom equa t ions  (3) a n d  (4) the  re la t ion  

(m~ - -  m.~) [(b~l + c~l m~) xl x.2 + cu xl " m2 x~ 1 

or (~/~2- ~/J~l) [(bl'l--~-ell ~/J/~2)~2" Xl-+-Cll '~2" ~V]~l 21 ] 

Thus ,  a s suming  t h a t  ml,  m~, are no t  equal ,  we  m u s t  have  

~ x ,  + - ~ m , x ,  = O, . . . . . .  

where  #~ = b~l x~ + m~f ,  

"~r ~ C l i  Xr~ • • 

in w h i c h  for the  pa r t i cu l a r  case r = 1, 2; s = 1, 2. 
for 

W e  not ice  t h a t  

so t h a t  the  re la t ion (10) gives 

= o . . . . .  (s) 

= o . . . . .  (6) 

. . . . . . .  (7) 

. . . . . . . . . . . .  (8) 

. . . . . . . . . . . .  (9) 
Also since x~ is qu i te  a r b i t r a r y  we m a y  a r range  

~,,x, + ~.,m,,x, = 1 . . . . . . . . . . . . .  (10) 

~, ~ + L ~ , ~  = ~ F '  { ~ ) ;  . . . . . . . . . . .  (11) 

~ / =  1/F' (m3 . . . . . . . . . . . . .  (12) 

W e  call the  'mode '  x .  sub jec t  to cond i t ion  (10) a rect i f ied mode .  

I t  follows f rom re la t ions  (7) and (10) t h a t  

#1 xl  + ~2 x2 = 1 . . . . . . . . . . . . . .  (13) 
~1 ml xl + ~2 m~ x2 = 0 . . . . . . . . . . . . .  (14) 

~ x~ + ~ x~ = o . . . . . . . . . . . . .  (15) 
~ l m . l x l  + - ~ m 2 x ~  = 1 . . . . . . . . . . .  (16) 

W e  h a v e  a t  once  f rom equa t ion  (15) t h a t  
X x ,  ~ = x l  = + x 2 2 = 0 ,  . . . . . . . . . . . .  (17) 

a n d t h u s  2 1IF' (m,) = I /F '  (m,) -[- 1IF' (m2) = 0 . . . . . . .  (18) 

R e v e r t i n g  n o w  to e q u a t i o n  (1), b y  m u l t i p l y i n g  b o t h  sides w i t h  the  rect i f ied va lue  of x,, we  
ob ta in  

(D - -  ml) (~1 * + ~1 Dx) = x , f  (t) . . . . . . . . .  (19) 

I n t e g r a t i n g  we  der ive  

e~lt xl f (t) * l x + ~ l D x = A 1  ~ ( D - - m l ) '  ": . . . .  

where  A1 is a c o n s t a n t  of in tegra t ion .  H e n c e  t a k i n g  accoun t  of the  in i t ia l  condi t ions  

F x l f ( t )  -7 
* l x 0 + ~ l ~ 0 = a l  + L(D - -  m,)J  . . . . . . .  ' 0 

where  the  suffix zero represen t s  t = 0. W e  t h u s  ob ta in  the  va lue  of A,  direct .  

S imi la r ly  for the  o the r  roo t  m~, 

x~ f (t) 
~.~ x + -~2 D x = As  e ~2' + (D - -  m~) . . . . .  

. .  (20) 

. .  (21) 

, .  (22) 

~ X o  + ~ 0  = A 2  + ( ~2)Jo (23) 



The  c o m p l e t e  so lu t ion  of equa t i on  (1) is, the re fore ,  

~" f(t) x?/(t) 
x = A ~ x ~ e  m-t+ A 2x 2e~2 t + (D_m~) + ( D - m 2 i '  

or  x ---- .~0(~1 X 1 e mit - t -  

+ x0(~l x,  e '°~ + 

x 1 2 ( [ ( D f ( t ) -  ] 
. - -  J ~ l )  j 

~2 22 e2mt) 

~2 X2. e m2t ) 

0 eml t  (Df(t)y}~l)-- } 

( ~ 4 )  

-- X22{ [-D]c(~)~4 1 em2t f(t) ~ (25) 
( - - .  2)~, - - ( D - - m 2 ) f  . . . . . . . . .  

I f  Xo - -  Xo = 0, a n d  f(t) - -  1, we ob ta in ,  a f t e r  a l i t t le  a lgebra ,  

1 2 emr t 
x =  F(O) + Zt m,F'(m, , ) '  . . . . . . . .  (26) 

w h i c h  is Heav i s ide ' s  expans ion  t h e o r e m  as appl icable  to  t h e  p a r t i c u l a r  case of e q u a t i o n  (1) w i t h  
specif ied condi t ions .  

1 . 2 . - -Suppose  n e x t  we cons ider  t h e  case of an e q u a t i o n  of t h e  t h i r d  o rde r  in D, viz., 

F(D)  x = (a,l + b n D q- c~ D 2 q- d~, D 8) x = f(t) . . . . .  

L e t  m, (r = 1,2,3) be a roo t  of F(D)  = O, and let  

~ = b~ x~ + ~ ,  ~,,, • . . . . . . .  

~r = Cll  X,, -{- ']~r ~r, "'" . . . . . .  

~ =--- d n x,. . . . . . . . . . .  

W e  f ind as in t h e  p reced ing  case t h a t  if s differs f r o m  r 

~Xs +-~rnsX~ + ~rns2x,=O,  . . . . . . . .  

and ,  as in t h a t  case, we m a y  a r r ange  for  

~ , x ~ + L ~ , , x , + } ~ , 2 x , = l ;  . . . . . . . .  

so t h a t  aga in  x~ 2 will be  1/F '  (mr) . . . . . . . . . . . . . . .  

We n o w  h a v e  t h e  fol lowing o r t h o g o n a l  re la t ions  

~ x l + G x 2 + G x ~ - - 1 ,  . . . . . .  

~lm~x~ + ~2m2x2 + ~amaxa = 0 ,  • o 

~1 ml  2 Xl -~- ~2m22 X2 -~- ~a ma 2 Xa ~--- 0, 

~ ~ d  x~ + 72 ,¢,,2 x2 + ~3 ~ d  x~ --- 0, 

~1 ~ / x l  + ~2 ~ ?  x2 + }3 ~ d  x3 = 1, 

x1~1 + x2 ~2 + x3 ~3 = 0, . .  . .  

x1~1 + x 2 L  + ~ L  =o,  .. 
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Rever t ing  now to the  equat ion  (1) we find, 

~ x  + -~D x + ~,D~ x = A~ e",' + x~ f(t) 
(D - -  mr) (17) 

where  r = 1, 2, 3. Thus 

(18) 

(19) 

We notice from equat ion (15) tha t  2x ,~= 0 and from equat ion (16) tha t  2m~ x~,. = 0. 

I t  is easy to see tha t  a l though we have dealt  only with second and th i rd  order equations,  the  
me thod  is qui te  general and of obvious extension to equat ions of any order. 

Also equat ion (19) may  be regarded as indicat ing the  form of the  generalised expression o f  
Heaviside 's  expansion theorem. 

2. Simultaneous Linear Equations.--We now consider the  two symmetr ical  equat ions 

(a~ + b~i D + c~ D 2) x + (ax~ + b~2 D + c~2 D 2) y = f~(t) . . . . .  (1) 
(a12 "Jr- 312 D + c~ D ~) x q- (a2~ q- b2~ D + c., 2 D ~) y --  f2(t) . . . . .  (2) 

where the  a's, b's, c's, are constants,  fl ,  f~, are functions of t only; and D, as before, represents 
the  operator  d/dt. 

First  we solve the  equat ions  (1), (2), with the  r ight -hand sides put  zero and wi th  m regarded 
as a parameter ,  i.e., the  equat ions 

(a~ + b ~ l m + c ~ m  2) x + ( a ~ - q - b x ~ m + c l ~ m  ~ ) y = 0 ,  . . . . . .  (3) 

(al~ +b l~m q-c~2m ~)xq- (a22 q-b2~mq-c22m ~ ) y = 0  . . . . . . .  (4) 

Let m~ (r = 1, 2, 3, 4) be a root of these equat ions and let x~, y ,  be its associated relat ive modes. 
Multiply equat ion (3) by x ,  equat ion  (4) by  y,, and add. 

We obtain 

where 

( D - - m , ) [ x S , + Y ~ , , + D ( x ~ r + Y ~ , , ) l  0 . . . . . . . . .  (5) 

~, = bll xr + b~2 y~ + m~ ~, . . . . . . . . . . .  (6) 

~, = bl~ x~ + b~ y~ + m~ ~, . . . . . . .  . .  . .  (7) 

~, = % x~ + % y . . . . . . . . . . . . . .  (8) 

~,. = e~2 x 3 + c~ y, . . . . . . . . . . . . .  (9) 

We notice tha t  ~, ma y  be wri t ten  

- (all  x~ + al~ y , ) / m , ,  

and ~, as -- (a12 x~ + a2~ y,)/m,. 
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Thus  i t  follows from equat ion (5) t ha t  if s differs from r, we have the following modal  relation, 
ViZ., 

• ,~r + y , ~ r  + m, (*, L + y , g ) = o  . . . . . . . . .  (lO) 

Now since the rat ios 0nly of the  relat ive modes are de terminate  from the equat ions  (3), (4), 
we m a y  wi thout  loss of general i ty,  arrange for 

xr ~ + y~ vr + mr (x, gr + Y~ ~3 = 1, . . . . . .  (11) 

and we call modes subject  to such condit ion rectified modes. 

In  consequence of equat ions (10) and  (11) we have  the relat ions 

K1 ~1 +Y~ ~ + m~ (x~ ~1 + y ~  ~ )  = 1, ; . .  . .  . .  (12) 
~ +y~ ~ + ~1 (x~ g~ +y~ ~) = 0, J 

and so on. In  addi t ion 

and so on; 

and so on. 

x~ ~ + x~ ~ + x~ ~, + x~ ~ ---- 1, 

x ~  + x,~ ~ + x ~  + x ,  ~, = 0 ,  
x~ ~ + x~ % + x~ % + x~ % = O, 

x~ % - + - x ~ %  + x ~ %  + x ~ % = O ,  

(13) 

m ~ x , ~  + m ~ x ~  + m ~ x a ~ 3  + m ~ x  4 ~ = -  1, } . .  . .  (14) 
m~ xl #~ + m~ x2 ~ + m~ x~ ~ + m~ x~ ~ = O, 

I t  follows from equations (8) and (9), and hav ing  regard to the  relations, 

t ha t  we must  have  

Zx,,-~, .=O, Z X r * l r = O ,  ) (15) 
. . . .  , , ,  ° o  . ,  

Z y r  ~r = 0, Zy~ ~r = 0, 

2, xr ~ = 0, Z xr yr = O, Z yr = 0 ;  } . .  . .  . .  (16) 

Rever t ing  now to the equat ions (1), (2), mul t ip ly  the  former by  x ,  the  la t te r  by  y ,  and add. 
We obta in  

(D - -  mr) [ x ~ + y  ~ + D (x ~r + Y  ~r)~ = Fr, . .  . .  (17) 

where Fr = x,,fl(t) + y~f,(t) . . . . . . . . . . . . .  (lS) 

In tegra t ing  we derive 
x ~r + y ~r + D (x-~r + y ~r) = Ar e'"r' + F J ( D  --  mr)" (19) 

Making use of the  ini t ial  conditions, we have  

Xo ~r + Yo ~r + Xo L + Yo g =  Ar + EFr/(O --  mr)lo. (20) 

We thus  obta in  the  cons tant  of in tegra t ion  A r direct. 

5 



Next  in vir tue of the properties of the  rectified modes, we find tha t  " 

= 2 Ar xr e'~ ~ + X x~ IF~/(D - m~)] (21) 

Y =  2A~y,e"~t  + 2 Y, [ F , / ( D  - -  m,) 1 . . . . . . .  (22) 

Al though we have dealt  only with second order equat ions of which the operators of the  elements  
are of the  second degree, it is fairly evident  tha t  the  me thod  is of a general na ture  and readily 
ex tended  to equat ions of any order wi th  operators of any degree. 

For the corresponding procedure in the case of unsymmetr ica l  equat ions see Ref. 31 

3. Case of Equal  and Repeated R o o t s . - - I n  this case no difficulty arises provided tha t  corres- 
ponding to each and every root there  is a distinct set of appropriate  orthogona] modes (in this 
connexion see Ref. 4, p. 746 et seq.). Let  us take as all example  the  equations" 

( 1 - -  D) x + 2y + z = O, 

We obtain 

2x + (1 - -  D ) y  + z  = O, 

x + y  + ( - - ½ - - D ) z = O .  

m ~  = - -  1 ; x ~  = ~ / 2 / 6 ,  y3~ - -  ~ / 2 / 6 ,  z ~  = - -  4 v / 2 / 6 ,  

ma2 = - -  1; x~2 = 1/V'2,y82 = - -  1/V'2, z~2 = O, 

ma~ = 7/2; x~a = 2/3, Y88 = 2/3, zaa = 1/3, 

in which the  modes are rectified, i.e., (in the part icular  case) 

x ~  2 z 2 1. ~r + y ~ r  + ~ = 

We thus  derive 

(¢///$3 ~ 

(~a 2 

(¢q%3 
and thereby  

X Xal 

X 232 

X Xaa 
Hence 

X0 Xal 

X0 232 

Xo Xaa 

The complete solution is therefore 

--  D) (x x~ + y y ~  + z z~) = O, 

- -  D) (x x~2 + Y Y~2 + z z~2) = O, 

- - D )  (x x~ + y y ~  + z z~) = O; 

+ y y ~  + z z~ = Aal e ''31', 

+ Y Ya2 + z za2 = Aa2 e "~30"~, 

+ Y Ya~ q- z zaa = Aaa e,,,sa~. 

@ YoYa, q- ZoZa, = Aa,,  

- /  Yo Ya2 + Zo z82 ----- Aa2, 

+YoYaa + zozaa = Aoa. 

x = EXo(X312 + x3j') + y 0 ( x 3 1 y ~  + x~3y~,,) + Zo(Z~ x~l + x~2 z~2)] e ' '~  

+ (Xo x~  2 + y o  x ~ y ~  + Zo x~  z~) e'"% 

with similar expressions for y and z. 

We notice tha t  since 

x~l 2 + x~22 + x ~  2 = 1, x21y~ + x~2y~2 + x ~ y ~  = O. 

and sc on, we need only have de te rmined  the  modes for the  root m~a. 
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When, however, distinct sets of appropriate modes or their required aggregates cannot be 
found then the usual methods for dealing with equal and repeated roots may be applied. 

Consider for instance the two unsymmetrical  equations 
( 1 - - D )  x - - y = O ,  

+ (a - D ) y  = o, 

and their transposed 

There are two equal roots in 
relations are 

(1 - - D )  x '  + y '  = 0 ,  

- -x '  + (3 - - D )  y '  ----- 0. 

.D, viz., m21 : 2, m22 = 2; while the only ascertainable modal 

x~lly21 = - -1  ; x21'ly~l' = 1. 

Thus for purposes of rectification we put 

(x~l x~l' + Y~IY~I')/Y~IY~/ = 1/y2~Y~', 
we find that  Y21 Y2~' must be infinite since the left-hand side is zero. 

In this case therefore, we adopt the usual procedure for dealing with equal roots, viz., 

x - - ( A l + B ~ t )  e 2t, y = ( A ~ + B 2 t )  e2t; 

from which by insertion in the original equations leads to the solution 

x = [Xo - -  (Xo + Yo) tl e~t, 

y = [yo + (Xo + Yo) tl e~t 

Suppose next we consider the equation 

F(D)  x = (D - -  m,) ~ (D - -  m~) x ----f(t) 

In such case we may proceed as follows 

¢ (D) X = f(t) 

where ¢ (D) ---- (D -- m~) (D --  m3) 

and X : (D -- m~) x. 

Having found X the appropriate solution for x will be of the form 

x = A 1 e '~'~ + X / ( D  - -  m~) 

in which the constant of integration A 1 is readily determined f romthe  initial conditions. 
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