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Summary.—In this report a process is given for the solution of linear differential equations with constant coefficients.
‘The operative artifice is closely akin to Routh’s method of Isolation by means of which the constants of integration are
found separately for each root of the characteristic equation.

Introduction—Heaviside (1850-1925) appears to have decided that the recognised conventional
methods for solving linear differential equations with constant coefficients were not the most
efficacious in application to the analysis of electric networks in practical problems; and thus it
was in quest of a more direct process of solution that he devised his operational calculus. But
because of Heaviside’s unconventional procedure and obscurity of presentation his work did not
receive favourable attention. Bromwich (1875-1930) did much to elucidate Heaviside’s peculiar
calculus by the agency of the theory of functions of a complex variable.

Another important deviation from the standard method has become known as the Laplace
transformation method. An interesting account of the development of the Laplace artifice is
given by Carslaw and Jaeger®.

In this report a totally different process is proposed for the same problem. It is closely akin
to Routh’s method of Isolation®. An important feature of the process is the simplicity with
which the constants of integration associated with the various roots of the equation for the comple-
mentary function are found by separation and isolation.

1. Equations with One Dependent Variable—1.1. We first consider the equation
F(D) x = f(¢), .. .. .- .. .. (1)
where F(D) = a;, + 0,,.D + ¢,,D?, .. . (2)
11, b1y, €4, are constants, f(¢) is a function of £ only ; and D represents the operator-d/d¢. Regarding
D as a parameter let m,, m,, be the two roots (real or complex) of the equation F(m) = 0.
Thus : (@, + byymy +cym ) x, =0, .. .. .. .. (3)

(@1, F by my + €1y D) %, =0, .. .. .. .. 4)
where x,, x,, are for the present quite arbitrary.

* R.A.E. Report S.M.E. 4036—received 19th April, 1948.
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We easily derive from equations (3) and (4) the relation

(ml — mz) [(611 + ¢y ml) Xyt Xyt Cu Xy 0 My xz] = 0, .. = (5)
or (my — m,) |:(b11 G M) Xy - Xy A Gy Xy L xl] = 0. .. . (6)
Thus, assuming that m,, m,, are not equal, we must have ‘
£ x, +E m,x, =0, .. .. . e o .. (7)
where £, = by, %, + m,E, .. .. .. .. .. .. (8)
_ E=Cu ey o e e 9
in which for the particular case 7 = 1, 2; s = 1, 2. Also since %, is quite arbitrary we may arrange
for |
L4 Emx, =1 .. .. (10
We notice that B .
£ x, + & m,x, = x> F (m,); .. .. .. oo (11

so that the relation (10) gives :
%2 = 1/F" (m,). .. . . . .. oo (12)

We call the ‘mode’ %,, subject to condition (10) a rectified mode.
It follows from relations (7) and (10) that

Ey %y + &y xy = 1, .. . .. .- o (18)
E,my x, + Eymy,x, =0, .. .. .. .. .. . (14)
§1% + &% =0, (15)
E, oy %y F Ep i, xy = 1. (16)
We have at once from equation (15) that
2x?=x"+x,"=0, .. . .. .. .. (17)
and thus Z1/F" (m,) = 1/F" (m,) + 1/F" (m,) =0. .. . .. (18)
Reverting now to equation (1), by multiplying both sides with the rectified value of x,, we
obtain , :
(D—m,) (5,2 +6,Dx) =%, ). .. .. . .. (19)
Integrating we derive
_ H o
E,x+ & Dx =4, et ECTA , .. .. .. (20).
1 1 1 +(D _ ml) . ( )

where 4, is a constant of integration. Hence taking account of the initial conditions
- . ¢
£, %o + &1 % = A + I:(‘D%]O, . . .. .. (21)

where the suffix zero represents £ = 0. We thus obtain the value of 4, direct.

Similarly for the other root m,,

TR “l‘Ez'D_x = A, e™ | (2;2%(24”), (9..2)
szo‘}‘gexn:Az—f“ [(562%(;2)}0 . - .. .. (23)
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The complete solution of equation (1) is, thevefore,

%,* S0 +(x22f(t>- -1

x=A, x, emt + A, x, em2 +(D—m) D—m)’
1 2

or x = x0(§1 %, emit £, x, ezmt)
+ %o(&, %, €71 - £, 2, €™

- ’ff{[@f—%l e = m@m}

— x22{[(D—f_(t%}(' emet — (D—]t%} . . . .o (25)

If £, = x, == 0, and f(f) == 1, we obtain, after a little algebra,

y— L 5 S ... (28
£(0) . mF'(m,)’
which is Heaviside’s expansion theorem as applicable to the particular case of equation (1) with
specified conditions.

1.2.—Suppose next we consider the case of an equation of the third order in D, V2.,

F(D)x = (a,, + b, D ‘¢, D* +d, D* x = f{t)... . (1)
Let m, (r = 1,2,3) be a root of F(D) =0, and let
: E,zbllx,—{—m,.g,,, .. .. .. .. .. (2)
£, = c. % + m, E,, .. .. - . (3)
F O )
We find as in the preceding case that if s differs from 7
& x, + &, myx, + &, m?x, =0, .. .. .. .. .. (5)
and, as in that case, we may arrange for_ , ‘
£ x, + & mx, + & mPx =1; .. .. .. .. .. (6)
so that again x,? will be 1/F'(m,). .. .. . . . .. .. .. (7)

We now have the following orthogonal relations

E ox, + &%, +6,x, =1, . . . . b (8
E om, %, + E,my %, + Emyx, =0, .. (
Eomx, + E,mlx, + &, mtx, =0, (
Eomyx, + Eymy x, £y omyx, =1, .. (
g omlx, + E,m2x, + &, mlx, =0, (
Elrmlle—}—am;xz—{—:Eamazxa:l, . .. .. .. (18
% &, %, £, oy & =0, (

(

(




Reverting now to the equation (1) we find,

é-rx_i__Eny_l_;sz:Afemrt_,_xr—a)f(_t)ﬁm,), - .. . (17)

s,x0+§,a&(,+§,5&O:A,+xr[(_l)fﬁ)m)l; N 1)

wherer = 1, 2, 3. Thus . '

a— %o 2 Er x, em/ + xo > Er x, emrl —l_ %, by é:r x, emri

—Zx{[r@m]e—w—f@m—)} R T

We notice from equation (15) that Xx,* = 0 and from equation (16) that Zm, x*, = 0.

It is easy to see that although we have dealt only with second and third order equations, the
method is quite general and of obvious extension to equations of any order.

Also equation (19) may be regarded as indicating the form of the generalised expression -of
Heaviside’s expansion theorem. _

2. Svmultaneous Linear Equations.—We now consider the two symmetrical equations
(“11+b11D+011D2)x+(“12+b12D+012 Dz)y:fl(t)> .. o (1)
(6112—]—5121)—{-—012 Dz)x_i—(ﬂzz—{_bzzp—l“czz Dz)y:fz(t)r . (2)

where the a’s, b’s, ¢’s, are constants, f,, f,, are functions of ¢ only; and D, as before, represents
the operator 4/dt. '

First we solve the équations (1), (2), with the right-hand sides puf zero and with m regarded
as a parameter, 7.e., the equations ’

(@, + by, m + C1 M%) % + (alz + by, m A+ C12 mz)y =0, .. < . (3)
(“12+blzm+012m2)x+(“22+bzzm+czzmz)y:0- . o (4)

Letm, (r =1, 2, 3, 4) be a root of these equations and let x,, y,, be its associated relative modes.
Multiply equation (3) by x,, equation (4) by y,, and add.

We obtain
(D——m,)[x&,—l—yn,A—l—D(xEr-}—y?_%»)}:(), . . . )
where &, =b, % + b,v, +m, &, (6)
M= by Kb by T e e ()
E, = ¢,y %+, Y, . .. . . e (8)
e = Cyy %5 + Cpy Yy 9)

We notice that & may be written
— (au %, + @yg yr)/mr:
and 7, as — (a,, %, + a,, y,) [m,.
4



Thus it follows from equation (5) that if s differs from r, we have the following modal relation,
viz., ‘

N yom o (6 E Fyen) =0 .. .. .. .. (10

Now since the ratios only of the relative modes are determinate from the equations (3), (4),
we may without loss of generality, arrange for

xr§r+yrnr+mr(xr§r+yr;7r):1, .- .. . (11)

and we call modes subject to such condition rectified modes.

In consequence of equations (10) and (11) we have the relations

byt (0 & ym) =1 } L
x1§2+y1772+m1(x1§z+y1n2)20’

and so on. In addition

xE—l—xE—l—x&—}—xé_l
%, & %, E, F o, & +x, &, =0,
%y Ny A %, My + Xy my %, 0, =0,
%, 1y %y 1y A % g %y 1, =0,

(13)

and so on;
xlgx_l_mzxzz:z _|_m3x32-‘3—l—m4x4 54:1’ } : (14)
%, & Fomyx, &y A myx, 6, + m, %, €, =0,

and so on.

It follows from equations (8) and (9), and having regard to the relations,

Zx,,g,,:O, ZerrZO: }

- 4 (15)
2y7§r=0; 2%’77=0,

that we must have
Ix2=0, Zxy,=0 Zy>=0; }

- - - - (16)
P) Erz = O: 2 Sr Ny = O; 2 "er :0

Reverting now to the equations (1), (2), multiply the former by x, the latter by y,, and add.

. We obtain
(D—m)[xé&+yn+DxE +y77)]— e (1)
where : F,=uxf0 +yL06. .. . . . . .. (18)
Integrating we derive |
| ib 4 yn A DE £y ) = At L E(D—m) .. (19

Making use of the initial conditions, we have

xO 51’ +y0 7Yr_l_-’)lco Er +y0 grzAr—}_[Ff/(D—m’)]O - (20)

We thus obtain the constant of integration A, direct.
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Next in virtue of the p‘roperties of the rectified modes, we find that -
%= T A x4+ Ix [F,/(D - m,)], L@

y= T Ayt Iy, [R/(D—m,)]. L2

Although we have dealt only with second order equations of which the operators of the elements
are of the second degree, it is fairly evident that the method is of a general nature and readily
extended to equations of any order with operators of any degree. :

For the corresponding procedure in the case of unsymmetrical equations see Ref. 3.

3. Case of Equal and Repeated Roots.—In this case no difficulty arises provided that corres-
ponding to each and every root there is a distinct set of appropriate orthogonal modes (in this
connexion see Ref. 4, p. 746 et seq.). Let us take as an example the equations:

(1—Dyx+ 2y +2=0,
24+ (1—D)y +2=0,
x+y +(—4—D)z=0.
We obtain '
Mgy = — 1;x31 == '\/2/6,}/31 == VZ/G: B3 = — 4 \/2/6:
Mgy = — 1;x32= 1/\/2’3/32:— 1/\/2:Z32:0’ :
Moy = 7/2; %4 = 2/3, v,y = 2/3, 2,, = 1/3,
in which the modes are rectified, i.e., (in the particular case)

x;;rz _I—yarz + 2372 = 1.
We thus derive

I

(7%31 - D) (xx:n +yy3'1 +2231)
(msz _ D)-(xxaz —I_yyaz —I—ZZ’32)
(maa - D) (xxa:s +yy33 +ZZ33)

I

0,
0,
0

I

and thereby
X X3y +yy31 'l_‘zz:u - A:u emsy,

: ¢
X X3 +yy32 +Z232 = Aaz ers,

X X3g +yy33 + 2 Rgg = Aas e,
Hence '

%o Xy T Vo Vs 'I—zozzu = Asl'
KXo Xgp +y0y32 + 2, 232‘: Aaz:
Xo Xgy +y0y33 T+ % Rgg = Ass'

The complete solution is therefore
x = [2y(%5,% + %3,%) + Yol%ay ¥y + Fyo Vo) + %o(%3, Kgy Xy 25,)] €731
- (Ho Xgy™ = Vo Xyy Vs + Zo Hgg Zgq) €739,

with similar expressions for y and 2.

We notice that since

. Hoy" Xgp” + Ngg" =1, Xg1 YVax T+ Xgg Vg + Hag Vo = 0.
and so on, we need only have determined the modes for the root Mgy
6




When, however, distinct sets of appropriate modes or their required aggregates cannot be
found then the usual methods for dealing with equal and repeated roots may be applied.

Consider for instance the two unsymmetrical equations
1—Dyx—y=0,

x4+ (B—D)y=0,
and their transposed
‘ (1—D)yx +y" =0,

& +(3—D)y =0.

There are two equal roots in D, viz., m,, = 2, m,, = 2; while the only ascertainable modal
relations are

X1 [Vor = —1 s %y ¥ =10
Thus for purposes of rectification we put

(%or Far” F Yo You VYox Vor” = 1Ya e’
we find that y,, y,,” must be infinite since the left-hand side is zero.

In this case therefore, we adopt the usual procedure for dealing with equal roots, viz.,

%= (4, +B,f)e*, y=(4,+B,f)e"
from which by insertion in the original equations leads to the solution

%= [xo — (%4 -+ V) t} e,
y=[ret by t]en

‘Suppose next we consider the equation
F(D)x = (D —m,)" (D —mg) x = f{7)

In such case we may proceed as follows

? (D) X = f(?)
where @ (D) = (D — m,) (D — my,)
and X =D —m)x.

Having found X the appropriate solution for x will be of the form
| x=A'e" 4 X/(D— m,)
in which the constant of integration 4, is readily determined from- the initial conditions.
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