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Summary.—A new method of performing boundary-layer calculations is introduced in this paper, and is applied to the
problem of finding the characteristics of uniform flow past a flat plate through which there is a constant normal velocity.

An exact solution to this problem has not yet been found and it is therefore difficult to assess the accuracy of the results

" obtained. The results, however, are compared with those of two other methods® 2.

The new method will be applied to other problems and is eXplalned in detaﬂ in Ref. 5. When the momentum equation

is being used, one obvious advantage of the method is that, in
of each may be added 10 give the momentum thickness of the whole.
layer calculations, and great simplification is thereby obtained.

‘adding ”* velocity profiles, the momentum thickness
This is not so in the usual methods of boundary-

1. The Momentum Equation with Suction on the Boundary.—The equatlons of motion in the

boundary layer are, in the usual notation—

ou au dU 0%
au ov
= ay =0,..

and the boundary conditions for the case of suction are
y=0,2=0,v=uv,x)

vy =ow,u="U. . . .
Writing ¢ = U—u, wehaveaty =0, ¢g=U
and at y = o, , g = 0,
and equation (1) becomes
| au 024 _ o*u
—99x + x ay =+ ay®’

and after integrating with respect to y from 0 to oo,

R
G- D -]

0
having integrated v 55 by parts, and used (2).

ou
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Now o* = K (1 — %) dy = (l]ﬁo gdy, hence J: gdy = Us*.
Also o= [T (1— By = [u [ olU—gdy=o*— o [ gy,

hence fw g*dy —= U?6* — U0,

Jo

Hence (7) becomes

alu o 0 . ou|”
- 2 - o — * ~ 2(3* - 20 V] — V= »
e UL (UM £ £ (U U26) + vy () U [, ay]ﬂ
or
QU — UUs* — U2 % (%) £ 2UU" [8% — 0] + U* 2 (s% — 0)
dx cx
B o ]”
+ v, () U = [v a—y]”,
‘ ao ou
14 sk [ 2 —
or UU@+%HJ]ﬁm%MU+vGﬂM. N )

This is the momentum equation of the boundary layer on a flat plate in a stream of velocity
U, and with the fluid having a velocity v,(x) normal to the surface of the plate.

For a flat plate in a uniform stream, with constant suction velocity v,, equation (8) reduces to
do v v [0Uu
; >y-:(l. (9)

&~ U2 \5y

2. Outline of the New Method.—Several methods of boundary-layer calculations use the device

of the *addition’ of velocity profiles. Two profiles are given: u/U = f(v), u/U = g(y),

and a third profile is derived as #/U = if(y) + wg(y). This type of method is awkward to use

in conjunction with the momentum equation since the calculation of the momentum thickness

of the derived profile presents difficulties, owing to the necessity of integrating the product

fly)e(y). A second less obvious disadvantage is that when surface suction is applied such profiles

in certain cases (in particular, when the Polhausen profiles are used®) have a maximum in #/U
greater than one.

It seemed desirable to find a method which would avoid both the above mentioned difficulties
Writing ¢ = #/U, suppose we define a profile by the relation

N ¢ 1)

where f(t) is defined for the interval 0 <#< 1, is monotonic in that interval and f(o) = 0. The
second difficulty is at once disposed of. Let us now examine the displacement and momentum
thickness, é* and 6 respectively, of the profile (10).

N
-4
= [a—ns0] + [ rom.

Hence ﬁ:jﬁ@ﬁ. Y 1§13

Published with the permission of the Director, National Physical Laboratory.
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This is true if f(1) is finite, or if (1 — #) f({) — 0 at ¢~> 1. The latter condition is true since

the definition of a boundary layer implies f(f) = o ( i 1 t> as t—0.
. . R 7 _u
Similarly: 6 = JO o (1 U> dy
=[¢—nrpa
—[e=ns0] + [ @-nrme
Hence  0=[ @—1fQd .. .. .. .. . . . . 12

Suppose now that two profiles y, = f(f), v, = y(f), have momentum thicknesses 6,, 8, respec-
tively (for example, 6, = f (2t — 1) f(t) df) and are < added’ to form the profile y = Af(#) + ug(?),
0

it is clear that the momentum thickness of the derived profile is 46, 4 #8,. This property is a
great advantage of the method.

It 1s convenient to put (10) in the form
g
= 1), . . . . . . . . .. .o (18)

wherein the function must obviously satisfy the relation

f(m_nﬂ@ﬁzL O s P
0
having regard to equation (12).

Thus if we have two functions f{#), g(f), both satisfying a relation of the form of (14), and
representing two profiles, we can form a new profile whose momentum thickness is 6 at once

%:MWHMJMW.. N 0 1)

Before proceeding to apply the method, which has been outlined above to the specific problem
of the flat plate with constant suction in a uniform stream, we require two expressions.

Suppose
¥/ = f@),
then

ow _UdwU) U _1 L .. (18)

a dash denoting differentiation.

*u o fouN
Also 5y @)

)— g ”. L a

w Ol

3. Flat Plate in Uniform Stream with Constant Suction.—The method to be followed is to choose
two profiles, to add them together as suggested in (15), in which 4 and 6 are functions of x, and
then satisfy the momentum equation with the derived profile. The two basic profiles will be
the exact solution of the boundary-layer equations when x is large (given by Schlichting?) and

3

(92485)



the Blasius profile which is well-known. In Appendix I it is shown that when x tends to zero,

towards the front of the plate, the profiles asymptotically approach the Blasius profile: Ref. 6
should be consulted for a more rigorous treatment.

For the Blasius profile we know that
(2, = 0-22053 Y|
ay =0 7

o (18)
and 5372)y:0 = 0. J
Hence if y/0 = f(7) represents the Blasius profile, equations (16), (17) give
"(0) = 4-53453
e } 19
f'0) =0
The profile when x — oo is the asymptotic suction profile given by
U= vy,
’ N 1211
u = U (1 — et

v, being the velocity through the plate. (20) represents an exact solution of the equations of
motion, and was first given by Griffith and Meredith®. This profile is given by

%’ZZIOgT——}_——t:g(t),
and we have
"0y =2
j{(j))_}. L
Consider now the profile ' '
y/o = (1 — K) f(t) + Kg(t) = F(¥), .. .. . . . . o (22)

f(#), g(t) representing the Blasius and asymptotic suction profiles respectively and K being a
function of x, such that

K@) =0, K(w) =1 .. . .. .. . . .. . .. (238)
Then
F0) = (1 K) 4-53453 + 2K = 4-53453 — 2-53453K "
N (24)
F70) =
Equations (16), (17) then give
Wy _U 1 ]
0/ y=0 0 4-53453 — 2-534453K ’ (25)
) W 2K
oy*/y=0 0 [4-53453 — 2-53453K*
The equation of motion gives, at ¥ = 0, the boundary condition
ou o*u
— = (— .. .. . . . . . . .. (26
0 8y>y=0 Y Byz)y=o ! ( )



which becomes, using equations (25),
' v 2K

- . (27)
vy [4-53453 — 2-53453K]*
The momentum equation, (9) is
a9 _ v 4 v U 1
dx U  U* 6 [4-53453 — 2-53453K] ’
_ Y <1 _ 4-53453 — 2-53453K
U 2K ’
or
a v 2K ’ v 1—K
22X = — 2 2.2 . . oo (2
dx v, [4-53453 — 2-53453KJ2} U K 2+ 26726, (28)

having used the value of 6 in (27).
(28) can be written as

113363 2 4 — JK K (4-53453 -t 2-53453K)
U'V - Q (

1 — K) (4-53453 — 2-53453K)

_ dK.

It is easy to perform the integration, and we get finally

v 1-78009 — K\ _ 0-61293  0-71458 }
g, = 0T {10g9< 1—K ) 178900 — K~ (1-78909 — Kye 0 O198€ - (29)

This gives the distribution of K with respect to x. The distribution of 6 is then given from (27).

a*:aﬂ[(1—K)f(t)+Kg(t)}dt. O . )
Hence

H=%‘=2-5911(1—K)+2K,
or H=25911—0-5911K .. .. .. .. .. .. .. .. @Yy

This gives H, and ¢* in terms of x. Thus all the characteristics of the flow have been deter-
mined. Table 1 demonstrates the results.

4. Comparison of Methods.—No exact solution to the problem has yet been found. It is not
difficult to see that no transformation of co-ordinates such as that used by Blasius will help.
For suppose we take the stream function y = &f(5), in which & = 4x%*, » = Bx%* then it is
shown in Appendix 2 that the equations of motion reduce to an equation in f(3), if £ = (x/y)#".
We may say therefore that if v = (x/y)y° f(r), the function f(») can be found. [For example,
Blasius’ solution takes # = }(U/vx)'*y, s = 1.] The velocity components of this flow are

7 {ds — O o) + 09},

%
%= —
y

s (32)
Y= — % {(es + 1) fln) + enf'(n)}. f

If 4 > 0, » = 0 on the plate, on which we require v to be constant. Hence #°/y must be finite,
non-zero and independent of x when ¥ = 0. Hence ¢ =0, sd = 1, and f(0) = — v,. Consid-
ering conditions at infinity, it is then clear that # cannot be independent of x, which is required
in the problem. Similar remarks apply for 4 < 0. Thus an exact sqlution cannot be found
using such substitutions.
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The only other obvious method of obtaining an exact solution is to expand the stream function
in powers of x, whose coefficients are functions of y, for x small, and to join this solution on to

the known solution for large x. It is hoped that this task will be undertaken by means of the
differential analyser.

Other solutions have been considered by Schlichting? and Preston'. Both authors have used
the more orthodox method of boundary-layer calculations, in which the velocity is expressed
as a function of y, and use a one-parametric family of profiles of the form

b=0-01() ().

Both authors also take #/U = j(y/0) as the exact solution at large distances down the plate.
Preston takes for %(y/0) the Blasius profile, and hence finds the computation of the momentum
thickness awkward, while Schlichting takes an approximation to Blasius in form which enables
him to do all the work analytically. Tt would certainly seem that Preston’s method is superior
to Schlichting’s, but it is curious that the method of this paper agrees quite well with Schlichting’s
results. It is wellnigh impossible to suggest which method gives the best result, and all the
results are collected and compared in Figs. 1, 2, 3.

Conclusion—A new method of performing boundary-layer calculations has been used in
considering the problem of the flat plate in a uniform stream when there is a constant normal
velocity through the plate. Unfortunately no exact solution is known of the problem, and
therefore comparisons are impossible. A later paper® will demonstrate in greater detail the
new method, and its applications to other problems.
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APPENDIX I

We want to show that in the flat plate with constant suction problem the velocity profiles
tend to the Blasius profiles as x — 0. .

Suppose that near x = 0, the stream function is expressible in the form

p = (vUX2 fy(n) + vefu(n) - 087 fulag) - .. .., . (33

in which n = $(U/»x)'/*y, v, is the velocity of suction, and £,(0) = £,'(0) =0, f,(0) = — 1. The
term vyx f,(n) is necessary for the boundary conditions along the plate. From equation (33) we
obtain immediately the following relations.

R O R GOl O

ox

b1 QWO

+ 2wt — e i) + 22 )
=3 (&) oo — ) + 3 [ () — 2fifn)]

v(,x [fz ( ) - 3f2(’7)] +

D
<
l
§

IH

3/2 ,
gy = = BUR) + o SR ) + )+

Ty = 5 ) o A e L £ ) +

T = 5 e ) oo T A7) + T )

BT T a N R = Y ) + B )
~ ”°"2‘;2"2f2"(n> + ..

Hence the equation of motion (1) becomes

FUAG) + 30 (Z) " ) + 00

=1 20D e + 40 ()" () — i+ o)

+ [ (%”) (/) — Ak — 2 {2A00) = nf @)} + 07|
x ?};U(—Q)”Zfo“m + 2 U )+ O(x”ﬂ
10 L0+ 5 Q)" st ol

The functions fy(x), fl( ) ...can now be determined by equatmg the coefficients of like
powers of x to zero. In partlcular the coefficient of x™ is £"(n) + 4 fo(n) fo''(), and this
is the predominant term when % is small. Thus the predominant term in (33) 1is the first which
in fact gives the Blasius profile. This justifies the choice in Section 3 of the Blasius profile when
K=0.
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APPENDIX II

Let us seek a solution of the equations of motion in the form y/v = &f(y), where £ = x%7,
n = x9°. We require to know what conditions on «, b, ¢, 4 exist so that the function f(5) is
determinable. With this form for y, we get at once :

% b Edn E
=2 f4 2 f = 2 U, say.
yf yf

4 Yy

v _at,_tms_tp

A 5 sy
18%_6 a& EC?? ’ d (GL’I—C)f'ﬂ 7 élzc ’e
‘;a—x*y(;fJf—xf)f;(—T fHe7

:3%MW+®%HM+@Mf+hﬁW%=%UM%Y

Vou _bvE .ty ) | d (bt Den | rd g
5 yyf+yf)+y( Sy

- ;éwﬁw%s@#»

[ en

[(B* — b) f + (2bd + & — d)nf' + d**f") = 5T,

2

‘2

¢
yZ
VO _ gty f ot (2 & — d)nf o+ ) [ 2+ ]

Y Yy
dn

ET My @odsd— ) (f + o
+Lle—ntyreuse—ay+u g

2 74 /4 772 — 5 7
+a@f ) L] = 50,

wherein U, V, U,, U,, U,, are all functions of # and f(7) only. The equation of motion therefore
becomes

[ S £ & o £ =
220U, + 22 VU = = U

or yxy xR
E;‘;,V (L_ L_x v L—y) - L—w .

Since y&/« is the only term in this equation not involving # or f(»), the equation can be solved
if &y/x is some function of 4, say g(n), hence

%
§= "~ g(”l) s
Y
and the original form for v becomes
A—
PRy g(n) fn)-

Clearly the product g(x) f(n) could be replaced by a single function, or we may write g(n) = "
in Blasius’ solution of uniform flow, s = 1, ¢ = %, d = 1. Thus finally the equation of motion

can be solved exactly by taking

¥ = ;‘ W f(n), wherein 4 = x5 .
v



TABLE

) * S *
Below are tabulated the values of Y9 , U0 , H = % ,and K the “ shape ” parameter
v v
. K2
against values of the parameter o
Y
202 — 7,0 — 1,0
Uv K , » » H
0 0 0 0 2-5911
0-000287 01 0-02762 0-01091 25316
0-001382 0-2 006098 0-02466 2-4729
0-003953 0-8 0-1258 0-05212 2-4139
0-009381 0-4 0-1530 0-06454 2-3547
(- 020087 0-5 0-2150 0-09367 2-2955
0-041134 0-6 0-2955 0-1321 2-2365
0084344 0-7 0-4001 0-1837 2-1785
0-18122 0-8 0-5393 0-2546 2-1182
044880 0-9 0-7299 0-3545 2-0591
0-71783 0:-94 0-8262 0-4059 2-0355
0-96401 0-96 0-8799 0-4348 2-0236
1-43044 0-98 0-9377 0-4661 2-0118
1-93224 0-99 0-9682 0-4827 20059
2-45283 0-995 0-9840 0-4912 2-0030
2-98316 0-9975 0-9919 0-4956 2-0015
3-69137 0999 0-9968 0-4982 2-0006
) 1-0 1-0 0-5 2-0
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