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An approxknate method of calculating the turbulent boundary layer 
in a conical nozzle with isothermal wall is described. The morcentum integral 
technique is used together with a skin-friction coefficient which is assumed 
to depend on the Reynolds number based on the momentum thichess. Following 
an analysis by Spence of the experimental data of Lobb, Wink&r and Persh, a 
l/9 power velocity profde is assumed for the boundary layer and the effect 
of the transverse curvature of the wall is taken into account. Calculations 
related to the conditions in the R.A.R.D.E. No.3 Hypersonic Gun Tunnel are 
presented and the results are compared with experimental pitot-survey data. 

Notation 

a speed of sound 

Cf skin-friction coefficient 

H boundary-layer form parameter, S&3 

% value of H in incompressible flow 

H 
P 

value of H in two-dimensional flow 

ii v 

M Mach number outside boundary layer 

n 

p,,b 1 

un 
power of velocity profile, -k = ' 

ue ( > ;i 

ratio of stagnation pressures aoross normal shock 

r radial distance from axis of nozzle 

R radial distance of nozzle wall from axis 

BJ 

Replaces A.R.C.25 062 
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B* 

r UC 
8 

T 

u 

A 

rl 

e 

nozzle throat radius 

radius of uniform core of flow in nozzle 

aistanoe measured along nozcile wall 

temperature 

longitudinal velocity (without subscript denotes velocity 
in boundary layer, distance r from axis) 

distance measured along nozzle axis 

oo-ordinate norm1 to nozzle wall 

ratio of specific heats 

boundary-layer thickness 

boundary-layer displacement thickness, 

I 
6 

transformed boundary-layer thlolmess, e aY 
Pm 0 

transformed co-ordinate normal to wall, 
I 

‘P ay 
0 pm 

boundary-layer momentum thickness, 
(5 0 -5) aJ 

parameter &fined by equation (17) 

visoosity 

density 

recovery factor, defined by equation (8) 

angle between axis and wall of nozzle 

Subscripts / 
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Subscripts 

e conditions at outer edge of boundary layer 

m conditions at intermediate temperature, T, iequation (II)] 

0 tunnel stagnation conditions 

P boundary-layer parameters in two-dimensional flow 

T 
recovery conditions, given by -$ = 1 + _" (Y-l) M 1 

2 e 

tr 

77 

parameter transformed according to equation (4) 

wall conditions 

I. Introduction 

A characteristic of hypersonic urn&tunnel nozzles is the development 
of a thick boundary layer along the walls, thus severely restricting the core 
of uniform flow which 1s available for testing models. The thick boundary layer 
IS due to the high temperature generated by the deceleration of the 
boundary-layer flow from hypervelocities, causing the density in the layer to be 
low. A pitot survey of the workLng section of the B.A.R.D,E. No.3 Gun Tunnel 
was made by Bowman (Ref.1) and the object of the calculations presented here 
was to compare the results from approximate theory with experimental data. 

Using the momentum integral equation for adsymmetric boundary-layer 
flow, SivelJx and. Payne (Ref.2) calculated the boundary layer in a 
continuous-running hypersonic wind tunnel in whxh the walls were adiabatic. 
In an intermittent wind tunnel with a very short running tzme (e.g., the 
hypersonzo gun tunnel) the wall temperatunz does not change appreczably during 
the run and for this case an isothermal "cold" wall is assumed. An analysis 
IS given here of the turbulent boundary layer on an isothermal wall us=ng a 
transformation simdar to that employed by Sivells and Payne. However, these 
authors used a skin-friction law in a form whxh implied that the skin-friction 
coefficient varied only with x, the longitudinal co-ordmate. Whilst this 
simplifies the integration of the momentum integral equation, It 1s more 
realistic to assume that the skin frxtion depends on 0, the momentum 
thickness. Accordingly, the present analysis IS made with this assumption. 

Associated with the use of the momentum integral equation for the 
boundary layer is the assumption of a mean velocity profile. Spence (Ref.3) 
analysed. the experimental boundary-layer data of Lobb, Winkler and Persh 
(Ref.&) whxh was obtained over a Mach number range of 5 to 8. The velocity 
profde whmlch resulted from Spenoe's analysis was a l/V power la,w profile, 
i.e., 

iI9 

. . . (la) 

e 
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A = . . . (lb) 

In the absence of any other data the above profile has been 
assumed for the present csloulations. 

When the thickness of the boundary layer in adsymmetric flow 
approaches radius of curvature of the walls the modification of the momentum 
and displacement effects of the boundary layer must be taken into account and 
the approach of Miohel (Ref.5) has been followed here. 

The botiary layer has been assumed turbulent from the start of the 
flow since the Reynolds numbers are high throughout (of the order 1 x lOs/ft 
at the throat). 

2. Analysis 

2.1 Formulation and transformation 

The ion K&m&n momentum equation for axisymmetric boundary-layer 
flow (Refs.2, 5) is 

where Cf is the skin-friction coefficient and B, % are defined by 

. . . (2a) 

. . . (2b) 

where T*= [;(1-2-)*. . . . (2c) 

For a conical nozzle with expansion angle 20, ds = dx set w and if w is 
smalls0 that seco+l, ds = ax. Therefore equation (2) may be rewritten 

. ..(3) 
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In order to simplify the coefficient of dM/d.x, equation (3) is 
now transformed as follows 

. . . (h) 

. . . (4b) 

i.e., %+I = is;,,+,)L 
Te 

and the following equation is obtained 

Y+l 

=tr %r dM %r aR 'f Te 
---+--(2+Tit,)+--- = - - 

ax M ax R ax KI 

(y-1 1 

. . . . (5) 
2 To 

'I?le above tl'msformation is similar to the generalisation of the Stewartson- 
Illingworth transformation, used by Spenoe (Ref.6). 

2.2 Evaluation of the form parameter, H 

In his analysis of the data of Lobb, Winkler and Persh (Ref.&), 
Spence (Ref.3) found that the quadratic temperature-velocity relationship was 
a good approximation to the true variation in the boundary layer. using this 
relatIonship the two-dimensional form parameter, H 

P 
1s given by 

TW 
HP+1 = 

T, 
rHi +r. 

e * e 

For an isothermal wall with temperature T, specified, since 

~~,+~M’, equation (6) becomes 
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where u is the turbulent wall recovery factor defined by 

o- = Tr - Te 

To - Te 

. . . (7) 

l . . (8) 

and is observed to be about 0439 for au. 

Dividing by To& and usu~g equation (Lb), equation (7) transforms, 
for y = 1.4, to 

TTV 1 + 0.178 MP 

%r 
+I = -II. 

P To $+l+0.2Ma ' 
. . . (9) 

The fQRgOiDg relationships apply to two-dimensional boundary layers 
but it is shown by Muhel (Ref.5) that even for quite large values of 6/R, 
for a turbulent boundary layer, mp is within a few per cent of unity. 
Therefore equations (7) and (9) may be used to evaluate 3 and ztr in 
adsymmetric turbulent boundary layers. 

n+2 The incompressible form parameter, Hi is given by Iii = - and 
n 

for n = 9, Hi = II/Y. 

2.3 Brpression for the skin friction 

The Blasius turbulent skin-friction coefficient, modified for 
compressibrlity, is (Refs.3,6) 

p = ;. c .[pe;fpj3 ‘w 

PeUe 

and for a I/9 power-law profile tbs becomes 

'w 5 Te 

z=l-=T e m 
. . . (IO) 

since pressure is constant acrc~ss the boundary layer, sothat L$. 
Pe m 

Once/ 
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and writing equation 
parameters gives 
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this formula IS for two-dimensional boundary 
(10) XII terms of sxxgmaetr~c boundary-layer 

layers 

. . . (108) 

for a l/y power-law velocity profile and small W. The last two terms in 
equation (lOa) are close to unity and writing it in terms of the transformed 
momentum thickness lead8 to 

2 = 0.0088 Te Te ;[-,*[ v.::4, ji . 
. . . (lob) 

2 

2.4 The intermediate temperature, T,, and calculation of viscosity, h 

The commonly used definition of the Lntermediate or reference 
temperature T, is that due to Eckert (Ref.7) and is 

Tm = O-5 (Tw + T,) + 0.22 (Tr - Te) . . . . (Ila) 

For an isothermal wall, Tw is specified and T, is written in the form 

T 
2 

T 
= O-5 (1 + O-078 Ma) + O-5 J! (1 + 0.2 MP) 

Te TO 

for air with y = l-4, o- = 0.89. 

. . . (llb) 

The viscosity, p, may be calculated from Southerland's law 
whioh is, for air, with T in OK, 
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T=‘=X 3.059 x I@ 
P = . . . (12) 

T + 114 

measured in slug/f+" sec. There is no need to introduce .a simpler approximate 
relation when integrating numerically on an electronic digital computer, as 
has been done here. 

2.5 Inteaation of the momentum equation 

From equations (5) and (lob) the momentum equation may be written 

. . . (13) 

If both sides of equation (11) are now multiplied by iz't, 

the left-hand side of the equation becomes a perfect differential Ff Htr + 2 

can be assumed constant. over the interval of integration. Fig.1 shows the 
variation of I-& + 2 with M and demonstrates that this is a reasonable 
assumption. Therefore equation (II) simplFfies to 

The parameters in the above equation are functions of Mach number M 
and so it is simpler to integrate w.r.t.M. The one-dimensional theory for the 
UnifcIm core gives 

. . . (15) 

from which 



-P- 
5-3Y 

4(Y-1) 
- CM2 - 4) fl +y-lbA 

al db, R, 1 . '\ 2 / 
--- =- - 
ald aM J 2 M3 Y+l 

/ y+l \4(y-') 

. . . (16a) 

\2/ 

and since 
aR 
-=tanO=‘, 
aoJ 

equation (16a) becomes 

5-JY 

4(Y-1) 
(MD - ah, d4 

.d.M+-.-. 
Y+l 

. . . (16b) 
aM 0 

( y+l p-1) 

\ 2 / 

Substituting equation 

-i 

(16b) in equation (13) and since 

i (1 + 0.2 ?dq 
(PO&O) 

M 
? 

for y = 1.4, equation (13) becomes 

R* I (2 - I)(1 + 0.2 lb+ as 

[$ x - - +* ahi. ..* (17) 
2 II' (1'2)$ dY 1 

Since the geometry of the conical expansion has been included in 
equation (17), the equation is only valid for the supersonic re&on downstream 
of the throat and so the limits of integration are a = 1, b = Mn. using a 
similar expression applied to the subsonio contraction an estimate may be made 
of the bodary-layer thickness at the throat. 

With/ 
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With equations (lib) and (12) substituted into equation (17), the 
latter may be integrated numerically to obtain $. 

since 6, and 2% 
dM 

are not initially known, it is necessary to 

assume that they are eem initially and then by iteration a true solution can 
be obtsified. 

2.6 Calculation of the boundary-layer thicknesses 

To obtain z from $, equation (&a) and (15) are substituted into 
the left-hand side of equation (17) to give 

= s . . . (18) 
1 + 0.2 Ma 3 1 t6, Y Htr+2 

l-2 

evaluated at M = M,(x) . 

The value of 6, is given by (under the assumptions made in $2.2) 

x* = Hi = < >. (1 t 0.2 Ma) Hi t O-178 MP 1 . . . . (19) 

The true momentum and displacement thicknesses, 0 and 6*, are 
obtained from the expressions (Ref.8) 

T;, = 6, - s”, 2 * . 

. . . (20) 

It may not be possible to allow for the variation of K with 
pressure gradient in the present application without making wildly speculative 
~SSUIOP~~OIIS (Ref.6), but for most purposes Hi can be assumed to remain 
constant (Refs.6,8) and in particular for a l/Y power velocity profile, 
Hi = II/Y. 

From/ 
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From equations (1) and the definitions of the momentum and 
dxplacement thicknesses, which are 

. . . (21) 

it can be shown that for (;) = (;j, the thxkness of the boundary 

layer 6 1s 

. . . (22) 

It will be seen from equation (19) that as M becomes large H also 
becomes large. Thus, at high Mach number 6, is of the same order as 6 
whereas 0 is a smaller fraction of 6 compared with the value at low Mach 
numbers. This 1s because the gas in most of the boundary lsyer is much hotter 
than in the uniform core and so the density is lower. Thus, in equations (21) 

the term z is small in comparison with unity across most of the layer. 
Pe"e 

3. Results 

Equation (17) was integrated numerically with the ad of an electronic 
digital computer AMOS (Ferranti Mark I*), using a I6 point Gauss quadrature 
formula, for the co&Ci.tions in the naszle of the B.A.R.D.E. 10 inch hypersonic 
gun tunnel. The tunnel has a conical nozzle with a 4" semi-angle and the Mach 
number is varied by mterchangeable throat inserts. The conditions considered 
were as follows: 

Table I/ 
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Table 1 

Nozzle Nozzle 
Throat Throat 

Diameter Diameter 
c-1 c-1 

o-599 o-599 

0.345 0.345 

0.200 0.200 

Noloinal Nominal 
Mach Mach 

Number Number 

8 8 

10 10 

13 13 

Stagnation Stagnation 
Temperature Temperature 

(OK) (OK) 

1000 1000 

1300 1300 

1400 1400 

stagnation Stagnation 
Pressure Pressure 

(p.s.i.) (p.s.i.) 

2290 2290 

2580 2580 

2490 2490 

Te Te 

65 65 

57 57 

41 41 

The working gas was az. 

Figs.2, 3 and 4 show the caloulated Inviscid and boundary layer - 
modified Mach number variation down the nozzle for the three oases. Also 
included are the measured centre-line Mach numbers (Xef.1). Four rterations 
were required to obtain the Mach 8 results and seven for the other two. 
Estimates of the boundary-layer thicknesses at the throat were made and 
although the displacement thcknesses were very small, they were taken Into 
account in the calculations. It ~~11 be observed that the agreement between 
experiment and. calculation is best at the lowest Mach numbers. Figs.5, 6 and 7 
show the calculated boundary-layer displacement and total thicknesses and 
Figs.8, 9 and 10 show the calculated total thicknesses m the working section 
plotted on the pItot traverse results. It will be seen that it is difficult 
to decide exactly the positlon of the edge of the boundary layer from the pitot 
traverses but It can bcz seen that the calculated values give a good estimate. 

By calculating the area ratios 
( 

survey station 
throat > 

necessary to give the 

measured Mach numbers in the core a mass defect thickness can be calculated 
which should correspond to the boundary-layer displacement thickness. Since 
the measured and calculated axial Mach number variations did not exactly 
correspond, the "measured" displacement thicknesses may be compared with 
theory either at the same value of x or of M as XI Table 2. 

Table 2 / 
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Table 2 

Throat s* Calculated 6* 
Diameter 

(3.n.) M (CL) Tz"j M (co1.2) ' x (co1.3) 

a .3 70.2 Q '74 I *OQ 0.94 
0.599 8.5 73.2 0.72 1 *IO 1 -co 

a-7 76.2 0.66 1.20 I.07 

10.2 72.1 144 1.70 I.43 
0.345 20.4 75.1 0.99 I.82 I.51 

10.7 78-l 0.95 2 -04 I -60 

12.7 
:6": - 

l-12 2.86 1.98 
0.200 12.9 1.22 j-00 2 *IO 

13.0 79-2 1.31 399 2.22 

The analysis by Spence of the data of Lobb et al has already been 
mentioned as the basis of the theory used here. The expression for the form 
parameter H iequation (6)j has b een based on the fact that the quadratic 
temperature-velocity relatlonslp appeared to hold. However, if the measured 
value of 6,/e from Ref.4 1s compared with that calculated from equation (6) 
there is a strong disagreement as shown in Table 3. 

Table 3 

493 5.42 Il.42 IO.96 

5-75 6.19 12.92 13.45 

6.83 6.34 13.92 16.05 

7-67 5.94 12.47 17.73 

8.18 6.60 11'52 19.97 
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A further example of the failure of equation (6) at hypersonic Mach 
numbers is provided by the following comparison of some results from the 
hypersonic tunnel atR.A.E. Farnborough (Ref.9). 

Table 4 

Ref.9 I Eqn. (6) 

7.86 15'0 22'25 

6’75 11'7 20'85 

In the light of this any agreement between experiment and theory in 
the present or any other calculations based on equation (6) must be regarded 
as fortuitous. 

Equation (6) is based on assumptions regar&ng the incompressible 
form parameter Hi and the turbulent recovery factor c (giving the recovery 
temperature T,). Both Hz and IS may vary consIderably instead of remaining 
constant as is usually assumed. The difficulty of allowing for the variation 
of Hi with pressure gradient has already been mentioned. This is because 
the pressure gradients developed in hypersonic nozzle expansxons are far in 
excess of any encountered in incompressible flow. 

If it is assumed that the recovery factor remains at about O-89 at 
high Mach numbers, then the parameters Hi and Htr can be calculated from 
equations (6) and (9) usmg the experimental values of H = S,/e from the 
N.O.L. and R.A.E. results. It is then evident that Hi and Htr are not 
constant, as has been assumed. It was noted, however, that the factor 
Hi + TdT, was approximately constant for all the results considered, 

i.e., 
To - ‘Jr e const. = K (say) . 

Tw 

This leads to the approximate empirical formula 

T 
H = J!K- To - Tr 

- 1 
Te Te 

where K * 2-4 . 
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A simpler empirical formla was noted by Lee (Eef.10). !l'his was 

and in fact the N.O.L. and R.A.E. results are all near this figure, the 
arithmetical mean being 2.4. 

However, it is clearly most unsatisfactory to propose empirical. 
laws of this kind, with no theoretical backmg, and it is plain that there 
is considerable scope for both theoretical and experimental research to 
improve our knowledge of turbulent boundary layers in hypersonic flow. 

4. Conclusions 

The turbulent boundary layer in the nozzle of the R.A.R.D.E. 
IO in. gun tunnel has been calculated using the momentum equation and an 
assumed power-law profile based on experimental observations. Good agreement 
between theory and experiment was obtained for the total boundary-layer 
thiclmess but because of discrepancies in the theory this is regarded as 
fortuitous. There was a definite inconsistency between the experimentaIL and 
calculated boundary-layer displacement thicknesses. 

In order to design hgh Reynolds number hypersonic wind keels 
with confidence, there is a need for more experimental and theoreticd 
research in turbulent hypersomc boundary lsyers. 

References / 
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