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e Introduction

The following brief remarks are concerned with the general
problems of computing the unsteady aerodynamic loading on finite wings
in a supersonic stream, when the planform, Mach number, mode and frequency
of oscillation are given. In the corresponding subsonic problem the
absence of exact solutions made imperative the early development of
general collpcation methods and much attention is now being given to the
establishment of an optimum routine and its limits of sccuracy. By
contrast, the hyperbolic nature of the differential equations of motion
in supersonic flow has led to anelyticel linearized solutions for
planforms without subsonic edges and exact solutions in other special
cases, which ususlly involve rather difficult numerical evaluation.
Algebraic solutions in powers of the frequency parameter exist for
perticular classes of planform over restricted ranges of Mach number,
but these introduce heavy direct computetion unless the frequency is
fairly small. Neither approach is ideally suited to mechanized
computation. It is comparatively recently that collocation methods have
been proposed to deal with wings of arbitrary planform in a supersonic
stream; steps are being taken to programme such methods for electronic
machines. There has also arisen the prospect of a unified numerical
procedure for oscillating wings in subsonic or supersonic flow. It is
important to decide how this broad field of computational research should
be explored.

2. Megthod of Approach

A brief formal discussion of the supersonic problem is included
in Ref.1 (Gerner and Acum, 1956). In its simplest form the differential
equation for periodic linearized supersonic flow is

aﬂw aﬂ" aﬂw Mﬁwﬂw
(M? = 1) oo e moo o oo 4 e = 0, cee1)
ax? a8y’ 9z® UT(MP-1)

¢ = v¥(x, 5, 2) exp R exp (iwt). oo (2)

Many workers in this field have cbtained exaet solutions with restrictions
on planform, Mach number and frequency. For example, Stewartson? (1950)
has found analytical expressions for the pressure distribution on a
gemi-infinite wing, slender body of revolution and a swept-back wing with
a supersonic leading edge; Miles3 (1951) has considered rectangular wings
of aspect ratio greater than (M*-1)~Z, In each case fairly simple
formulae for the 1ift and pitching moment are derived. Stewartsond (1952)

has/

— - o i bar———— — ———— e = — o

_— e e ———_—

Publashed with permission of the Director, National Physical Laboratory.



-2 -

has also given a general treatment of the differential equation and has
formulated a practical method for wings with supersonic leading and
trailing edges. His analysis for wings with 2 subsonic leeding edge is
very complicated and would probably defy computation.

In current work it is more usual to consider instead the
equivalent integral equation, whereby a(&, 1), the specified
flow-direction et the wing, may be expressed in the following three ways:-

a(§, n) = [] €(x, ¥) Ki(x - & y~mn, w/U, M) ax dy, ees(3)
of8 n) = [ ¥z, y) B, (x- & y -7, 0/0, M) dx &y,  ...(4)
®(x, y) = I (& 1) K, (x-E, y=-7n, w/U ¥ &Ean, ...(5)

where the area of integration is the pert of the plone z = 0
intercepted by the forward Mach cone. Equation (3) gives the required
non-dimensional wing loading, £, instead of the velocity potentizl
and has been fully discussed by Watkins znd Berman? (1955); the kernel
function K, is an integral which needs careful nmumericel evaluation.
On the other hand, the kernels K, and K, contain no integrals and
can be evaluated easily, but the solution gives ¢, which hes to be
differentiated to give the wing loading.

Equations (3) and (4) suffer from the disadvantage that a
matrix inversion is always required to obtain a solution in terms of the
knovn a. When all the edges of the plenform are supersonic, equation (5)
is clearly superior to (3) or (i), since the answer is given directly and
is equivalent to that of Stewartsonlt. When subsonic edges exist, the
best choice of integral equation is uncertain. The solution of (5) is
camplicated, since a(€, n) is non~zero in 2z region forward of the
leading edge and is no longer defined gver the whole arez of integration.
The analyticsl treatment due to Evvard® (1950) by use of steady source
distributions leads to integral expressions valid for low frequencies.

In general, 2 matrix solution has to be obtained in the form

&, ] Ay Ay, Gy
= » LN ) (6)
%, Ay By @

2

where suffix 1 denotes values on the wing surface and suffax 2 those
ahead of the wing and behind the Mach cone trailing from the leading
apex. Then %3 = O and a, is known. By elimination of the unknown
a., the required solution is

8 = [Ay - A Aa;1 Aas] o eee(7)
and involves the inversion of the matrix A

Thus, for wings with subsonic leading edges, equation (5) has
little adventage over (4), while the relative merit of obtaining &
instead of ¢ in (3) is lergely offset by the difficult mmerical
integration to evaluate the kernel K,. As will be seen, equation (5)
has special spplications, but for the general problem equation (3) is
preferred.

3. Numerical Sclutions

Among the methods of approach towards a numerical solution of
the integral equation ars the following: -

(a) restrictions on planform, Mach mwbor or froguency to permit
an exact solution or an analytical one by iterstion or
successive approrimation,
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(b) expansion of the kernel function in powers of frequency,

(¢) continuous lifting-surface thecry in which the flow direction
is setisfied by collocation at a limited number of points on
the wing,

(d) wuse of = samplified model, such as a lattice of uniformly
loaded elements to represent the wing.

Recent examples of (a), based on equation (5), usc Evvard'56
concepts for a subsonic loading edge. WatsonTs8 (1955, 1956) has given
approximate expressions for the derivatives of a slowly oscillating
combination of cropped delta wing and constant-chord control surface.
There 13 also an unpublished iterative method due o the late
I. 7. Minhinnick., It scems that such approximate solutions load to
lengthy algebraic expressions, which are not suitable for mechanized
computation. The same is true of solutions based on superposed conical
fi0lds and of (b) generally; this 1s 2llustrated by some results for a
triangular wang with subsonic leading edge and quadratic harmoniec
deformation. Watkins and Berman9 (1953) give lengthy formulae up to
the third power in frequencys some unpublished work of D. E. Davies of
R.A.E., shows that higher-order terms in either the deformation or the
frequency become progressively harder to calculato. Similar results
for the theoretical 1ift and pitching woment on rigad pointed arrowhead
wings with suporsonic trailing edges have been evaluated 10
(Cunnlngham, 1955). Further develoments in this field are not likely
10 be fruitful from the numerical standpoint.

The outstanding exemple of (c) is Richardson's'' (1955) theory,
in which he formulates a collocation method for arbitrary planform
incorporating principles and techniques analogous to those of Multhopp's
subsonic theory (Ref.12). Distinct basic loadings and collocation
positions in the chordwise direction are derived in the four cases of
subsonic or supersonic, leeding and trailing edges. This two-dimensionsl
concept introduces spenwise discontinuities in loading wherever the
leading or trailing edge becomes sonic. The treatment_of the spanwise
integrations is precisely that of Ref.12. Richardson'’ (1956) has
applied his method to the steady flow of Mach number 1.25 past a slender
triangular wing. With only eight collocation points, good accuracy is
obtained over most of the span; however, comparison with exact theory
shows that the treatment of the kink at the centre section is a source
of error. As suggested by Richardson, it would seem sensible to try an
even number of spanwise stations in order to avoid e station at the
central kink, though some modification to Multhopp's spanwise integration
formula would then be necessary. Difficulties involving discontinuities
of thisg kind can only be resolved by means of lengthy ocalculations with
systematically increasing numbers of chordwise loadings and collocation
stations. It mey not always be best to use the same number of terms in
the chordwise loading 2t 2ll collocation stations. The maxinum number
would be needed near the centre section and the tip where the load
distributions esre much distorted from that of an infinite sheared wing;
however, it might be practicable to avoid superflucus collocation points
at some intermediate stations.

The approach (d) is regarded as being without restriction on
planform, Mach number or frequency. A simplified representation of the
wing may lead to a rapid but crude method of uncertain accuracy or
altermatively to an element theory which reduces to a2 very large number
of simple operations. The former, however imperfect, may have a place
in semi-empirical work in which the yard-stick is experimental. The
latter may require so many small elements thot it is impracticable on
a desk machine but becomes powerful and accurate with the aid of an
automstic computer. In the box-grid methodld (Ta Li, 1656), the wing
area is subdivided into a number of rectangles with their diagonals
parallel to the Mach lines. Te Li hos obtained highly satisfactory
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results for two-dimensional flutter coefficients at Mach mmbers down

to 1.1. He has also formulated a general treatment of subsonic leading
edges. The numerical work involves the evaluation of coefficients
representing the influence of one rectengular box on another, and these
seem suitable for progreamming on ¢ high~speed computer end can be used
directly in flutter calculations for arbitrary plenforms. Stewartson'sh
theory for wings with supersonic leading and trsiling edges has been
developed by Hunt!? (1955) into a method of calculetion, in which the
double integrals are replaced by double summations at lattice points
identical to those used in Ref,i},

Programming, of General Methods

Although methods (a2) and (b} lead to precise formulse which
can feasibly be calculated on s desk machine, the results are limited
end reguire extremely careful calculation; it seems that the formulae
would be just as laborious to programme for an electronic computer. In
this respect it is best to avoid eny method which involves integration
of the downwash over a subsonic edge. On the other hand, desk
caloulations of methods (c) and (d) would become prohibitive in many
problems, since the kernel function K, would need to be evaluated an
excessive number of times., It is therefore essential to programme the
calculation of K;, given in equation (23) of Ref.?. If the awkward
singularities in the integrand at the limits of integration can be so
handled, then it should be possible to obtain results in 21l cases by
Richardson's?1 theory.

In the practical problem of calculating flutter characteristics
of a thin wing, the frequency and modes of oscillation are unknown. The
modes of structural deformation are roughly determined by the elastic
properties of the wing, but the frequency is usually obtained by trial
and error, separate calculayions being made for selected wvalues of the
frequency paremster. Humm] (1955) has formulated such e treatment for
wings with straight supersonic leading edges, but computation, if
attempted, would be very heavy. He also gives a method valid for small
frequencies, by which a complete flutter calculation has been performed.
4 similar method without restriction on planform would be worth-while
and should be sought as a limited objective. It would, however, scem
inexpedient to attempt to extend the range of frequency by expansion in
power series. The necessary automatic programming is rarely easier when
the method is valid for a limited range of frequency.

The mechanization of Hunt's!? method for wings with supersonic
edges has been taken up by Sadler!? (1956) and Wicks'8 (1956), so that a
standard computetional form is now availsble for modal deflections of
arbitrary frequency. It would seem useful to attempt to modify the
programme of Refs18 to deal with wings of arbitrary planform oscillating
in elastic modes. The lattice points should be extended forward of e
subsonic leading edge, as suggested in Ref.14; eadditionsl linear
equations would be introduced to satisfy the conditions of zero pressure
difference ahead of the wing.
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