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Corrigendum

Delete para, 3,4 and substitute:

3.4  External flow due to vorticity at jet boundaries

The external flow associated with a polar element of the jet is that
due to vortex elements dr;, dr! at the jet boundaries, where

2
)
u1 (R - 5) de

5
| R -
dI‘2 = uZ(R+2)d6.

A

The complex velocity due to the vortices qu, ary at z =% 6/2
is given by

1
aw g W
dz ° T2my_ _§ )
2 2
1 1 - art
I et I drj (dI‘-; dI‘2)6
= T 2x z * 2 *

2z

The farst term in the bracket represents the k distribuvtion on the
centre line of the jet; the second revnresents a doublet of strength

(dr;| - dré)-@-. But

é
£
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2
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Hence

(21)

from which it follows that the doublet term can be neglected if & is
sufficiently small,
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SUMMARY

Work so far done on Jet flap analysis in two dimensional flow
has been somewhat obscured by wuncertainties as to the physical essumptions
made by various workers. In these notes an attempt is made to clarify
the background of the subgect 1n two ways:-

(1) Dby establishing scme properties of a thin jet in a uniform
field of flow

(2) by stating some momentum theorems connected with a jet issuing
from a body in a uniform field of flow.
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1 Introduction

Attempts made so far to work out a theory of the jet flap in two
dimensicnal inviscid incompressible flow have produced much disagreement,
mainly perhaps through failure to sppreciate clearly the assumptions made
by various workers. It may be useful therefors to try to establish same
common ground of agreement by assembling the elements of the problem and
stating a few theorems which are likely+tp be used in its solution. The
analysis assumes an incompressible main flow, but goes a step further than
usual in treating the Jjet flow as compressible, the incompressible get
thus appearing as a special case.

2 Analysis of a thin jet in a uniform ficld of flow

Geometrically the jget is defined (Fag.1) by the radius of curvature R
of its centre linc at dastance s along 1ts curve, and by 1ts thickness &
perpendicular tco the centre line. We define the jet as thin when (6/R)2 can
everywhere be neglected.

The flow is everywhere irrotational except at the boundaries AB, CD
of the jet, which are vortex lines across which the pressure 1s continuous
but the velecity and the density are both discontinuous,

The main flow has stagnation pressure Hy and stagnation density Po?
which 1s the density of the incompressable flow.

The jet flow has stagnation pressure H and stagnation density pr.
If the get flow is treated as incompressible the densities are constant
at Py in the Jet and Po outside.

In all practacel cases H is nmuch greater than H, and the difference
K =1 - H, is clearly a basic perameter. We shall treat the jet flow as
i1sentropic, so that the density is a function of the pressure only.

The velocity is V, the pressure is p und the density is p at the
centre line, and so R, 6, V, p, » are functions of s. It waill be useful
to express the properties of the jet in terms of these quantities and the
stagnation pressures.

It should be emphasised that the Jjet has only three independent
physical quantities that are constant:~ the mass flow m, the stagnation
pressure, and the stagnation densaty®. 1In general, for instance, the
momentum flow p varies along the jet.

We can now annlyse the cenditions in a small element of the jet cut
off by two adyacent radii (Fig.2).

At the upper boundary of the jet the pressure is Py and the velocity
ond densaity are Vi By insade the pet and Uys Py cutside it. Buffix 2
denotes corresponding quantities at the lower boundary.

The usual equations for irrotational flow in the jet are

ov

v

5}-+r=0 ()
1

op pv2

or = r

where v, p, r, p are respectively velocity, pressure, radius of curvature
and density.

* Stagnation densily has been used for convenience instead of the more usual
staghaticn tenperature,
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It follows that across any section of the jet we have

rv = constant = RV (2)
whence
L8
‘V_l = 1 + 2.R> v }
’? (3)
& |
. we (R

so that the variation of v across the jet 1s8 =mall, and pressure differences
are related by the Bernowlli equation in ats dafferential form

d-..
== +vdv = 0
P
Hence, we get
Fo ™ Py V45
5 = V(v1 -vz) = -:_‘i"' ("4')
N
and
P1 + P2 |
2z T P
% (5)
P17 P
2 = °F '
Now let U be the velocity in the maan flow when the pressure is p.
Then Bernoulli's equaticn gives for the main flow
1 2 1 2
Pi +Z P, Yy =Dy 4T P, U =p+32-p°U'2 = H (6)

us+u Pa+D
i 12 1 72 .
2P, T T2 =1,

u ~|~1.12

4 2



Thus we have

42 2 -
21 Y2 £.842 )
2 - pOR
and. ‘ u2+u f
_J*Er_ii_ = 7° (7)
Hence 1.112 ='U2 + -&-%-VZ
o]
b (8)
2 2 p 6 2 '
= - -V
W, L) POR J

and if U is the mean of the main stream velocities on the boundaries of the
jet we have in general

u, +1u - 2% 2.%
g-—t—2 . I /1+"-~5—Y—> +<1-L%Y—) (9)
2 2\ P RgR o R o2
If _E,)Q_%VZ ig small compared mthU'zthese reduce to
0
5 oV w
u1zﬂ’<‘l+§§ 'B‘2>
Pe
> (10)
2
u =U’< _.§.._E.‘_{__..>
2 2R U'2
Po )
and so
U = U
(11)
5 p_v2|
u, = u = T
1 2 RPO )

To complcte what i1s wanted for determining the properties of the jet,
convenient equations for isentropic cne dimensional flow slong the centre

line are
C
# - 0)
P Y/

1/7 e -
=@
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If' the jJet flow can be treated as incompressible, so that the velocity
of scund is infinite and y -» «, these hecome

v . 2 (H ~ p), Bernoulli's equation
PJ
3 Properties of a thin jet

2.1 The mass flow m is given by

R+% R+'g- ar
m = p vdr = pRV.[ = from (2)
8 )
F=3 R-32
= pvVs (13)
This rust be constant along the jet.
3.2 The momentum flow u is given by
5 &
Re > R+>
p.:p[ 2v2dr=pR2V2./ 2% from (2)
3 5 ¥
B-3 Y
= p V26 = mV (1)

Thus p varies as V along the jet.
3.3 Caireculation

dl', the circulation clockwlse asscociated with the polar element of
Fig.2, is the sum of dT'y the carculation round its upper arc and dl‘2 the
circulation round its lower arc, where

ar

L]

g = (u =-v) R~ %0 ae

Ty

i

- (uy = v,) (R +2) a0

But since there is no circulation in the jet

/ & 8
v1 kR—§>=v2<R+E)
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4ar

8
Hence 3@ = (u‘l - u2) R - (u‘l + u2) E

Thus if k is the carculation per unit length of the centre line

ar b
k = E = (u1—u2) -'UR
- = B8y
But from (7) (u, = w,)0 = oo R v
It follows that
5 [ _ov”
K = U _(P - 1> (45)
R U2
o
s usang (1) (16)
- PoUR R
It f—%vz is small compared.with U‘, U can be replaced by T in (15) and
o
(16). In this case we can relate k to K, the difference in the stagnation

pressures, as follows,

Inside the jet we have

P+%PV2L =H=H°+K (1?)
X
where L:-—‘?-—[<1 +L:1—IVI2>_1-1}
MZ 2
Y .
and M is the local Mach number.
Also by defination
p+%pOU'2=HQ (18)
Hence from (17) and (18)
2
L P K (1 - __>
RO



and so from (15), patting U = T we have finelly, using (18),

kK = %J:?:—; [—% - (1, - p)(1 - %) } (19)

K [ 2
k:RJP o (20)

3.4 External flow due to vorticity at jet boundaries

It might be thoughl that the external flow due to the vorticity =sscciated
with the jet could be calculated from a distribution k on the centre line of
the jet. To show that this procedure is not good enough we bhave to returm to
the elements dI‘_I, dI‘Z.

Consider the flow due to vortices 4T,, dI', at z = _-3-_% .

The complex velocity is gaven by

aw _ i %
dz =~ 3 5 *
-3 2 + =

2
3 1‘”ﬂz_r(‘ﬂH"‘3‘1'2){5
2% z 2 g2

The first term in the bracket represents the k dastribution on the centre ]line
of the jet; the second represents a vortex doublet of strength (dr, ~dr,) o .

)
1
I

pv2
But ar, + 4ar = U - 11} 460
2 2

. 2
daw  _ iUb pv” 1_/v. 2
Hence = = o {(PUZ 1)2 (U 1) 22} (21)
o]

from which it follows that the doublet term is not in general negligible at
distances of the order of R.

4 Conditions at the ends of the jet

4.1 The source. Mathematically the jet may be supposed to issue fram a source
-8 -



of energy in the main stream, with given pressure, velocity, width end
angle 1o the main stream. Thus, using suffix e for this condition, pe,V
6e snd ee fbut net Re) are given at 8 = O, In realaty, ac in the jet

flap problem, the source is an orifiice in a surface, and it is one of the
difficulties of i1he subject to specify precisely the conditions at the
orifice itself.

e!

4.2 Far downstream. The get must clearly end by being parallel to the
mzin stream. Using suffix « for this end we must have

P = Py » the undisturbed main stream pressure
R s o
k = 0

Thus from (12), (13), (44) we have

P Voo O 7 |
mvco - lJ':.wo

1.1 (22)
v2 . 20 B (F=\"T¥) |
oo Y—1PJ H i
Poo Poo 1/Y
Py <H>

These equations determine the ultimate widtk, velocity, density and
momentum flow of the jet. When the jet flow 1s incampressible we have

1

Pm = PJ
and
V2 :'Z—(H-p)
[} PJ %)
This last equation may also be written
4 2 9 2
EPJVm _EPOU«: =K
4.3 We can now examine the difference between the momentum flows at the

ends of the jet.

It follows from (14) ond (412) that

B~ =m (Vw -V)



whence we have

- LS
o0 e 2y H (23)
m ¥ -1 Py Vo, +V
which reduces to
Po T X 2P "R (2.
n - Py Ve +V

for incompressible jet flow,.

These equations show that the ultimate momentum {low is greater or
less then the issuing momentum flow according as the mean issuing pressure is
greater or less than the undisturbed pressure of the main stream,

5 Jets of constant mamentum flow

5.1 Equations (23), (24) show that if P, = P_ We can have a oonstant momentum
jet in which V, p, p and & are constant throughout its lemgth, the pressures

Pys Py at iils boundaries adjusting themselves to suit the curvature according
to eqliation (4.),

5.2 A more general deduction from equations (23) {24), and one which has a
practical bearing on the jet flap problem, is that the variation of p along
the jet tends to zero, whatever its exit pressure, when V becomes very large.
This suggests that the difficult mathematics of the jet flap problem may be
sumplified, while still retaining some validity, by proceeding from the thin
jet of this analysis to the infinitely thin jet in which 8§ » Q0 as V » « under
certain condations.

D. A, Spence for instance proposes the linitang case of the constant
momentum jet, with incompressible flow, in which Vs «»_as & » O in such a way
that the mass flow p8V » O but the momentum flow pd V< -+ [, a finite constant.
This system is governed by the simple equations:~

T
P, =Py =§ = p, Uk (25)

It returns in fact to the momentum flux line' of the N.G.T.E. analysis.

5.3 It is not immediately obviocus from equation (23) that the infinitely
thin jet of finite momentum with compressible flow must necessarily have
constant momentum. We can easily show, however, that this is true and that
equation (25) remains valid even when the flow in the jet is assumed to be
compressible.

The squations governung the jet flow are (12), (13) and (14). Fram (12)
and (14) we have

=1

2 2y (/ETY i
pv .-.Y_,‘p{(P) '1}“‘5 (26)
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and from (12), (13) and (14) we get

Enlam

= p = Py (‘E‘)VY

We make & » O in such a way that p remains finite.
must remain finite, we have from (26)

(27)

Then, since p

x=1

2, (Hyy S8
as & =+ 0, Y-‘lp(p) ” 5 (28)
Now, from (27) eand (28), we find that
as & = 0, pzw—-zi—-li-m:z:constant =[_J.-2 (29)
¥=1p;
since H,

p, and m are all conscant along the jet.
has constant momgn

Hence, the jet
tum whatever the veriation of static pressure may be.
From (28) we have

1 1
1/ N1 T
as & =0, (ﬁ) Y»(—E-Y—RY 5

Y=y
so that,fram (27),

as & »0, n° » pJp<?2-£--‘E)- g7~

Hence, if Py remains finite,

m -+ 0, azs 6 »0
and V = E5s, -
m
and, from (27),
p =+ 0, as

& -0,

We find, therefore, that if & -0 but p remains finite, and Py
remains finite,

-1 -



> U, a constant along the jet
m,p » O
and V,H -+ o

and the infinitely thin jet is again governed by the equation (25), viz:

- _ B
Py p1‘R"'P<:=Uk

6 Momentum theorems for a jet fliap system

In general, Fig,3, there is a duct through the body with entry AOBO and
exit AB. A source of energy in the duot callects the air from PQ far upstream
of the body and egects it as the jet with boundaries AS, ER, which are
parallel to the main stream for behind the body. The mowentum flow is M,
for upstream, By at entry, p at exit and p for dowmstream. The stagnation

oo
Pressure is the same as that of the mainstream before entry: there 1s no
vorticity along the dividing streamlines PB1, QA,. The stagnation pressure
of the emerging jet is increased: there 1s vortigity on i1ts boundaries A3, ER.

There are four stagnation points of the main flow, at Ay B1, A,B.

In source type flow, as in the N.G.T.E. experiment, Fig.l, the source

of the jet air is outsi@e the system; there is no forward entry. There are
three stagnation points A1, 4, B,

It seems useful to write down momentum equations for the entry flow,
the ducted body, the jet, and the whole system. The theorems for parts of
the system (Paras.6.1, 6.2) apply to compressible but inviscid flow. In the
theorems for the whole system (Para. 6.3) the jet flow may be viscous.

!

6,1 The ducted tody

\

(1) Resultant force

Let P be the resultant force on the body and let the pressures p be
taken into the two surfaces separated by the duct , and into the duct at its
end,

Then the vector momentum eguation for the flow through the duct is

- A/B ) pds (30)

o+
AFA ,BGB A B
o o Cc QO

and the vector equation for the resultant force F is

- 12 -



T <AZAOFA+B£BOGB) o 2
(L) [ L)

AGAO EDBQ o]

<A£AO+ B!BOJF Aiio—ﬁl) pds - (4, = u) from (30)

(Lo L)l [r)-an [ o)

AoBo

i

n

where J is the reaction %o the momentum flow p. In Fig.h this becomes

F ___f pds +<J6~A£pds> (33)

ACDB

Equation (33) is the basis of the N,G.T.E. experiment, where p and J_ are
measured.

(2) Moment sbout origin O

To get the moment of the momentum flcw p about O we multiply each el ement
of u by 1ts perpendicular distance from O and integrate along the line which
the flow 18 crossing, Thus the moment of the momentum flow 1s Ly where L is
a meon length. Also the moment of pds about O is p £€ds, ¢ being the perpendi-
cular from O te the line ~f aetion of, p.

Hence the angular momentum equation correspending to (30) is

s = (- [ e [ [) e
AOBO

AFA,,BGB,

and the moment equation corresponding to (31) is



The results corresponding to {32), (33) are

(] /)pmﬂ(LeJe-mfpm)-(LiJi_ [ pes)

AG.AD 13DBo d AxB,
= / p éds 4+ (LeJe - A!p &ds) (35)
ACDB

Equation (35) 1s the basis of the N.G.T.E. moment measurement.

6.2 Inflow and jet

Measuring p always into the tube of flow the vector momentum
equations are

/ Pds =y, ~u =J_ -J, for the inflow (36)
A1QPB1A1
and T
/ pds =y -y =J, =-J  for the jet (37)
ASRBA

It is useful to resolve parallel and perpendicular to the undia-
turbed flow, Thus if the jet issues at the mcan angle T and ¢ is the
mean inclination of AB we have

J, 8in ¥ = [ p cosbds ~ p_ BA cos ¢ (38)
4S,RB

l.e, Je sin-r-e-peBAGOScP =L2= f p cos Ods
AS,RB

where I,

1

total 1ift reaction of the emerging jet

i)

1ift reaction on the jet due to the external
strean,

J, 08 % = J = [ psin® +p SR -p BAsing (39)



e

~

1.e. (J cos © +p BAsing) -(J +p SR) =D, = / p sin®
e e ) o 2
AS,RB
where D, = drag reaction on the Jet due to the external stream.

2
6.3 The whole systen

In considering the whole system the restrictions imposed on the flow
may usefully be relaxed, The assumption of a thin jet is retained, but the
main flow is assumed to be compressible and the jet flow to be viscous.

The momentum theorem is applied over a control swface C, which is a
large circuit enclosing the aerofoil eand cutting the streamlines of the jet
orthegonally (Fig.6).

R is a characteristic dimension of C (equel to the radius if C is
circular),

W is that part of C lying within the jet,
and C' = C - W is that port of ¢ lying wholly within the main flcw.

On C' the Bernoulll function ¥ is constant if the main flow ia hcmen-
tropic, where

d
Y = T)g+%(u2+v2)

Lift

The total lift force L applied to the aerofoil is the reaction to the
y~camponents of all the external forces applied to the fluid within the
large circuat C. In gzneral this includes tangential forces on the body, as
well as the reaction to the jet momentum.

The momentum equation for the fluid within C is, therefore,
-L:[pdx +lpv(vrlx - udy) (40)

Writing - | a7 Ll S,

" T i’ \:‘ w1
vee WEINEFELL oaol P EL Y- o+ phoC)
oo B £ o

- Drafndi lp e &___f«: U gt el (ln)
R =T
v PETS SN
-V_';_;_:.: !
(40) becomes : i3 FnI ! "ifz;:é_n A
The fip,l dx“_/f’ﬁ% ay +1'[P v'(v' dx - u' dy) (42)
¢ "”g**":“’** C

At infinity downstream the jet streamlines are parallel to the free
stream darection. Hence

- 15 =



Rosow

Lt [ [p'dx - /prv'dy + [ ovt{v'ax - u‘dy)J = 0
% W W

and (42) may be written

- L =Lt [ f(p'ax - pUmv'dy) + 0 vi{v'ax - u'ay)} (43)

R—)CO

Cl

Now cn C' both u' and v' are O(1/R), and the Bernoulli functaon %
is constant, sc that

p +p U u' =0

terms of 0('/R2) being neglected, end

It / pv'(v'ax - w'dy) = O (—;—)

- o
C!

Hence, (43) becomes

L= Lt f p U (u'ax + vtay)

> 0O

c'

= Lt [p U (udx +vdy)

©
R

G

i.e. L=p U T (44)

where I' is the clockwise circulation about any circuit G which encloses
the aerofoil armd cuts the Jet ortheogonally at infinity downstream.

Equation (44) is Taylor's well known lift-circulation theorem.

The general proof given above i1s appreciably simpler than that previously
given by Temple1.

With an incampressible main strean p does not differ from p , the
stagnation density, and et o

L = PO Uca rw

Thrust

The thrust T is the reaction to the x-components of the external
forces applied to the fluid withan C.

- 16 =



The momentum equation 1s

T=-Zpdy+/pu(vdx—udy) (45)
C
Using (41), (45) becomes
T = - Zp'dy +L[p Uw(vdx -udy)
+ fpu’(vdx - udy) (46)
C
Now,
Q= p( vdx - udy) = total mass flow outwards over the caircuit C

Q|

= 0, for a ducted flow

= m, for a source-type flow

where m = mass flow emitted by the source. Hence (4€) may be written

T:-/p'dy+QUm+fpu'(vax-udy)
c

Using (41), (47) becames
T = - /(p' +pU u') dy +QU_+ fpu'(v’dx - u'dy)
C

On C', as before, u', v' are O(1/R) and

pt +pwUmu' =0

/ pu' (v'dx ~ u'dy) = 0(1/1'{)
cl
and P+ p_.. & R~» o
Hence, in the limt R » », (43) becomes
T =—f(p' +pUmu‘) dy+QUw—/.p u'zdy
’ W W

- 47 -
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where the integrals are taken in a clockwise direction.

Taking the integrai. across the jet in the sense y inereasing, we

get
T = f[p‘ + pu'(Um +u')] dy + QU_ (»9)
J
w
In the limit R + «, p' is constant across the et and
! = - ]
fP W ==-p, U, vy o,
W
where 8 = thickness of the et at o
t
"W = value of u' at the outer edges of the jet
= o('/R)
Hience

L /. _
Baowd 2 & =0
W

provided that 605 remains small,

Then (49) becomes

T = / pu'(Um+u')dy+QUca
W
= / pu(u-U)ay +QU_ (50)
W

Now the jet momentum amd mass flow crossing the section at
infinity are

“m=/9u2dy
W

and mwzfpudy
W

Hence, (50) may be written

- 18 -



T=p -(m -QU (51)

o0

where § = O for a ducted flow,

"

and Q@ =m for a source type flow,

For an inviseid jet there i1s no mixing so that

andweget T=pn -m U =p -mJ , for a ducted flow
[+ =) (2] =}

o
and T = B for a source~type flow.
7 Conclusion

It should perhaps be repeated that this analysis makes no attempt
to solve the jet flap problem. The problem itself is of course to
determine the jet so that its boundaries are streamlines of the outer
flow, given the body and the conditions at the jet exat.
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List of Symbols

R radius of curvature of the centre line of the jet

R characteristic dimensicn of the circuit C :Ln\ para.b.3
8 distance along the centre line of the Jet

& thickness of the jet perpendicular to the centre line

Ho’Po stagnation pressure and dens:ty of the main stream
H, Py stagnation pressure and density of the jet
K=H-~-H
o]
V,p,p velocity, pressure and density at the centre line of the Jet

Py ,p2 pressures at the upper and lower boundaries of the jet

VisPy velocity and density within the Jet at its upper boundary

v2 R pz " n " n n 1] ] 1] lower "
Uy majin stream velocity at the upper boundary of the Jet
u " " ‘ n 1" " 1°Wer 1 11 1 t

2
T main stream velocity corresponding to pressure p

u, + U,

U mean velocity >
M local Mach number in the get

~
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List of Symbols (Cont'd.)

ratio of specific heats inside the jet

mase flow in the Jet
momentum flow in the jet

element of circulation about a bounding vortex sheet

circulation about the Jjet per unit length of the centre iine
inclination of the cenire line to the undisturbed stream direction
complex co-ordinate x + iy

complex potential function

}f?{@ +3i§-1-m2)§'{7- 1} in Para.3.3

lengths defined in Para.6.1 (2)

total 1lift force

1lift reaction of the emerging jet

dreg reaction on the jet due to the external stream
reaction to the momentum flow u
resultant force

thrust faorce

mament about the origin

mean angle cof the jet at exit

mean inclination of the exit (see Fig.5)
velocity components defined in Fig.6
Bernoulli function j %E + %(uz + v2)

a large circuit enclosing the aerofoil and cutting the jet
orthcgonally see Para.6.3

that part of C lying within the jet
that part of C lying wholly within the main flow

the clockwise circulation sbout C when the jet 2s cut at
infinity downatresm

total mass flow outwards across the circuit C
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List of Symbols (cont'd,)

Suffix

- refers to conditions far upsiream

© n"n " n H dmstrem
i wooow m at inlet
e ] ] 1t i exit
REFERENCE
No, Author Title, ete,

Vorticity transport and theory of the wake,
R.A.E, Report SME 3263
ARC 7118, 1943,

1 G. Temple
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FIG.I. SEE SECTION 2.

FIG. 2. SEE SECTION 2.



FIG. 3. DUCTED FLOW "
SEE SECTION 6.

FIG. 4. SOURCE TYPE FLOW ang
SEE SECTION 6.
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FIG. 6. SEE SECTION 6.3.
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