Structural Aspects of Suction Wings

By

E. H. Mansfield, M.A.
ROYAL AIRCRAFT ESTABLISHMENT

Structural Aspects of Suction Wings

by

E.H. Lawfield, M.A.

SUMMARY

This report considers the structural design problems arising directly from the use of distributed wing suction. Possible types of construction are discussed and estimates are made of the increase in aircraft all-up weight due to those constructions and due to the extra power required for suction.

LIST OF CONTENTS

1 Introduction .. 3
 1.1 Standard Wing for Comparison 3

2 General Types of Construction for Suction Wing 3
 2.1 Structural Features of Type (a) 3
 2.2 Structural Features of Type (b) 4

3 Suction Duct Sizes 5

4 Suction Power 6

5 Porous Materials 7

6 Normal Loading on the Porous Surface 8

7 Acknowledgement 8

8 Conclusions 8

List of Symbols 10
LIST OF APPENDICES

Increase in skin thickness to maintain torsional and flexural stiffness in inverted stringer-sheet construction
Critical suction pressures causing inner-quilting
Flow along a rough duct with a porous wall
Variable porosity to give correct suction flow

Appendix
I
II
III
IV

LIST OF ILLUSTRATIONS

Construction for suction along spanwise strips
General arrangement of wing section in Types b(i) and b(ii)
Inverted stringer-sheet construction
Inverted corrugation-sheet construction
Inverted asymmetrical corrugation-sheet construction
Sandwich construction
Suction - top and bottom surfaces
Illustrative sketch
Relative spanwise distribution of \(\frac{\text{duct area}}{\text{section area}} \) for constant duct velocity
Section pressures causing "inner quilting"
Maximum allowable unsupported width of porous skin
Influence of porosity and duct friction

Figure
1
2
3
4
5
6
7
8 & 9
10
11
12
13
Introduction

There is reason to believe that low wing drag may be achieved by stabilising the boundary layer by distributed suction. This report is concerned with the structural design problems arising from the use of distributed suction, and with the weight penalties directly incurred.

These structural weight penalties need to be offset against the advantages of reduced drag in the overall study of the economics of wing suction. The weight of the suction machinery would also need to be taken into consideration in such a study. This aspect comes rather outside the scope of the present paper, but since the calculations are simple a brief outline is included for the sake of completeness.

1.1 Standard Wing for Comparison

In order to obtain quantitative comparison with a wing without suction it will be assumed that the corresponding non-suction wing is 15% of the all up weight and has the following structural breakdown:

- Spars: 25% of wing structure weight
- Skin: 25% of wing structure weight
- Stringers: 15% of wing structure weight
- Ribs: 12% of wing structure weight
- Remainder: 23% of wing structure weight

It will be further assumed that the flexural strength and torsional stiffness of the two wings are the same. Possible effects of changes in flexural stiffness, however, are disregarded in this study, as being normally a secondary factor in design. Torsional strength is likewise disregarded on the grounds that adequate torsional strength is, on modern aircraft, readily obtainable without weight penalties owing to the stringency of the torsional stiffness requirements.

2 General Types of Construction for Suction Wing

There are two distinct types of construction for a suction wing. In one construction (type (a)) the suction is carried out along a number of sparwise strips, so that the porous material covers a small proportion of the wing chord, say 5 – 15%. In the other construction (type (b)) the suction is carried out through 50% or more of the wing chord. In both cases the suction takes place in sparwise compartments; this is simpler structurally and better aerodynamically than an uncompartmented suction system.

Types intermediate between (a) and (b) would present more practical difficulties and have not been considered.

2.1 Structural Features of Type (a)

A possible type of construction is shown in Fig. 1. With such a construction the porous material (which may be in convenient lengths) will have a negligible stress in shear because of the sliding fit at its edges and it will have a negligible current stress when the wing bends if a few of the end instings of the length of porous material allow slight movement.

2.11 Strength and Stiffness of Type (a)

The porous does not contribute to the stiffness of the wing in bending or torsion and the perforated part of the stringer is only partially effective. In bending the rest of the construction will be as effective as
the corresponding non-porous construction. In torsion, however, most of
the shear will have to pass through the rivet line (C) connecting the
outer skin to the stringer. The rivet line will thus be heavily loaded
and, furthermore, the shear strength and stiffness will be reduced unless
the thickness of skin and stringer in these regions is increased.

2.12 Weight penalty of Type (a)

An indication of the increase in weight of a porous wing of type (a)
over a corresponding non-porous wing can be found from an examination of
a particular example. The wing is assumed to have $\lambda\%$ of the top and
bottom wing surfaces covered by porous strips. The thickness of the
Porosint will be taken to be equal to that of the supporting edges which
are 50% thicker than the main skin.

The perforated part of the stringers will be taken to be 70% efficient.
As the density of Porosint is about 2.1 times that of dural, the increase
in weight, as a fraction of the skin weight is therefore

$$(2.1 \times 1.5 + 0.3 \times 1.5)\% = 3.6\%$$

This is practically all due to the Porosint, and therefore the main reduc-
tions in weight penalty are to come from a reduction in weight of the
porous material itself.

The rib and spar weight are unchanged and so the increase in structure
weight expressed as a percentage increase in all up weight will be

$$3.6\% \times 0.25 \times 0.15 = 0.135\%$$

(1)

2.2 Structural Features of Type (b)

Two types of construction, in which most of the wing surface is
covered with porous material, are

(i) an inverted stringer-sheet construction with the stringers on
the outside of the load-carrying sheet so as to provide support
for the porous material stretched over them,

(ii) a sandwich construction, with the outer skin of a porous
material (or combination of materials) which will contribute
to the stiffness.

2.21 Strength and stiffness of Type (b)

For type (b)(i) the load-carrying skins must be thickened to maintain
torsional and flexural stiffness. The requisite increase in skin thickness
is considered in Appendix I, where, for example, it is shown that at a sec-
tion where the mean wing thickness is 20 in and the stringer depth is 1 in
the skin thickness must be increased by 25%.

Types of inverted stringer-sheet construction envisaged for type (b)(i)
are as shown in Figs. 3, 4 and 5

Wrinkling of the porous outer skin on the top surface might be pre-
vented by stretching the porous skin while it is being glued to the
stringers.

For type (b)(ii), the sandwich construction, the outer porous skin
will have to be made up of a perforated load-carrying skin attached to a
porous skin. A possible arrangement would be as shown in Fig. 6.
The closeness of the suction in ridges can be adjusted so that the porous outer skin will not tend to buckle under axial strain nor collapse under suction pressure. A diamond pattern for the supporting ridges would be an ideal arrangement so that the porous skin would lie more securely on the correct aerofoil contour.

2.22 Weight penalty of Type (b)

For type (b)(i) with the structure the same as that given in the previous example the weight penalty will be the same as that for type (a) of para. 2.12 (taking $\lambda = 10$) if the porous material has a surface density of $(36 - 25)\% = 11\%$ of the skin.

For type (b)(ii) the increase in all up weight over a corresponding non-suction wing with a similar sandwich construction is due practically entirely to the porous material. A simple expression for this increase can be given in terms of the wing loading.

If \(w = \text{wing loading in lb/sq ft}, \)

\(c = \text{weight of porous skin in lb/sq ft}, \)

the percentage increase in all up weight \(= \frac{25a}{w}. \) \hspace{1cm} (2)

Thus if 75\% of both top and bottom surfaces will be covered with porous material and \(w = 50 \text{ lb/sq ft}, \)

the percentage increase in all up weight \(= 35\%. \) \hspace{1cm} (3)

There are already porous materials with \(\mu \) of about 0.4 (see para. 5) which would correspond to an increase in all up weight of 1.2\%.

The increase in weight due to the thickness of the air space and porous material reducing the distance between top and bottom sandwiches will be very small. For example, if this thickness is 0.06\" and the average distance between top and bottom sandwiches is 20\", the percentage increase in all up weight is less than 0.1.

As would be expected, type (b)(ii) compares very favourably with the standard stringer-sheet wing, because of reductions in the number of ribs necessary.

3 Suction Duct Sizes

It will be assumed here that suction is to take place over 75\% of the wing surfaces and that the suction velocity is constant over the entire porous surface (see Fig. 7).

In order that the pressure drop along the ducts should not be large compared with the drop across the porous skin the air velocity in the ducts must be limited to, say, 100 ft/sec. (This point is considered in greater detail in Appendix III.) In a design for a constant duct velocity of 100 ft/sec the percentage wing section area which is devoted to ducting is \(\Delta_\varepsilon \) at any section \(\xi \) and \(\Delta_\varepsilon \) is given by

\[
\Delta_\varepsilon = \left[\frac{22A_{\varepsilon} (1+k)^2}{K} \right] \left[\frac{(1-\varepsilon)[1+k-\varepsilon(1-k)]}{(1+k)[1-\varepsilon(1-k)]^2} \right] \hspace{1cm} (4)
\]

The function inside the second square bracket has the value of unity at the root section and has been plotted against \(\xi \) for various values of taper ratio in Fig. 10.
To obtain some numerical values, suppose, for example,

\[A = 6 \]
\[\nu = 900 \text{ ft/sec} \]
\[k = \frac{1}{6} \]
\[\lambda = 10\% \]
\[\frac{V_s}{V} = 0.0005, \text{ a somewhat pessimistic value}. \]

Substituting in equation (4) gives

\[A_0 = 12\% \]
\[A_1 = 10\%. \]

For a 90°-delta wing, for which \(k = 0 \) and \(A = 4 \), the corresponding values are

\[A_0 = A_2 = 5\%. \]

and for a 60°-delta wing

\[A_0 = A_2 = 3\%. \]

These examples clearly demonstrate the importance of low aspect ratio and taper ratio \(k \) in obtaining low values for \(A_0 \). The analysis indicates that \(A_0 \) will generally be below about 15%, so that the region between the inner skin and the porous skin in types (b)(i) and (b)(ii) will be sufficient for ducting. This also implies that the bulk of the wing section between spars can be used for flexible fuel tanks. In this respect type (b)(ii) offers added advantages because of the greater rib spacing.

If the region between the inner skin and the porous skin is not sufficient for ducting a possible solution, which leaves the region between spars free for tanks, would be to use the D-nose as a "by-pass duct" to serve an outer region of the wing.

If the total suction flow for type (a) is the same as for type (b), it may well be that the ducting available for type (a) will be insufficient.

The effect of duct friction is considered in Appendix III and the possibility of varying porosity in Appendix IV.

4. Suction Power

The suction pump will have to provide a suction pressure sufficient to overcome the pressure drop across the porous skin and an additional suction pressure sufficient to balance the maximum value of the localised lift pressure over the wing surface. Thus, ignoring the pressure drop due to duct friction, we can write

\[P_p = P_0 + a \]

where \(a \) is some constant depending on the aerofoil characteristics and will usually be about 2.
Along ducts where the lift pressure is not at its maximum the suction pump pressure \(P_p \) will have to be throttled down, and it might be advantageous to use more than one suction pump to minimize the losses due to throttling.

The total volume of flow/second at the root sections is 1.5 \(Sv_a \) and, if \(ft \text{ lb sec} \) units are used throughout, the \(S P \) required for suction and ejection at the speed of the aircraft is therefore

\[
P = \frac{Sv_a}{370} (P_p + \frac{1}{2} \rho v^2).
\]

Thus if \(P_p = 25 \text{ lb/sq ft} \)

\[
S = 1500 \text{ sq ft}
\]

all up weight = 100,000 \(\text{lb} \)

\[
\rho = 2
\]

\[
\rho = 0.0005 \text{ (corresponding to a height of about 45,000 ft)}
\]

and the other dimensions are as for the first example on page 6.

\[
P = 320 \times 370
\]

\[
= 690.
\]

Allowing an increase in weight of 3 \(\text{lb per ft.} \) developed thus represents an increase in all up weight of 2.1%. For the general case the percentage increase in all up weight can be expressed conveniently in the form

\[
\left(\frac{Sv_a}{0.0005} \right) \left(\frac{100}{V} \right) \left(\frac{V}{1000} \right) \left(\frac{(P_p + \sigma)}{250} + \frac{0.0005}{1000} \right) \left(V^2 \right)
\]

5 Porous Materials

The porous material available for type (a) is not unsatisfactory but a lower density and the ability to withstand a compressive strain up to about 0.005 would result in structural improvements.

For types (b)(1) and (b)(a1) a porous material which consists of a nickel plated phosphor bronze gauze, and can be rolled to give a good surface might be satisfactory. A nickel plated 120 mesh gauze weighs 0.4 \(\text{lb/sq ft} \) and is 0.01 in. thick. Tension tests parallel to and at 45° to a mesh line indicate yield tension of the same order as for dural, but this point needs further investigation. It is also possible that suitable heat treatment may result in a higher yield strain. Such a thin material would buckle unless supported at 1⁄4 inch pitch; this would be possible for the common type of construction, but for the inverted struts-a-very type it would mean that the porous skin would have to be either thicker or, for example, supported on a sheet of perforated dural.

Non-metallic porous materials, such as Durastar, have been disregarded on the grounds that they are more liable to become affected by humidity conditions and that they will be difficult to clean.
6 Normal Loading on the Porous Surface

When the suction is operating the normal pressure on the outer skin at any point will be equal to the pressure drop across the porous skin at that point and will act inward. This loading is of no significance for type (a) because of the relatively high thickness/width ratio of the porous strips, but for type (b) inward-quilting may take place depending on the pressure, support spacing, curvature and stiffness of the porous skin. An approximate analysis to predict the suction pressure at which inward quilting will take place is given in Appendix II. Figs. 11 and 12 have been based on this analysis, in which it is shown that

\[P_{\text{crit}} = \left(\frac{Et^2}{\ln^2} \right) f_1 \left(\frac{w}{\sqrt{RT}} \right) \]

(6)

where \(f_1 \left(\frac{w}{\sqrt{RT}} \right) \) lies between 1.0 and 3.3, and the maximum allowable unsupported width of porous skin is given by

\[w_{\text{max}} = \left(\frac{Et^2}{R} \right) f_2 \left(\frac{PsR^2}{Et^2} \right) \]

(9)

where \(f_2 \left(\frac{PsR^2}{Et^2} \right) \) lies between 1.0 and 1.8.

For example, for a structure in which

- \(Ps = 25 \) lb/sq ft
- \(E = 10^7 \) lb/sq in
- \(R = 100 \) ins
- \(t = 0.04 \) in.

it will be found that

\[w_{\text{max}} = 0.76 \text{ in.} \]

and if \(t = 0.02 \) in.

\[w_{\text{max}} = 2.1 \text{ in.} \]

On the top surface of the wing it is probable that considerations of buckling under direct load will determine \(w_{\text{max}} \).

7 Acknowledgement

The author is indebted to Messrs. Handley Page Ltd. for certain useful suggestions embodied in the text.

8 Conclusions

The structural aspects of suction wings have been considered briefly in this report. Little attention has been paid to actual detail design or to some of the technical difficulties which will arise in manufacture, but it is possible to draw the following general conclusions:
(i) For values of \(\frac{v_w}{V} \) less than about 0.0005 the channels formed by skin and stringers, or between the two skins of a sandwich construction, are sufficient for ducting purposes.

(ii) The power required for suction through the porous skin is appreciably less than the total power required for suction and ejection, and it follows that a high suction pressure, say 25 lb/ft\(^2\) or more, is advisable.

(iii) For a given wing loading, \(V, \sigma, \) and \(\sigma \), the increase in weight due to the total suction power is a constant fraction of the all up weight. Assuming an extra weight of 3 lb per H.P., this constant fraction is about 2%.

(iv) Whether suction is to take place along a number of spanwise lines or over most of the wing surface, the percentage increase in all up weight is unlikely to exceed 2%. For a given wing loading, this percentage increase is practically independent of the aircraft size and characteristics.

(v) The most promising type of construction appears to be a sandwich type, such as that shown in Fig. 6.

(vi) The main reductions in weight penalty will come from a reduction in weight of the porous material itself, rather than from design modifications.
List of Symbols

λ = percentage of top and bottom wing surfaces covered by porous material

w = wing loading in lb/sq ft

δ = weight of porous skin in lb/sq ft

v_s = suction velocity through porous skin

V = velocity of aircraft

k = wing taper ratio in plan form

A = aspect ratio

K = percentage thickness/chord ratio

c_0 = root chord ($k_c_0 = tip$ chord)

ξ = distance from root chord $+$ semi-span

AE = percentage wing section area to be devoted to ducting at any section ξ

P_s = suction pressure in lb/sq ft

P_p = suction pump pressure in lb/sq ft

α = maximum value of the localised lift pressure + wing loading

P = H.P. required for suction and ejection

S = wing area

ρ = density of air in slugs/ft3

P_{crit} = suction pressure sufficient to cause buckling of porous skin

E = Young's modulus for the porous skin

t = thickness of porous skin

w = unsupported width of porous skin

R = radius of curvature of porous skin
Appendix I

Increase in Skin Thickness to Maintain Torsional and Flexural Stiffness in Inverted Stringer-Sheet Construction

Torsion

If the wing section of the equivalent non-suction wing is represented by a thin-walled doubly-symmetrical cylinder of rectangular section as in Fig. 8, it can be shown that the torsional stiffness is proportional to

\[\frac{a^2 b^2}{(\frac{a}{t_2} + \frac{b}{t_1})} \]

If, due to the inversion of sheet and stringers, the effective distance between top and bottom sheets becomes \(b(1-n) \), the thickness of these sheets must therefore be increased to \(t_0(1+m) \) where

\[\frac{a^2 b^2}{\frac{a}{t_2} + \frac{b}{t_1}} = \frac{a^2 b^2 (1-n)^2}{a t_0(1+m) + \frac{b(1-n)}{t_1}} \]

\[1 + m = \frac{1}{(1-n)(1-n-r)} \]

where

\[r = \frac{bt_2}{at_1} \]

For example, suppose \(b = 20 \text{ ins} \)
\(a = 100 \text{ ins} \)
\(t_1 = 2t_2 \)
so that \(r = 0.1 \)
then if stringer depth \(= 1 \text{ in} \)
\(n = 0.1 \) and from equation (10) \(m = 0.25 \).

Flexure

The contribution of the spar to the stiffness and strength will be unaltered if there is no porous material along the line of the spar beams, and the contribution from the stringers will be lowered by a negligible amount due to the thickness of porous material and air space reducing the effective distance between them.

If the skin thickness is increased by an amount determined by equation (10) it can be shown that the flexural stiffness and strength contribution from the skin is increased by a small amount, so that no further thickening is necessary.
The method developed here for estimating P_{crit} is based on the following simplifying assumptions:-

(i) the distance between supports does not change,

(ii) the connection between support and skin is pin-jointed rather than clamped,

(iii) chordwise supports, if any, are so widely spaced as not to influence the deflected shape of the skin,

(iv) the skin curvature is constant for any particular pressure,

(v) instability will take place when either (a) the pressure is sufficient to flatten the skin or (b) the pressure is sufficient to cause a compressive strain (from support to support) equal to that which would cause it to buckle as an Euler strut. The fundamental Euler mode is stable and accordingly the 2nd Euler mode is chosen.

A strain-energy method will be used. For type (a) instability:-

\[
\text{chordwise strain when curvature vanishes} = \frac{w^2}{24 R^2}
\]

so that the chordwise strain when curvature vanishes is

\[
\frac{Etw^2}{24 R^2} = \bar{W}_1, \text{ say.}
\]

Similarly the bending energy stored

\[
= \frac{Etw^3}{24 R^2} = \bar{W}_2, \text{ say.}
\]

Work done by pressure

\[
= \frac{Pw^3}{24 R} = \bar{W}_1 + \bar{W}_2.
\]

Simplifying and introducing $\beta = Pt/w^2$ gives

\[
P_{crit} = \gamma \left(\frac{w}{R} \right)^4 \left(\beta + \beta^3 \right)
\]

(11)

For type (b) instability:-

buckling will occur at a chordwise strain of

\[
\frac{\pi^2 (w/R)^2}{3} = s, \text{ say.}
\]

This will occur before type (a) instability if

\[
\frac{\pi^2 (w/R)^2}{3} < \frac{w^2}{24 R^2}
\]
\[\beta < \frac{1}{2 \sqrt{2}} = 0.112. \]

If this is so, it can be shown that the radius of curvature \(R_e \) at
the strain \(\varepsilon \) is related to the original radius of curvature by

\[\frac{1}{R_e^2} = \frac{1}{R^2} - \frac{8 \pi^2 t^2}{w^4} \]

Direct strain-energy stored \(= \frac{\pi^2 t^5}{16w^3} = W_1 \)

Bending energy stored

\[= \frac{R t^3}{24} \left[\frac{1}{R} \sqrt{\frac{1}{R^2} - \frac{8 \pi^2 t^2}{w^4}} \right]^2 = W_2 \]

Work done by pressure

\[= \frac{p w^3}{2h} \left[\frac{1}{R} \sqrt{\frac{1}{R^2} - \frac{8 \pi^2 t^2}{w^4}} \right] = V_1 + W_2. \]

Simplifying and introducing \(\beta \) gives

\[P_{0lt} = \frac{\pi}{3} \frac{w V_t}{N} \beta^3 \left[\frac{\pi^2}{6} + \left(\frac{\pi^2}{6} - 1 \right) \sqrt{1 - 8 \pi^2 \beta^2} \right] \]

(13)

Figs. 11 and 12 have been based on equations (11) and (12).
APPENDIX III

Flow Along a Rough Duct with a Porous Wall

The problem considered here is the effect of duct friction on the distribution of pressure and suction velocity along the ducts. The problem is aggravated by the fact that a drop in suction pressure along the duct means that, if the suction pressure at the wing tip is to be maintained, inboard sections will be sucking more than necessary thus increasing the duct velocity and therefore the loss of head along the duct.

Notation (see Fig. 9)

- \(x \) = distance along duct measured from tip inboard
- \(h_x \) = height of rectangular sectioned duct
- \(w_x \) = width of rectangular sectioned duct
- \(v_x \) = suction velocity at section \(x \)
- \(\mu \) = porosity coefficient
- \(v_s \) = critical suction velocity
- \(\rho_s \) = critical suction pressure
- \(\rho_x \) = suction pressure at section \(x \)
- \(V_x \) = duct velocity at section \(x \)
- \(\epsilon \) = length of duct, \(x = \epsilon \) at a/c \(\xi \), \(x = 0 \) at wing tip
- \(C_{D,x} \) = friction coefficient in duct at section \(x \) (see equations (14) and (19))
- \(\lambda = \mu C_{D,x} \frac{v_x}{h_x} \)
- \(\phi = \mu C_{D,x} \frac{\epsilon^3 v_x}{h_x} = C_{D,x} \frac{\epsilon^3 v_x^2}{h_x} \frac{\rho_s}{p_d} \)
- \(\gamma = \frac{\rho v_x^2}{p_d} \) (sub para. 4)

As \(\rho_s \) is appreciably greater than variations in \(\frac{1}{2} \rho v_x^2 \) there is no need to distinguish between the dynamic and static pressures.

The velocity through the porous surface is determined by

\[v_x = \mu P_x \]

... volume of flow in/unit length = \(\mu P_x v_x \)
If we ignore the slight effect of varying Reynolds' number we can write

\[\frac{d \rho_x}{dx} (V_x h_x w_x) = \mu v_x v_x \]

(13)

If we ignore the slight effect of varying Reynolds' number we can write

\[\frac{d \rho_x}{dx} = C_{D,x} V_x^2 \]

(14)

where \(C_{D,x} \) is a drag coefficient for the duct.

Eliminating \(\rho_x \) from equations (13) and (14) gives

\[C_{D,x} V_x^2 = \left[\frac{d}{dx} \left(\frac{1}{\mu w_x} \frac{d}{dx} (V_x h_x w_x) \right) \right] \]

(15)

Two cases will now be considered; in the first there will be no taper of the duct, in the second a taper ratio \(k \) is considered.

Case (i) No taper

The differential equation for \(V_x \) reduces to

\[\frac{C^2 V_x^2}{\rho_x} = \lambda V_x^2 \]

(16)

where

\[\lambda = \frac{\mu C_D}{h} \]

Now \(V_0 \) is zero and a solution may therefore be sought in the form

\[V_x = a_4 x + a_6 x^4 + a_7 x^7 + a_{10} x^{10} + \ldots \]

Substituting in equation (16) and equating coefficients of like powers of \(x \) gives

\[a_4 = a_1 \frac{(\lambda a_4)}{12} \]

\[a_7 = a_1 \frac{(\lambda a_4)^2}{252} \]

\[a_{10} = a_1 \frac{(\lambda a_4)^3}{6048} \]

Also at \(x = 0 \)

\[\frac{d V_x}{dx} = \frac{v_0}{h} = a_1 \]
\[v_x = \frac{v_s x}{h} \left(1 + \frac{\phi x^2}{12} + \frac{\phi x^4}{252} + \frac{\phi x^6}{6048} + \ldots \right) \]

and from equation (13)

\[F_x = \frac{p_s}{\rho} \left(1 + \frac{\phi x^2}{12} + \frac{\phi x^4}{252} + \frac{\phi x^6}{6048} + \ldots \right) \]

If we introduce

\[\phi = \frac{\mu C_D \varepsilon^3 v_s}{h^2} = \frac{C_D \varepsilon^3 v_s^2}{\mu^2 \rho_s} \]

we can write

\[v_C = \frac{v_s x}{h} \left(1 + \frac{\phi^2}{12} + \frac{\phi^4}{252} + \frac{\phi^6}{6048} + \ldots \right) \quad (17) \]

and

\[\frac{v_C}{v_s} = \frac{F_C}{F_s} = \left(1 + \frac{\phi^2}{36} + \frac{\phi^4}{6048} + \ldots \right) \quad (18) \]

The factors inside the braces represent the extra effort to overcome duct friction, and have been plotted in Fig. 13.

A suitable value for \(C_{D,x} \) is given by

\[C_{D,x} = \frac{0.03 \rho (\text{duct perimeter})}{x^2 (\text{duct area})} \quad (19) \]

where \(R \) is Reynolds' number and is approximately given by

\[R = v_x (w_x + h_x)/\nu \] (kinematic viscosity)

Assuming a duct speed of about 100 ft/sec and \(\rho = 0.0005 \) it may be accurate enough to take an average value for \(R \) of about \(10^4 \) so that

\[C_{D,x} = \frac{3 \times 10^{-6} (w_x + h_x)}{v_x h_x} \quad (19a) \]

For example, consider a duct for which

\[w = 0.1 \text{ ft} \]
\[h = 0.15 \text{ ft} \]
\[\varepsilon = 0.05 \text{ ft} \]
\[v_s = 0.5 \text{ ft/sec} \]
\[p_s = 25 \text{ lb/sq ft} \]
Substituting in equation (19a) given
\[C_D = 5 \times 10^{-2} \]
whence
\[\phi = 1.4. \]

The factors inside the braces of equations (17) and (18) are therefore 1.12 and 1.52 respectively, and the extra energy required for suction and ejection is therefore
\[100 \times \left(1.12 \left(1 + \frac{0.52}{1 + \gamma} \right) - 1 \right) = 16\% \]
\[\gamma = 1.5, \text{say.} \]

But if \(w \) and \(h \) are increased by 20% so that \(\phi = 1.4 - 1.23 = 0.81 \), these factors become 1.07 and 1.50 and the total extra energy required is 9.

Case (11) Taper ratio \(k \)

The differential equation (15) does not now reduce to a form that can be readily integrated but a method of successive approximation yields the following expressions for the suction pressure and duct velocity at the root chord necessary to ensure that the suction velocity nowhere falls below \(v_s \).

\[
\frac{v_s}{\sqrt{c}} = \frac{\xi v_s (4+k)}{2h_s} \left\{ 1 + \phi F_1(k) + \frac{1}{2} \phi^2 \right\} \]

\[
\frac{v_s}{v_c} = \frac{P_2}{P_s} \left\{ 1 + \phi F_2(k) + \frac{1}{2} \phi^2 \right\} \]

where

\[
F_1(k) = \frac{\frac{1}{2} k^2 + \frac{1}{2} \frac{h}{c} - \frac{1}{2} - (\frac{k}{2} + k^2) \log k}{2(1 + k)(1 - k)^4} \]

\[
F_2(k) = \frac{k^2 - \frac{1}{2} \frac{h}{c} - \frac{1}{2} - \log k}{k(1 - k)^3} \]

Values of \(F_1 \) and \(F_2 \) are given below.

<table>
<thead>
<tr>
<th>(k)</th>
<th>0.25</th>
<th>0.4</th>
<th>0.6</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>0.236</td>
<td>0.174</td>
<td>0.130</td>
<td>0.083</td>
</tr>
<tr>
<td>(F_2)</td>
<td>0.415</td>
<td>0.370</td>
<td>0.345</td>
<td>0.333</td>
</tr>
</tbody>
</table>

As an example, consider a duct for which...
\[k = 0.25 \]
\[w_0 = 1 \text{ in.} \]
\[h_0 = 1\frac{1}{8} \text{ in.} \]
\[\omega = 40 \text{ ft} \]
\[v_a = 0.5 \text{ ft/sec} \]
\[p_a = 25 \text{ lb/sec ft} \]

so that \(V_e = 100 \text{ ft/sec} \) if duct friction is ignored.

Substituting in equation (19a) gives

\[C_0 \omega = 6 \times 10^{-5} \]

whence

\[\omega = 2.56 \text{.} \]

The factors inside the braces of equation (20) are therefore

\[\{ 1 + 2.46 \times 0.236 + \ldots \} \text{ and } \{ 1 + 2.46 \times 0.415 + \ldots \} \]

or, say,

1.7 and 2.2 respectively, and taking \(\gamma = 15 \) the extra energy required for suction and ejection is about 75%.

If \(w_0, h_0 \), and \(\omega \) are increased in the same proportion these factors are unaltered.

If \(w_0 \) and \(h_0 \) are increased by a factor of 2, \(\omega \) remaining unaltered, it will be found that \(\omega = 0.54 \) so that the factors inside the braces of equation (20) are now 1.08 and 1.14 respectively, and the extra energy required for suction and ejection is about 98%.
APPENDIX IV

Variable Porosity to Give Correct Suction Flow

It was shown in Appendix III that the pressure drop due to friction along the duct is not negligible and may in some cases necessitate a suction flow near the root that is appreciably higher than the design value \(v_x \). It will be shown here how the suction flow along the whole length of the duct can be kept constant at the value \(v_0 \) by varying the porosity coefficient \(\mu \). For convenience the variation along the duct of \(v_0/\mu_x \) \((= \rho_x) \) will be considered.

Equation (13) may now be written

\[
\frac{d}{dx} (V_x h_x v_x) = w_x v_x
\]

and integrating gives

\[
V_x = \frac{v_x}{h_x} \int \frac{w_x \, dx}{x} \tag{23}
\]

Substituting in equation (11) to determine \(p_x \) gives

\[
p_x = p_o + v_s^2 \int_{0}^{x} \frac{C_D \, x}{h_x^2 \, v_x^2} \int_{0}^{x} v_x \, dx \cdot dx \tag{24}
\]

where \(p_o \) is an arbitrary suction pressure at the tip from which the tip porosity \(\mu_o = v_o/p_o \) may be determined.

If the duct has a taper ratio \(\lambda \) such that

\[
\begin{align*}
h_x &= h_o \{ k + (1 - k) \frac{x}{\ell} \} \\
v_x &= v_o \{ k + (1 - k) \frac{x}{\ell} \}
\end{align*}
\]

we can write equation (24) in the form

\[
p_x = p_o \left[1 - \phi \, F(k, \lambda) \right] \tag{26}
\]

where

\[
\phi = C_D, \ell^3 \frac{v_s^2}{h_o^2} \frac{p_o}{2} \tag{27}
\]

and

\[
F(k, \lambda) = \frac{1}{4(1-k)^3} \left[\log (1+\psi) - \frac{\psi(2+\psi)(2+6\psi+3\psi^2)}{4(1+\psi)^4} \right] \tag{28}
\]

where

\[
\psi = \frac{(1-k)x}{k \ell}.
\]
At the root section \((z = 0)\) equation (26) reduces to

\[
\frac{\mu_0}{\mu} = \frac{F_0}{F_0} = 1 + \phi F_2 (k)
\]

(29)

where \(F_2 (k)\) is defined in equation (21).

Values of the function inside the square brackets of equation (28) are given below.

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] of eq. (28)</td>
<td>0</td>
<td>0.051</td>
<td>0.178</td>
<td>0.320</td>
<td>0.458</td>
<td>0.700</td>
<td>0.900</td>
<td>1.216</td>
</tr>
</tbody>
</table>
FIG. 1. CONSTRUCTION FOR SUCTION ALONG SPANWISE STRIPS.

FIG. 2. GENERAL ARRANGEMENT OF WING SECTION IN TYPES (b) (i) AND (b) (ii).
FIG. 3, 4 & 5.

FIG. 3. INVERTED STRINGER-SHEET CONSTRUCTION.

FIG. 4. INVERTED CORRUGATION-SHEET CONSTRUCTION.

FIG. 5. INVERTED ASYMMETRICAL CORRUGATION-SHEET CONSTRUCTION.
FIG. 6. SANDWICH CONSTRUCTION.

FIG. 7. SUCTION ON TOP AND BOTTOM SURFACES

FIG. 8. ILLUSTRATIVE SKETCH.

FIG. 9. ILLUSTRATIVE SKETCH.
FIG. 10 RELATIVE SPANWISE DISTRIBUTION OF \(\frac{\text{DUCT AREA}}{\text{SECTION AREA}} \) FOR CONSTANT DUCT VELOCITY.
FIG. 11. SUCTION PRESSURES CAUSING INNER-QUILTING.

FIG. 12. MAXIMUM ALLOWABLE UNSUPPORTED WIDTH OF POROUS SKIN.
FIG. 13 INFLUENCE OF POROSITY AND DUCT FRICTION

necessary to overcome duct friction
relative suction pressures and duct velocities at root