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SUMMARY

By consulering the slability of the flapping motion of a hinged
rotor blade «l any one fived azimath, this eport derives sumple
expressions for the condition which Just cauvses the flappang motlon at a
particular azimuth to lend to bhecome unstable, It shows that a decrease
1n pitch as bladss flap up has a considerable stabilising influence,
Bffects such as the of'fsel of thc blade 0,G, behind the {lexural axis
have the rcversc cffeet bub the analysis of the main text is not extended
beyond this bescause 1ts prumary purpose 1= to draw atitention to the
charactcr of flapping motion, It is suggested that computational
methods now availatle should be used for further studies of the flapping
cquations which are of the Mattieu-Hi1ll type, Those equations arc
deduced 1n a fairly gencral form in appendices which are largely sclf-
contained,
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1 Introduction

Some recent rotor blade instabilaty troubles, associated witn
blade twisting and flapping, suguested to the writer the desirability
of reviewing the work which has been done on blade flspplng stabality,
Sissainghl (1944), who refers to previous work by Adam® (1934) and
Hohenemser? (1938), concludes that the motion is very heavaly damped and
in a numerical example he took found that forward speed had 1ittle cffcct
on his results. Rotors, however, are Frequen?ly reported lo become more
and more "rough" as speed increases, and Lock* {1928) shows that harumic
terms generally tend to increase as the tip speed ratio increases, Tt
seemed therefore desirable to look at Siszingh's ansalysis in thas lacht,
He by-passes the difficuliies associated waith the soluftion of the
cquation for ihe Tlappaing motion of a rig:d rotor blade, hinged ai its
root, in the way Glauecrt” (1926) criginally dealt with the eutogyro
problem, viz: by cxpanding the blade flapping motion into a Fouricr
series, Like Glauvert he considers only terms up to the first harmonie
terms in the expansion and giving them an exponential form derives a
sextic, In the two examples he choosea the roots of this scxtic
indicate that motion up te the first harmonic term 1s heavily damped and
very little affccted by forward speed. Extendaing Sissingh's work 4o
deal with hagher order harmonic terms would involve even morc laborious
calculations than thosc he has alrcady done and 1t therefore sconecd
desirable to turn again to the differeatial equations of flapping
motilon and see 1f an alternative approach were possible., The derivation
of these cauations is therefore given braiefly in Appendix I. The
analysis given there may be extended to study what would wsuarlly be
classed as flutter problems but the main objcet of the rxeport 1s to deaw
attention to tho- character of the flapping motion cquations, Detail
consideration is given only to results which can be cotained by simple
substitutions, IEven a Fourier substiilution i1s nob made and considevaticn
ts restricted to the nature of the flapping motion at any onc particular
azamuth, Then only the roots of a quadratic equabtion have to be studied,
This approach indicates that forward speed moy have a considerable
influence on the character of the flapping motion and shows that reducing
the pitch of the blades as they flap up markedly wncreases flapping
stability, An extension of the analysis shows that the off'set of the
blade centre of mass behind the flexural centre has ‘the reverse effcet.
The investigation is not extended in detazl further than this becausc
the notion of investirgating flapping motion at a fixed azimuth is net 2
rigorous method of dealing with this Matticu~Hzll equation for the
flapping motaon, It 1s felt that the computational {acalitres now
available migh% be firsi brought to bear on the probiem to indicate the
significance of the simple treatmeni adopted hcre.

2 Flapping motion of ripid fixed pitch blades waith root hinges

VWhen the hinged roct of a ragid fixed pitch blade 1s constrained
to move along a straight line with steady velocity, 2t 1s shown in
Appendix I that the dynamical equation of flapping motron reduces 1o

.
B+ 2k(1 +'% U4 sin ¢)Q B+ -1 +«% k ucos y (1 +-% K sin w)} QEB

l

= a function which 1s independent of B esecess (1)

when the blade 1s wniform elong its length, The general naturc of4t?$
equatzon will bc much the same if the blades are not uniform except Hhid
the coefficients will have different values. In this cquatior 8 e Jhe

flapping angle,
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k = 3 p ca R/16m, a positive non-dimensional quentity having a value
of about C,7 for the C,30 autogyro,

Q = dy/dt, the constant rotor angular velocity, ,

R = the rotor radius, 1.e, blade length,

¢ = the tip speed ratio and

¥y = 0t, defines the azimuth of the blade from down wind in the

direction of rotation,

It will be observed that the coefficicnts of é and B 1n this
equation vary with blade azamuth § ; but, if attention 1s concentrated
on one particular azimuth at o time then the coefficients remain
sensibly constant,

¥

The smallest value of the demping coeffacaient
2k(1 +% p sin )

will occur when sin § = - 1 and p as greatest, Provided

u<.f: e (2

this damping coefficient wall aiways be positave. Such a high value for
Kk 1s well outside the prosent working range of helicopters and outside
the scope of the present analysis which neglects stalling, It 1s
evident then that for all practical purposcs .

Zk(l +-}§-usm 1{;) ceesses (3)

will always be positaive,

The smallest value of the "spring staffness" coefficient

5
1 +3k ucos ¢(1 +%¢r) 15 about (1 - -38- ky), so that the least

effective stiffness occurs at higher rather than lower forward speeds,

Consadering now the nature of flapping motion at any one azimuth
position, 1.e, freezing ¥ at any chosen value, the nature of the flapping
motion w1ll be determined by the nature of the operational roots of (1)
which are

l\l-—k(l +

j_jkz(l +

Since from (3), k(1 + % 4 sin ¥) will be yositive, the first positive
root of (4) will ocour when

,usi;'lw)

LSYT L B g

HSlnq[)Z_{1+§ku005¢(1+%!-l$ln¢r)} Q see (I-I-)

L)
3

r

2

1+ .2_ k u cos w(]\_+-_2._u)sin ¥)



Report No, Structures 1i

1s Just negative, The condition that at no azimuth position flapping
motion should lend to be divergent s then that

l+_§k ucos y (1 +%psm¢r)>0 eoeeees (5)
which gives approximately
H< 2= or i< -2 veeeees (6)
8k pack

It does not follow, however, that 1f Uk 1s greater then this value
flapping molion as a whole will be unstable; 1t will only first tend to
be so in the region where the blade 1s approaching the straight ahead
position and 11 may not be long enough in this region for o disturbance
to be catastrophic but a loss of smoothness might be expected. The
"eritical™ value of u gaven by (6) for the C,30 autogyro 1s about 0,53,
well beyond its lop specd. ’

3 Motion when pitch varics as the Tlapping anglc

Nowadays 1t is frequently the practice to decrease the blade
prtch as the blade flaps up; this the pitch of a rigid blade might be
expressed by

6= 8, ~sp ceerees (7)

where s 15 2 positive constant. It 1s shown in Appendax IT that the
only chenge introduced in cquation (1) 1s in the coefficient of £ and the
eritical condition (5) now becomes

3 2
1+ Xk —gi-ucosqf(l+-‘§'usm¢r)+4s {(u s1n Y +-32~) +-1;L§} >0 (8)

—d

Since the last term 1s always positive the effect of this pitch change
15 to increase 1he "critical" speed, . A rough indication of the Jracrease
1s cbtaincd by considering the motion in the region of ¢ = 180°, Then

the criterion (8) gives 1 + k i —'g U+ 2s J >0 or

AL .
8 (R E XN (9)

#—hn
a

If in the C,30 a prtch decrease equal to one third the increase in the
flapping angle were introduced (s =‘%) the theoretical critical value of u

would increase from 0,53 to (0.53 + 0.25).

This most marked efiect of piteh change suggezts that 1f the blade
pitch tended to increasc only slaghtly wath the flapping angle the
cffect would be wvery sarious. With lorsionally flexible blades such

effects might occur,

4 Effcet of a torsional flcxaibirlity

Twizting of a blade may be caused py the centre of 1ift, drag or
mass not coineciding with vhat ig often called the 11exura15ax1s i.e,,
the load pos:tions which produce no iwist. Beavan-and Lock (1936), using

-15-.
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harmonic analysis evaluated the effect of the winertia axis being aft of
the flexural axis of the C,.30C blades and also the effect of the presence
of a large pitching moment coefficient, The former results 1n a twist
which is a function of B and therefore affects the nature of the blade
flapping motion, Twist duc to the latter 1s not dircctly a function of 8,
Lif't and flexural centres in the C,30 coincided and such a choilce,
together with small values of pitching moment coefficlent seems possible
for other blades unless regions of high Mach numbers are encountered.
Experience indicates, however, that offscts between the position of the
inertia and flexural axas wall cccur unless meticulous care is exercased
in manufacture and while other offsets are not amprobable it 1s proposed
here to considor only the effeet of an incrtia offset which iz amenable
to simple treatment.

Assuming, in the same way as Beavan and Lock” (1936), that the
twists produced are equal to those which would occur if the twisting
moments were applied statically, it is _,hown in Appendix ITI that thec
effective pitch at a radius r is

5 2
e:eo+%9]|(5 +0 5)-%——+(3.gicosxp-%- ceerees (10)

3

due to an offset of the centre of mass a distance bc behind the flexural
axis, omitting all additional terms which are not functions of B,

Usually the gravity contribution, which 1g the last term in (10) wall be
small and then as shown in Appendix III the left hand side of equation
(1) takes the form

2
; ny 525 | i :
1 ;f{(us:.nxp+6).+252‘ B+2k(11~3u51n¢r) np

_— ; D PSS O PR
+ 1+.3.kuoo.aly(1+.§usa.n1lr) h{(ps:m \if-t-'g) +252j QB

ceseene (11)

where x = L szcm R V15M = pabczR 0 /EONJ and has a value of about
2.5b, i.¢., about 0,16 for the C.30 autogyro.

Comparing (7) and (10) 1t will be observed that, while b 1s
positive, an undesirable nepotave value of an "effective s" has made
its appearance and we should cxpect the roots of (1l) at certain fixed
azamuths to be adversely affected. The coefficient of 1 will usually
be positaive and while tlas 13 so the errterion that there shouwld be ro
tendency to local flapping instabilaty is that

8 - 5, o '
1+3kucos¢{(1 +%usmq/) {(,umnz;r-!- ) +252 >0 4ee (12)

In the region of ¢ = 180° thas becomes
& 2
==k pgmw=x > 0O
3 7
wl'}ioh gives

]J<i-l‘2

el vesaese (13)

&=

aBom



Report No, Structures 1i

For the C,30 the decrease un the critical value of u is from C.53 to
0.53-0,06, 1n 1tself not a large effect., C,30 blades hed, however, a
tubular steel spar which was very stiff in torsion and with other types
of construction and thinner blades 1t 1s possible that blade torsional
stiffness values wall not be so large and the effeot of the twist pro-
duced by the ineritia axig being aft of the flexural axas will be of
greater importance, Provided torsional flexibility 1s such that root
patch changes are transmitted throughout the blade 1t would appear
possible from (9) to nullify the adverse effect of elastic twist by
decrcasing the blade pitch as 2t flaps up. The criterion for flapping
to be stable at § = 180° then becomes that

cevnees (14)

u<_.3_.+é.s- L
8k 4 k

L

Most early testing of rotors i1s done at very low values of the tip
speed ratio "M, In the particular case of a torsionally Ilexible but
otherwise rigid blade the left hand side of the flapping equation of
motion at zero forward specd reduces to:-

( J

’e 2
Kl-%n B +2k‘ms+|

1+ 2ks --% K}fl B cececass (15)

.

and if instability Just appears then

(1—2 }c) I(l+2kS“2K=O.
7 R 7

In the case of the C,30 blades af the blade torsional stiffness were
reduced to a third i1ts value and the distance hetween the flexural axais
and inertia axis increased to 0.2¢c, conditions which maght pdrhaps be
obtained by a very clumsy redesign in say wood, then instabality would
aprear before the working r,.p.m, were reached, Thig curious rcsult has
been obtained because the coefficient of E zn (15), which had been
obtained from (11), 1s nov no longer positive as assumcd in derivang
(12) and (1L4).

5 Conclusions

The results obtained indicate that a1f 1t 18 pemmassible to consader
the stability of flapping motions at a fixed azimuth, then, provided-

(1 -'% {)is positive, flapping instabilaty will farst appear when the
tip speed ratic it has a value of about

I ii-éswl‘.iﬁ.
8k L 56 k

for a uniform blade which 1s rigid in bending but flexible an torsion.
An appreciation of the signaficance of this result in relation to
flappang—-cum~rotational stability might be obtained by making numerical
calculations, possibly step by step, or using tables and camputatzonal
aids now available, of blade motion at values of u above and below tins
oritical value, This seems desirable before extending further the

approach of those notes.
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(Sincqxcompiling these notes the writer has came across work by
Horvay and Yuan (J.4e,Sc,, October, 1947) which gives an analytical
step-by~atep treatment of the. problem, He 1s also indebted to Mr, Shapiro
for passing him a copy of work by Parkus, of the Vienna Technical
Institute, which 1s awaiting publication, and which deduces a criterion
for flapping stability using Floguet's theory (1883) and a power series
substitution. In both treatments the slegant analysis involved tends
to obscure the ghysical picture,

In a discussion with Mr, I,T. Manhinnick, who has been considering
rotor flutter problems, it transpired that £, terms, viz: aerodynamio
forces associated with displacements such as r3 and z', considerably
affected the results obtained, In the past such terms have been omitted
in studies of rotor asrodynamics and arc omitted in the present note,

It thus gppears that this omission 1g justifiable in considering low
frequency and divergent motions only,)
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- LIST OF SYMBOLS

slope of the 1aft curve

Traction of chord C.G. 18 aft of the flexural axis

blade chord

any disturbing velocity through dase
acceleration due tu gravity

drsc 1ncidence

3 poaly/16m, o non dimensional constant

blade mass per unat length (slugs/ft. run)

distance from the blade root to an element of the blade
measured a2long the flapping line (Fig.l)

a constant = the ratio of pitch changq/flapplng angle change
time
induced veloclty measure positive downwards

deflection of a blade element perpendicular to the "Flapping
line" (Fag.l)

mament of incrtia about blade root (slugs, ft.2)
mass moment about the blade root (slugs ft.)
torsional stiffness of the blade per unil run
tip radius

constant forward velocity of aircraft

refecrence axes, see Fag,l

flapping angle, the angle between "flapping lane" and XY
disc planc

1ts succesgive derivatives with rospect to time

blade patch from no 1ift at root

n 1t t " at duistance r from rooct

2. . .3 2k 2 .
éilljﬂﬂ%gi— = EE&EiiL—il- = a torsional flexaibality
NJ 20NJ
constant
V cos 1/OR = tip specd ratio
adr density ’

angle of incadence of a blade sectron from no 1ift

0t = azimuth measured from down wind in dircction of
rotation

angular velocity of rotor,assuﬁod constant,

-9u
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AFPENDIX T

Derivation of Flapping Molion Equations

1.1 To avoid continual cross reference to carlier work the flapping
equations used an the text are derived in this appendix from clementary
considerations, Fig,l shows the rclative dircetions of the aircraft
velocity, blade chord, ete, and from 1t the following dircction cosines
with respect to the orthogonal axes shown, can be derived:-
(1) Lengthwise tangent to blade drawn outwards
cos( B + ds'/dr) cos ¥, cos(p + dz'/dr) siny, sin(p + dz'/dr)
(2) Chordwise, leading edge to trailing edge
sin ¥, - COS § , 0
(3)  Normal (upwards)
~gin(p + dz'/dr) cos §, =sin(B + dz'/dr) sin ¢y, cos(B + dz'/adr)
(4) Centrifugal force
cos ¥, sin ¥ , 0
(5) Forward speed, V, reversed
cos i, 9 , sin i

(6) Gravity

sin 1, c , -cos 1

In the above $ is the flapping angle at azimuth ¥ and dz'/dr
the small slope of the blade at radius r relative to the "flapping line",
see Fig.l, The aircraf't 1s taken to be flying straight and level at a
constant velocity V and the roter disc which conteoins the axes OXY is
elined at an incidence i, )

1.2 The component of the constant forward velocaty V ealong the blade
chord, viz: V cos 1 sin ¥, and the angular rotation give a net chordwise
velocily of

(r + V cos 2 sin ) cesenes I (1)

The component of the veloecity V normal to the blade chord is

<V cos 1 cos ¢ sin(P + dz'/dr) + V sin i cos (B + dz'/dr)

wpwards and this is @odifled by the presence of flapping angular velocity

B, normal velocity =z' and induced velocity w, the latter taken
positive downwards, The net wind velocity, relative to the blade at
radius r, up through the disc is, therefore, when (B + dz'/dr) 1s small

»

(Vsini=v) = (B+dz'/dr) Veos i cos y »TB = z + T ceveses I (2),

where f stands for any arbitrary disturbance,

w]lle -
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I the geometric pitch of the blade section from no lift is
O, + 64, Where 6, 1s constant and €, varies with r, then the angle of

incidence from I(1) and I(2) 1s given by

+(V51n1-v)-((5+dz'/drl‘fcosicos 1[)-1‘['3-:'7_.+f
r

¢=60+6
Qr + V cos = sin

cessees I (3)

The element of 1ift on a length dr of the blade at r is then
usually considcred to be

] 2
% O + Vcos : sany) cagdr,

the presence of a velocity out along the blade being ignored, The
moment of the 1ift load about the root 1g then

R
! 2
#p(r + Vcos 2 siny) cag r dr,

o)

When a, the slope of the 1ift curve, is constant, the blade chord ¢
and the induced velocity v arc also independent of r, this integrel
becomes

¢

fr

2 2 8 2 e
Lo @R) caR |46 1+~3- psin ¥ + 20 sin

]

+ 2 ¥Ysini~-v 1+éusmw
OR 2

L

Bu cos ¥ 41 -z--% g sin qr}

-g— {1+-§husm¢} 2

. e, [E) v eu(@) omve 2 surf ) } a (£)

0
R l

+/{~§§~-§-§—‘- I cos ﬁ,r-%j% + U sin \y) ]d (%)
0

ceevees I (4)

el [ Y [

iR

In this equation the p term is present—dxie« to the forward velocity
of the arrcralt hdving o component normal to the hlade, The B termm is
due to blade flapping. The integration neglects the effects of stalling
and tip losses,

1.3 *“The inertia load on the blads due to

(i flapping as a rigid body (i,e., inertia.loads-due to the motion of
g y 2 s
the "flapping line", Fig,1l) is mr g dr

~312-
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(ii) bending away from the rigid body flapping position (i.e., the
"flapping line") ismz' ar

(iii) gravity is mgdr
(1v) centrifugal force is mnz(r cos B = a' sinp) dr.

(Inertia loads due to angular acceleration in pitch 5 are
omitted here; so also are the small z'8 and =a! terms),

The moment of these forces about the blade root 1s then

R;
/ I-m(r fa' v 7O
0 B b

f

+ mg’\ cos 1 cos B+ sin i cos yoin g

}
- mg{ cos 1 gin B = sin 1 cos ¥ cos B}z'

+ mﬂz(r*cos =2z sinp) (r sin g + 2' cos B)\J ax.

¢

When B is small this reduces to

R
1}12 {(r2 ~ 2'2) B+ rz‘} . B o+ rz'

0
+ g{r(cos i+ psini cosy)
‘ \
+ 2'(sin i cos q;-;scosi)} mdx
=(.;3.+92;3)I+(f331ni'cos¢+cosi) M ,
R
- g cos 1 /mz' dr ceseses I (B)
o
where I = +the moment of inertia of the blade- about the flapping hinge

= mR5/3 for a uniform blade

M = the blade mass moment about the flapping hinge
nﬂg/ 2 for a uniform blade

H

By choosing thfe{ "flapping line" appropriately it is possible to make the

inertia te.rm/ mz'dr vVanish and so this term may be dropped'.
0

a] .
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I.4 Equataing the 1.f%t rool moment given by I(k4) to the inertia moment
given by I(5), collecting terms and dividing through by I gives the
flapping equation of motion: - '

-~
L2

B+ 2x(1 + %umn\p)ng + M s2n 2

1 +{ . + é?)- kp (1 +%u81n¢)}cos"/:]‘92 S

L. th

3

= =g COS § M/I_

/
+ 80°k {fze(l +-§-us1n g+ 202 siny) + L\M_}_:_V) (1 +—g-usm V)

3 R
R
'e[{rB o o’ z érixd_r
+ = U= in M e N
Jaliaf ceng om e Fantuzy) e g
o
o
R
+ %i__g'_"*_'. ucosx-...:'f'l'/E-}-usin\y-I-‘- dz) I (6)
(O ar NR kR R (R T
O [

z

This differs from equation (1) of the main text by the retentron
of the small P term gM sin 3/I0° which 13 neglected there. In 11

2 2 2

= 0,71 for the C.30 autogyro when a = 5.72 pe,r! radyan,
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APPRNDIX IT

Effect of Pitch Change with Flapping

It 1s frequently a common practice nowadays to reduce the pitch
of blades as they flap up so that the pitch may be written as

, g = 80 - 80 sesensy 11 (1)

e
where s is a positave. Putting in 1(6) 6, = = s an additional term
in 8 may now be transferred to the r.h.s. This.term iz

R
) 2 ] .
8 02}:/ S B jl(ﬁ)} + 2#(—;') s Y + ugsinaly(%} a (%)

0

i

8 Q2ks Bj-l +32-u51n ¥ +% u® 31n2¢r}

|4
" o\ 1] 2
= L].kS Ji Losin Ip"!' '3"') +'i—'8“!;9 B I EEENER II (2)

* Or identafying 6, with =-sg
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APPENDIX TIT

Lffect of Offset Between Inertia and Flexural Axes

ITI.1 The minertia loading in the direction normal to the blade chord
is composed of

(1) the component of the centrifugal {orce which gives

-n Qz(r cos 8 - 2! s B). sin(g + dz'/ar)dr,

(ii) flapping and bending inertia loads, --m(rﬁ. + z') dar,
(2i1) the component of gravity, viz,

f
~mgsin i sin( B + dz'/dr)cos ¥ + cos 1 cos{p + dz'/dr)}d.r.
(

Wnen i and (P + dz'/dr) are small the upward inortie loading is

-m[nz(r - 2'g) (g + dz'/dr) + r'ﬁ. v zto+ g {I(B + dz'/dr)cos y + 1} ar

or collecting rigid body and "clastic" torms

. 2
-m[{rﬁ +(Qr+glcos¢)ﬁ+g}

.o 2 2
+{z’ ~ 0 Bz! (B + dz'/dr) + Q rdz'/dr + g i cos y dz'/dr } dr

H ’

I1II.2 Omttang "elastic" terms the nose up torque due to this load, if
it is a distance bc aft of the position 1l should occupy to produce no
torgque on any one chosen section, is

dt = mbc[rﬁ + ((‘121- + g 1 cos y)p+ g:idr

The' twist d6 in a short 1engtl:1 dr of the blade due to a torque <t:at
the section 1s given by .

*X - =
dr Ng

where NJ 15 the torsional-stiffness.. When-this is.constant then

2 .o 2
Q-....Q..-:m.@'..(_'i.):l— at . mbo rf +(Qr+g1cos Y)B +g
ar? dr ‘NI N dar 17 B

Integrating twice and omitting all terms not containing P

: 2
mhe (L A, x
e--N—L-I-(a +ma)6 + g i cos§ T Be

]G
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Substituting this expression for ©.. in the 6, integral of I (4) gives

\
2216 o (3 geomnend 2uty)

b

-

+ E528 0.8 (%+-§- poin g+ f o0 *’i“zﬁ’H

2
+d glcocy, (,usind,.+£l:} + 2
8 5 (5

As a first approximation it will generslly be permissible to
neglect the gravity term in f which will be small ocmpared with the 0
term so that the 6, term in I (6) now gives

z

2 2
8 Q kbRl 1 . 2 .
LS ..3.6(B+QBJ{(U311‘11[}'+%) +..2.512.}

2 2 L2
Putting x = 8 0okmbeR? . E.E‘_bf__RL'P__ = 2,5,b = 0,16 for the C.,30,
30NT 20NT

and trensferring the B and B terms to the r.h.s. of I (6) we obtain
the result quoted in (11).

(It will be observed that aercdynamical torsional terms in 6
are cmitted in the above).
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