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ITERATIVE INTERFERENCE METHODS I THE DESIGN
OF THIN CASCAYE BLADES o
By Leo Diesendruck

SUMMARY

The iterative interference method given in NACA TN No. 1252
is applied to the solution of the following three pro‘blems concerning
the design of cescades:

(l) Determination of the shapc and setting of thin (zero
thiclness) blades with a prescribed type of vortex distribution and
total vortex strength in a cascade of given solid:n.ty for a glven
dirsection of the mean flow.

(2) Determination of the shape and setting of thin blades with
cortain prescribed types of pressure disvributions over one surfacs
and prescribed total voritex strengbth in & cascade of given solid.ity
For a given direction of the wmean £low.

(3) Detemination of the blade metting for a cascade of given
airfoil shape and solidity that, for a given direction of the incoming
{vpstrsam) flow, will provide the front stagnation point exectly at
the leading edge.

A modification of the besic procedure of TN No. 1252 is also
described, in which the direction of the incoming flow, rather than
the dlrectlon of tue mean flow, is specified.

INTRODUCTION

In reference 1, an iterative interference method was deBcribed
for calculating the potential flow on an airfoil in cascads. The
method, which males uss of charts originally employed by Betz in a
sim_la:r' study (reference 2), evaluates the flow:at each airfoil as
the sum of two camponents - thet due to the uniform mean, or "free
stream"” flow, and the interiferencs flow induced by the presence of
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all the other airfolls of the cascade., As was indicated In
refersnce 1, such an approach provides conslderaeble flexibility and
permits the solution, with reasonable facility, of certaln cascade
problems that would be very difficult by the usual methods that

seekX directly the conformal transformstion of the cascade to a
circle. In the present paper the solutions of thres such problems
are described and an example of each 1is glven. Two of the problems
ooncern the design of thin (zero thickmess) alrfoil cascades having
presoribed types of vorticity dlstributlon or pressure dilstribution
along the blade. The other problem is the determination of the
blade settlng, for a cascade of given alrfoll shape and solldity,
that, for a given dlrection of the incoming (upstream) flow, will
provide the front stagnation point exac 51y at the leading edge. A
modification of—the baslc procedure of reference 1 is also described
in which the dlrection of the incoming flow, rather than the directlon
of the mean flow, ia specified.

Baslc concepts and techniques are given in reference 2, and

detallsd discussions are asccordingly glven herein only for those
parts of the procedure that are not contained in reference 1.

SYMBOIS

\i flow velocity

u component of flow veloclty parallel to stagger line

v camponent of mean flow velocity normal to stagger line

B blade angle, angle between chord and normel to oascade axis
e angle between chord and velocity indicated by subscript

¥ stream function

o velocity potential

T circulatlon requlred to provide stagnation point at tralling

edge

' circulation required to provide stagnation point at leading
edge

¥ ¢lrouletlon per unit arc length

X,¥ coordinates of point on arc
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e angular position of polnt on are

o) radius of ciroular arc

r chord distance between polnts on are
8 arc length

i increment of arc length

a,b pointe on arc

w angle of chord between points on arc
n dlsplacemsnt normal to aro

& engle of deviation

R radius of tranaformed clrcle

€ dlifference between clrcle and near olrcle angles

' 4
\g x

®
[}
e e e e

t
Bubsaripts
O mean flow

1 Incoming flow

1 interference on csentral blade due to presence of external blades
8 self-induced flow ‘ |

N normal to cascade axis

P parallel to cascade exis

T total

n nose

t tralling edge
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0,I,I1,IIT zeroth, Ffirst, second, snd third approximetions
Uyl upper and lower surfaces

a,b points on are ) .

PROBLEMS IN THE DESIGN OF THIN BLADES

Problem I

The problem most readily solved is the determination of the
shape and setting of +thin blades with a prescribed type of vorticity
distribution and total vortex strength in a cascade of glven solidity
Tor a given directlon of the mean flow. The procedure is as followst
8 reasonable blade shape and sebting ars asaumed for the zeroth
approximation of the iteration procesz, The stream function and
velocity potential on & particular blade of the cascade, which will
be referred to as the central blade, are calculated as the sum of
those due to the following thres flowa:

(1)} The given mean flow

(2) The cascade interference flow, due to the vorticity distri~
buticn on all the other blades i

(3) The self-induced flow due to the vorticity distridution along
the central blade itself ’

The assumed shape is then rotated and distorted to meke 1%
approximete a streamline in this flow (that 1s, to make it coincide
with & line along which the stream function is constant) and this
new chape 1s used for the cascads blades of the next approximation.
Through iteration of thils procedure until dlstortions are too small
to affect the flow, the desired blade shape and setting are obtained.

Mean flow.— For convenience, the component of the mean flow
veloclty normal to the stegger line Vv will be considered as unity.
The velocity Vo of the mean flow is then Mmown from its direction.
The stream function ‘W, and veloolty potential &, at a point

%,y on the central blede are then seen from figurs 1 to be:

Vo (x,5) =~ Vg (x 81n oy + y cos qo)l
’ (1)
@0 (%,7) =~ Vg (x oos ag — ¥ ein ozo)_j
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whers op 1s the angle of attack of the mean flow with respect to
the chord,

Cascade interfersnce flow.- The presoribed vorticity distri-
bution on each bladz of the cascade 1s replaced by e number of
disorete vortices, ard the induced stream function ¥4 and velooity

potential 9 4 &are Tound by using the charts and methods discussed
in reference 1. )

Self—induced flow.—~ The stream function induced at 8 polnt b
of the central blade by the voritleity dlstridbution on that blsde 1is
given by the integral alonz the blade of the imsglnary part of the
complex flow function of the distributlion, namely

'\Bt

1'I[E(S'b) == glﬁ‘ 7(55,) 10891'9:5 dsa, (2)

Sn

where 7 1s clrculation per unit arc length, end 1rg, 1is the
length of the chord betweem b and the variable point a.

Ls the variable point & approaches the polnt b, +the integral
becomes improper. If the segment from sy — p  to 8y 1is made

sufficiently small, that portion of the blade can be considered a
straight line and its vortlcity uniform. Then x5 becomes

‘sb - sa} and y{s) becomes a constant y(sy). The stream function
induced by that segment then 1s

8y

8p — K

The total self-induced stream function at the point b is
then
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v+l
\Tr:s(sb) = - -2;; 7(Ea)l°gerab dsg

AN
1
~ 5 7(84) 1085 5y, dsg

it et

y{sp) K 1
— =2t |y - Wy 108gHy * Mz HalO8el2 ()

Since the function 1logyTay is not known analytically for en

arbitrarily shaped blade, the integrals of equatlon (4) are evaluated
numerically,

The corresponding integration for the veloclity potentiel requires

special care, inesmuch as the contributlon of each vortex
element y{=)ds 1is miltivalued. For the present case uniqueness may
be provided by using the section of the blade that lles to the right
of the vortex element as the branch cut, in which case the potentials
contributed by a vortex element gituated at a polnt & 8are defined
by ‘the angles shown in figure 2. For a polnt b +to the left of

. &, the angles defining the potentials on the upper and loweXr sldes,
b, e&nd by, are the same, For a point b ‘on the right side of

g, however, it is necessaly to dirferentiate between by and b3
thus the engle representing the potential on the upper glde is

designated Dap,, ? and that representing the potential on the lower
gide is deslgnated mhbz’ where, from figure 2, wbbz = 2% + whbu'

The veloclty potentials due to the entire blade at the upper and
lower sldes of & point b are then glven by

St 1 8%
Qu(sb) = g;‘{‘/; ¥{8a Wby, 38a * Zx sy 7(8g)%aby dsg
n

1 Sy ’ . -l t
¢, (sp) = 5x 7(8aXep, 4% *+ Bx 7(8)08p, 985
sn S'b

b t
1 1
B j 7(sa)ma,'bu dsg * Bn [‘E 7(sa)(2“ + mabu)d-sa, (5)

Bn \ S'b
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The average self-induced velocity potential at the point b is then

-

) . (e
FRIANCELCS

1 [‘sb . . Bt
= 5= /s 7(Sa)‘°abu ds, + 57 7(sa)a)a-bu dsg
n 5p

Ol

St
+ / v(eedisg (6)

dsy

For convenience, & new angle g} 18 now deflned which is always

measured. from right to left, irrespective of the position of a
with respect to b, and for which ths following relatlons then hold:

wa.bu = Wy . for 8y > 8y
L (1)

Ogb, = Pgp = Lfor sp < gy J

The average self—induced veloclty potential at a point b 1is there-
fors given by subastituting relatioms (7) into equation (&), thus

2.(sp) = 2= | 7(sakeap dsq @

Bn

Since the angle wgy 1e not known anelytically for an arbitrarily
shaped blade, the integral of equation (8) is evaluated numerically.

The choice of a circular arc shape for the initial approxima—
tion facilitates the calculation of the self-induced flow, especially
when uniform vorticity 1s specified, The self-induced velocity
potential and stream function for constant vorticity on a circular
arc are. derived in the appendix. '

Rotatlon and distortion of the bplade shape.~ The sum of the
stream functions Yp =Yg + Vg + ¥4  on the assumed blade will in

general not be the same at every point; that is, the blade will '
not be a streamiine in the complete flow. The flow crosses the
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blade st each point at an angle given by the ratio of the local
normal velocity to the local avarsgestongential wveloolly. Thus

o) =T = " Sog/s = "3Bpls) (9)

where &(s) 1s the deviation angle messured clockwise, and n 1s

the coordinate normal to the arc at any point. In order to make the
blade follow the streamline, the blade must be distorted so that

the direction of each element is ochanged by this deviation angle.

For small deviatlons, the distortion is effected by a normal dlsplace—
ment glven by the integral of the deviation engle along the blade

. g .
n(s) = j;g%%:%-ds (10)
n

As an Intermedlate step_the glven shape may be rotated by the
average angle of devietion & before the blade shape i1s distorted.
Rew mean Tlow and interf-rence velocity potentials and stream
functions are then foun:. (the self-induced flow remains the same,
however) and the distortions are calculated as Just described. In
ordexr to minimize the distortionms, displacements are taken relative
to the displacement at the point where the calculated displacement is
the average of the extreme displacements.

If a finlte vorticlty is required near the tips, infinite slopes
appear at the tips {reference 3, p. 10). The finlte slopes that
are deflined By the arbityary procedure of reference 3 ocan, however,
be adapted %o the present problem. The blade shape at the tips
glven in 1eference 3 for a similar vorticity distribution can be used,
if the ordinates are multiplled by the 1lift coefflcient of the blade
based on the average tangential velocity at the tip.

Exemple I.~ As -an example of the design prozedurs outlined, a
blade was designed for a cascade of solidity 1.5 such that, with a
mean flow direction making an engle of 40° 54! with the normal to
the stagger line, it would have uniform vorticity along the blade and
a total vortex strength of 1.7321 per blade (based on unit veloaolity
normal to the stagger line and unit cascade spacing). These condi-—-
tlons correspond to a flow coming in at 60° to the normal and
leaving normal to the stagger line.
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A 60° circular are (indicated by O in fig. 3) with a chord of
1.5 waz chosen as the zeroth approximation. The blade angle was
taken as 30° to the normal so that the tips were tangent to the
incoming and outgolng flow directions. The angle of attack of the
meen flow is then 10954', By following the indicated procedure the
average angle of deviaticn was' found to be 7°31!', Rotating the
circular are through this engle end repeating the procedure described
gave the shape designated as I 1in figure 3. The rotation engles for
the second and third eppr-:imations were 0°4Q! and 0°9!, respectively.
The shapes obtalned are designated as II and III in figure 3. The
angles of deviation & found efter rotation are plotted in’ figure 4,
The final blade angle was 36°35'. The squares of the velocities on
the upper and lower sldes are.plotted in figure 5. :

.Problem IIL

- The proocedure of problem I can eaesily be adapted to the design
of thin blades having certain prescribed types of veloclty or
pressure distributions instead of vorticity distributions. In the
second problem the solidity of the cascade, the mean flow dirsction,
and the total vorticity per blade are given, and a thin blade having
the. presoribed type of velocity distribution over one silde is
sought. The prccedure 1s somewhat simllar to that of the first
problem., A reasonable blade shape, Dlade angle, and vortlclty
. 4istribution are aessumed for the zeroth approximation. ' The averdge -

total veloclty potential ¢1E is found as in problem I and the average

tangential velooity is found Prom the slope of the curve of &

plotted ageinst the distence s elong the blade. This average
tangentiel velocity is now plotited against s and the prescribed
type of velocity distribution on one surface is then plotted on

the same graph so thet the ares between the two curves is equal to
half the desired total vorticity. (The possibility of uniquely
performing this last step determines whether the type of velocity
distribution specified in the problem is one for which a solution can
be found by this procedure). The velocity distribution on the
other surface mey now be n_otted such that the average-velocity

curve falle midway between it and the curve of the velocity on the

' first surface. The area between the velocity curves for the upper

and lower surfaces then represents the total vortex strength, and
ths differencse in ordinates at each value of s represents the local
vorticity on the blade.

The vortex distribution thus determined is used to find a
first approximation to the shape and blade angle by carrying out
one step of the procedure of problem I. By assuming the vortex.
dlstribution to be unchanged, the total average velocity potential ¢
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is then found for thls new blade and the average tangential
veloclty is determined. A new vortlcity dlstribuitlion is then found
by the same procedurs as befors. The process 1s continued until
further changes become inapprecisable,

Exemple IT.— By following the procedure ountlined, a cascade of
solidity 1.5 was designed so that the total vortex strength per blade
was 1.7321 in a mean flow meking an angle of 40°54? with the normal
4o the stegger line, Just as 1n the Ffirst example, but with the
velocity on the upper surface uniform over the forward 60 percent of
the erc and then decressing llnearly to the mean velocity at the
tralling edge.

The blade shape, blade angle, and vortex distributlion obtained
in exemple I were chosen for the zeroth approximation., The new vortex
distribution was found by plotting the average tangential velocity,
as in figure 6, and then finding an upper surface veloolty distribution
of the prescoribed type such that the area bebween the two curves
was 0.866., The vorticity distribution was then twice the difference
between the two ocurves.

The average angle o deviation was found to be —1°32' and the
shape after distortion was thet designated as I in figure 7. The
rotation angles of the second and third approximation were —1°1!
and 0°19%, respectively, and the shapes obtailned are designated as
II and IIT in figure 7. The angles of deviation & found after
rotation are plotted in figure 8. The final blade angle was 36°21°,
The squares of the velocltles on the upper and lower sides are
plotted in figure 9.

PROBLEMS INVOLVING A SPECIFIED INCOMING-FLOW DIRECTION

Problem III

In reference 1 1t was shown how, after a solutlon had been found
for a glven cascade in a particular mean flow, the conformal trans—
formation of the cascade to a circle could be found; whence the
soluticon for any other specified mesn flow, Incoming flow, or outgoing
flow can be obtained. The present section will discuss the procedure
for getting the solution of a glven cascade directly when the incoming
flow directlon, rather than the mean flow dlirection, is specified,
This problem is considered of interest because 1n experimental cascade
studies the incoming flow direction is normally used as a basle
parameter rather than the mean flow directlon; furthermors, the
discussion of this problem will provide a convenient basis for the
d¢iscussion of the suc¢eeding problem.
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Mean flow and totel vortex strength.~ In the first step, es in
refersnde 1, the conformal transformation or the isolated blade to
a clrcle 1s determined by the methods of referermae 4. The flow
fieid &t the isclated blade 1s now considered as heing composed of
three superimposed flow fields

(1)} A uniform flow of wunilt velooity, normal to the stagger line -
(making an engle oy with the chorgi) plus vortices on the blade of

total strength I'y which malntain the blade a streamline in this
flowe.

(2) A uniform flow of velocity ug to be determined, parallel
to the stagger line (meking an angle “'P with the chordi plus

vortices of strength I"P whioch maintein the blade a streamline in
this flow.

(3) The interference flow due t0 tho vortices that represent
all the other blades of the cescade, plus vortlces of strength Pi

which maintain the blads a stresamline in this flow. The total
vorticity on the blade will then be T'p =Ty + I'p + Iy,

By equation (35) of reference L
PP = )-S-TYRUO sin(crp + €t) . (ll)

vwhere R is the redius of the transformed oircle and € is the

value of the difference between the clrcise a.nd. near-circle angzlea at
the trailing edge. Simlilarly:

~

Pn = LR sin (ch + Et) = = R cos (Q,P + € ) o (12)

where the relations between the angles. ap-. and oy and the magnitudes
of the normal and parallsl veloclty components are shown In flgure 10.

For the +third component a reasonabls distribution or vorticlby
along the external tlades is chosen with & total vortex strength That
hes temporarily been made vnity; ; end the corresponding change of vortex
strengtn on the central blade g 18 found by the method of reference 1.
The actual vortex strongth induced by the external blades 'y is the

product of g and the total vov'bex stcreng‘b.1 on each blade T'p.

The following egquatlon then yislds the total vortex strength witli.Ln
each &pproxima.tion
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I'p = Ipg™+ ﬁﬂR'[uo-gin (ap + &) ~ cos (ap + Gt)] (13)

A second relation between I'p and uy is gﬁven by elementary
cagcade theory

r

uy = uj —--éT- (ll})

Simultaneous solution of equations (13) and (1%) then glves the
zeroth approximation value of the total c¢lrculation and of the
parallel component of the mean flow ug

~
. LR I“l sin (ag + ‘t) ~ QOB (dp + €t)]
T = 1-g+ 2R sin {ap + €) > - (15)
2nR [ul sin (ap + €} — cos (ap + “t)J
g = uj l-g+ 2nR sin (ap + €4) .

Vorticlity distribution.-~ When the mean flow has been found, the
total velooity potential on the central blede and the vorticity d&is—
tribution are found as in reference 1. With the use of this vorticlty
distribution 10 cmleculate g, the entire processa is repeated to
determine & new I'p and vorticity distribution. The procedure 1s

continued until further changes are inappreciasble. The veloclty
distribution on the blade is then found by adding the veloclty due to
the interference to that due to the mean flow, as is done in
reference 1, or it may be found directly by differentiating the
potential with respect to the distance along the surfdace,

Example IIT.— The potential flow was found for & cascade of
solidity 1.5 (given shape and blade angle) with incoming flow at
45° to the atagger line. The blade shape was that derived in
example I and the blade angle was 21°35% which glves the seme angle
of attack with respect to the incoming flow as in example I.

Uniform vortex distribution was assumed for the zsroth approxi-
metion.. The total vortex strength I'p found for that distridution

was 1,2302 and the mean flow was at 21°3!'. Successive approximations
gave the following values:
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Approximation Vortex strength Mean flow direction
0 1.2302 : 21° 3t
I - 1.2530 19° Lot
II 1.2457 20° Lot
IIT 1.2472 20° 38¢

The squares of the velocities on the upper and lower surfaces
ars plotted in figure 1ll.

Problenm IV

The procedure of problem III can be readily extended to determine
- the stagger angle, for given incoming flow direction, at which an
airfoll in cascade iz at the "ideal” angle of attack,

Ideal angle of attack condition.— The ideal comdition for an
alrfoil 1s one for which there is & stagnation point at the nose, or
for zero thickness, the condition for which air enters tangentially
et the leading edge. With regard to the flow in the plane of the
circle to which the airfoil transforms, it is the condition for
whioh the same vortex cancels the velocity at both the leading-edge
and trailing-edge points.

The strength of the vortex I''yr at the center of the circle

vhich cancels the velocity et the leading-edge point is, in analogy to
equation (13),

Tlp =T p8" + bR ~uy sin (ap + €,) + cos (G-P + ﬁn)] (16)

The procedure of reference 1, modified to cancel the induced velocity
at the leading-edge point, is agein used to find the factor for this
vortex strength induced by the extermal blades g'e.

The ideal angle of attack condition is then the condition at
which T =T" p OF I" =T = 0, where the total induced vortex

strengths Tp end I"T are found by equations ( 13) a.nd. (16)
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Determination of blade angle.- A blade angle £y 1s assumed
for the first atep end the procedure of the first approximation of
exemple III is carried out to obtain I'yp and F'IT and tho vortieity

distribution corresponding to one of these two values of the total
vortex etrength is found, With this vorticity distribution assumed
on the external airfoiles, the calculation is repeated for a second
blade angle Pry, which is choson greater ar less than £y accordingly

a8 ['tp is greater or less than P,IT' By interpolating between

or extrapolating from the results fcr those two.values of B, a
third value of 8 is found for which I’T-— F’T should be very
nearly zero, A calculation at this valus of B either should verify
that PT-I"T is practically zero or should provide the data for

a more accurate interpolstion or oxtrapolation,

In the procedurs as Just described, only one approximation is
mede for each blede angle; that is, for each $ the vorticity
distribution found for the preceding B (using either I‘T or I"T)

is usod for the external airfoils. This method should, in general,
suffice for satisfactory convergence; in any case, no more than two
approximations for sach angle should be required,

Example IV.~ The blade angle was found for the blede derived in

example I such that it would be at the ideal angle of attack in a
cascade of solidity 1,5, with incoming flow 45° to the stagger line,
The initial blade angle and vortex distributions were those found
in example III, Thus By = 21935 and ['pp = l.2472. By

equation (16}, IMyp = 1,3923, Therefore I'yp — I'*yp = —0,1451,

A second celculetion, with By = 20°%45t  gave Typp = I'tppp = 0.0130.
Interpolation between the two results indicetod that ['p— I'"p would
be zero at 20°49Y, A final calculetion with BrrT = 20°49" verified
this fact and gave s vortex strength of 1,2491,

Iengley Memorial Aeronsutical Iaborabory
National Advisory Committee for Aeronsutics.
langley Field, Va,, January 1k, 1947
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APPENDIX

SELF-INDUCED FLOW FOR A CIRCULAR ARC WITH

CONSTANT VORTICITY

The gtream function induced at point b by an element de atb
point o is (fig. 12) .

d
avy(sp) = - ’i,ﬁ-% LoBTap (A1)

With the chord and the arc slement emressed in terms of the angu_'L

rosltion of the points, this equaticn becomes - L memte

ayg(6p) =

N
70384 | fp - 8a
-~ logeizp sin <——-—-2-—— ’ (a2)

where € 1is the anguler position of the points on tae arc, and
6y, - @
p the redius of thne arc. Or, with --9-—:;-2‘ = @

a¥ (op) = -pi?- 1ogelep sin q!al (43)

Equation (A3) 1s integrated with respect to @ from @, to @

and the first three terms of the series expansion of the lntegral
are retained. The result of this integration, after all terms which
do not contain 6y, have been omitted (since they edd only constants

to the stream function) is

¥g(0y) = - 9-3— <€-’9—;—9 loge (6% - 6p) + (%-51-?-9) logg (64 - 65)

-1-8 ‘sb (6n - 64) + 6y (642 - efﬂl (Aha)

ol
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By adding constants necessary to coamplete the squars in the last
term, this equation may be put in the more convendent form

Y By, - 0
¥alop) = - %{(j 5 t) loge (64 - &p) + (—h-::-% logg (6p - 6n)

, o
-0 6o\ | 2
+<enust> 9"‘(6'; ) |> (o)

st

In order to find the sslf-induced average velocclity npotentilal
25 for the circular arc, it is necessary to find the exproession for
the angle g previously defined. From figure 12 it 1s seen
that '

/
+(?_...i"_9!2 (43)
. 2

oA

Lab =

Substituting tuis expression into equation () and drovping additive
congtants gives the desired veloclty potentlal

8 4(0p) = E—;‘: (6% - 6gn) Op (AS)
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Figure 1.- Potential of the mean flow at a point on the blade.
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Figure 3.- Shape and setting of blade used for zeroth approximation of
example I, and of blades derived in the subsequent approximations.
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Figure 4.- Deviation angles between arc and streamline for the three
approximations of example I, showing rate of convergence,
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Figure 5.,- Pressure distribution on airfoil derived in example I.
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Figure 6.- Average and top surface velocities for example II,
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Figure 7.- Shape and setting of blade used for zeroth approximation of
example II, and of blades derived in the subseguent approximations.
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Figure 8,- Deviation angles between arc and streamline for the three
approximations of example II, showing rate of convergence.
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Figure 9.- Pressure distribution on airfoil derived in example IL.
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Figure 10.- Definitions of angles and velocities for example III.
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Figure 11.- Pressure distribution on airfoil in example III.



Fig. 12 NACA TN No. 1254

G
Gb wﬂb
(~4
& ° G,
z 5-49_¢ 7
2 ~ 7a
&+6,
2

'NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 12.- Definitions of angles and distances for derivation of
self-induced potential and stream function on circular arc.



