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THEORETICAL LIFT AND DRAG OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS

By Crixron E. BrownN

SUMMARY

A method is derived for caleulating the lift and the drag due
to lift of point-forward triangular wings and & restricted series
of sweptback wings af supersonic speeds. The elementary or
‘““supersonic source’”’ solution of the linearized equation of meo-
tion 18 used to find the potential function of @ line of doublets.
The flow about the triangular flat plate is then obtained by a
surface distribution of these doublet lines. The lifi-curre slope
of triangular wings s found to be a function of the ratio of the
tangent of the apex angle to the tangent of the Aach angle. As
the apex angle approaches and becomes greater than the Aach
angle, the lift coefficient of the triangular wing becomes equal to
that of a fwo-dimensional supersonic airfoil at the same NMach
number.

The drag coefficient due to lift of triangular wings with
leading edges well-behind the Mach cone 48 shown fo be cloge to
that of elliptically loaded wings of the same aspeci ratio in
subsonic flight. The resultant force on wings with leading
edges outside the 3fach cone, howerer, is shown to act normal
to the surface and thus an induced drag equal to the lift times
the angle of attack is obtained.

INTRODUCTION

In reference 1, Jones calculated the lift of thin point-
forward triangular wings for the cases in which the apex angle
of the wing was very small. It was pointed out that the
results obtained should be applicable in both supersonic and
subsonie flight, the criterion for the case of supersonic
flight being that the apex angle be small as compared with
the Mach angle of the flow. The present paper, making
use of less restricted theory, extends Jones’ work to the case
of triangular wings having large apex angles and traveling
at supersonic speeds. A recent paper was published by
H. J. Stewart (reference 2) in which the lift of triangular
wings has been computed, but the method used appears to
be entirely different.

In the present theory, the lmeanzed equation of motion
was used and the results must therefore be restricted to
small angles of attack and moderate supersonic Mach
numbers. The solution which has been found should hold
good for large values of the apex angle up to and coincident
with the Mach angle. Jones (reference 3) and Puckett
(reference 4) have found solutions for the drag of triangular
wings of small thickness at zero angle of attack. The
solutions are applicable to wings having the leading edges
either in or out of the Mach cone springing from the apex
of the wing. Puckett has pointed out that, for the case
where the leading edge is dhead of the Mach cone, these

solutions can also be used to calculate the lift; thus, with the
present solution, the lift for the whole range of apex angles
at supersonic speeds may be obtained. The pressure dis-
tributions and lift-curve slopes obtained in the present
paper can be used to obtain the lift and drag characteristics

of a limited series of sweptback wings. The drag due to _

lift of the triangular wing has been calculated and a suction
force has been found to exist on the leading edge. In order
to use the suction force, however, it appears necessary to
provide an airfoil section with a rounded leading edge. The
author is indebted to Mr. Arthur Kantrowitz of the Langley
Memorial Aeronautical Laboratory for suggesting the method
used to calculate the induced drag.

SYMBOLS
o angle of attack
A aspect ratio (g)
b maximum span of wing
p=+3r—1
C tangent of apex angle

(a5 lift coefficient (q%‘)

drag coefficient due to lift (%)

D, drag force due to lift

E source strength
€ apex angle of wing measured from flight direction
f(a) doublet-distribution function
F suction foree on wing leading edge
it

I
f=+—1
I strength of line doublet

N

=2

Ty
¢ length of wing or root chord
L lift force

g N
A= fcy’O” o ﬁ%ztanh VJ1—82% do
Mach number

P Mach angle (sm‘ El?)
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Ap lifting pressure
. 1 <
q dynamic pressure (§ oV >
R distance along leading edge from wing apex
p .  density of the fluid
S wing area .
8y distance normal to leading edge
U velocity increment in z-direction (g—g)
U velocity increment normal to_leading edge <g—?)
s . o 0¢
v velocity increment in y-direction 5
v flight velocity
w velocity in z-direction <g—:)
w resultant velocity in z-direction ecreated by the

doublet distribution

2, y,2 coordinates of an arbitrary field point

%1, %1, 21 coordinates of a source or doublet

b disturbance-potential function .

do potential of a supersonic source

& potential of a line of supersonic sources

B2 potential of a line of supersonic doublets
Subscripts: :

n normal to leading edge

A triangular-wing condition

© infinite-span or two-dimensional wing condition

THEORY FOR LIFTING TRIANGLE

The linearized equation of motion of a nonviscous com-
pressible fluid may be written

¢, ¢
s 1)
where ¢ is the potential function assumed to represent the
effect of a small disturbance set up by the body being con-
sidered. The body in this case is & triangular flat plate
having its vertex at the center of the coordinate system and
lying in the zy-plane (fig. 1). The problem is to find a
solution of equation (1) that will satisfy the known boundary
conditions which are: (1) that the flow be quiescent ahead
of the Mach cone and (2) that the flow at the surface of the
plate be tangent to that surface. Because of the linear
character of the differential equation (1), more general
potentials can be built up from simple well-known solutions
such as the one for & single source.

E

= @

where 8=+/M?—1

strength proportional to z can be found as follows:

_ ! E1'1 dﬂ’.‘l ) )
¢1—»£ V(@—2) —p{y— o) — B (z—rz)? ®)
where o=, 7—;: and 2’ is the value of 2, for which the
1 1

. The potential of a line of sources with

z

,~= Machcone

‘
[y

Y
Y

Fiaure 1.—Coordinate system.

denominator of the integrand is zero. Physically interpreted,
the range of integration is from the origin to the last

source point which can influence the field point. Perform-
ing the integration yields
o= Bl YZ—EG+ )
1= 1_,320_2_‘3272
z—Boy—Br2 _ T—Boy—frz
Ta—prA g N e pr i — iy )
4)

If two such source lines of opposite strength are brought
together from the z-direction at the ay-plane while tho
product of source strength and the angle between them is
kept constant, the potential of a line of doublets in the
zy-plane at an angle tan™!s from the z-axis is obtained. Thus
aifferentiating with respeet to r and setting r=0 gives

—1 zﬁ’

ctnh“;‘) (5)
where
2—p2y

Y gy

and 7 is_the doublet strength. Differentiating the potential
function with respect to z gives the vertical velocity w:

-‘(1—73{5)”’@ £ —ctnbir)

Bz —Boy) V2 — B+ 2) (6)
{(z—Foy)’— (1—B*) [ —B*(y*+ 2]}
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It will be noticed that the line doublet creates a conical
field as the velocity is only a function of z/z and y/r. Since
the triangular flat plate is a conical body which creates a
conical field, an attempt will be made to build up the flow
about the lifting triahgle by a suitable distribution of line
doublets inasmuch as the addition of two or more conical
fields having the same vertex always creates another conical
field. The distribution of line doublets must satisfy the
boundary conditions at the body surface which may be
written:

H=Va 4]

=

where W is the resultant vertical velocity of the line-doublet,
distribution. If the distribution of line doublets is f(c)

N LY. 2
z[j)u_f—c'f(a)w (o‘, ot E) do

in which tan~'C=e¢, the angle of the leading edge. The
distribution function f(¢)} can be found in a rather simple
way by analogy with the solution for incompressible two-
dimensional flow about a flat plate. Differentiating equation
(8) with respect to y/x and setting 2=0 gives

o[ f@) y/1— (2 )dcr=0
ORI

r=(
which is of the same form as the integral equation obtained
when the incompressible flow normal to a two-dimensional
flat plate is constructed by a doublet distribution. The
expression f(¢) for the incompressible case would be

fo)y= = (10)

That this expression is & solution of equation (8) must be
verified by substitution in equation (8), inasmuch as equation
(9) is & divergent integral. This proof is carried out in ap-
pendix A. The value of the velocity in the z-direction u can
now be obtained

(-e<t<0

(9

u—f f(cr) bqbg do

The integration indieated in equation (11) is presented in
appendix B. The expression obtained from equation (11) on
the lifting surface (z=0) gives

n 1% 3
Vo-@
z
the sign of the expression being opposite for the two sides of
the plate. The result in equation (12) shows that the shape

of the pressure distribution is independent of aspect ratio.
The lift for the isosceles triangle with root chord ¢, is

1)

(12)

C N .
L=pr d;S'=f_chuc,2 de {13)

and substituting equation (12) in equation (13) and inte-
grating gives

L=pV1Ic2x*Ct (14)
and
L _2IzxC

The value of the constant 7 must be obtained by solving
equation (8).

The value of the normal velocity at the plate and hence
the angle of attack may be found by integration of equation

(8) and letting 2=0. The integration is involved and the

method of integration is given in appendix A. The resulting
expression for TV is obtained as . -

r B onh e
}10—I<1—[—f T e dc) (16)

From this equation the value of I may be calculated. If
the numerator and denominator of the integrand are multi-
plied by B the resulting integral can be seen to be dependent
upon only the quantity SC or tan eftan ux. The value of
the integral may be obtained easily by making the substitu-
tion B*C*—pR%*=n? and plotting the resultant expression.
This procedure has been followed for values of SC between
0 and 1 and the result is given in figure 2. The value of T
is found to be

_ Ve
I= p—y n
where A is the integral term of equation (16). The lift-
curve slope is now
0,-,_2720
@ n (18)

As BC approaches zero, \ also approaches zero and the lift-
curve slope from equation (I18) approaches Jones’ value.
(See reference 1.) Equation (18) shows that the lift~curve
slope is a function of only the apex angle and the parameter
tan e¢/tan p. It is interesting to note that mathematically
there is a finite lift-curve slope at the Mach number 1.0.
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FIGURE 2.—Variation of A with ::g <
®
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The theory is not valid, however, near AM=1 because of the
original assumptions used in obtaining equation (1). The
lift-curve slopes of two triangular wings are plotted in figure
3 against Mach number. | )
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\ . Presént theory
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FIGURE 3.—Variation with Mach namber of Cr/a for two triangular wings.

Rewriting equation (18) in a convenient form gives

27r Jtan e

Now, according to Ackeret’s result (reference 5) the lift-
curve slope of a two-dimensional flat plate is

&)~ @

A single curve for all Mach numbers can therefore be plot-
ted if the ratio tan e/tan u is used for the abscissa and

ég’ja;A is 'used as the ordinate.

This curve is shown in
figure 4.

It can be seen that as the apex angle approaches the
Mach angle the triangular wing provides the same lift co-
efficient as a two-dimensional wing at the same Mach number.

The case of the triangular wing having the leading edge
ahead of the Mach cone from the apex has been treated in
reference 4. It was found that the lift coefficient obtained
is the same as that of a two-dimensional airfoil fiying at the
same Mach number. The curve shown in figure 4 therefore
ba,n €

becomes flat at values of >1 A typical pressure dis-

tribution over a wing having ta,n >1 is ghown in figure 5.

tan
DRAG DUE TO LIFT

The thin-airfoil theory used herein gives the result that
the resultant force is directed normal to the plate, a result
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(reference 4

/ /

///

o 7Y

ab

.8
tan €fton pu
FIGUBE 4.—Lift-curve slope of triangular wings.
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F16URE 5.—Typical pressure distribution for triangular wings wﬂh tan ¢

>1 Mwm].414; e=00°.

quite like that obtained from the thin-airfoil theory at sub-
sonic speeds. In the solution for subsonic speeds, however,
& simple extension described in reference 6 permits calculat-
ing the force due to the suction on the Ieadmg edge. It is
reasonable to suppose that the same method is feasiblo for
the triangular wing, as the pressure distribution in the neigh-
borhood of the leading edge is identical in the limit with
that for.s two-dimensional flat plate in subsonic Hlow; that



THEORETICAL LIFT AND DRAG OF TEIN TRIANGULAR WINGS AT SUPERSONIC SPERDS 101

is, the velocities normal to the leading edge are in the form

—_C
3.—)0— -\[a (21)

where s, is the distance measured normal to the edge and
@ is a constant. According to reference 6 the force normal
to the edge in the direction of the velocity is

F=pr@* (22)

Equations (21) and (22) are, however, based on incompressible-
flow relations and must be corrected for compressibility.
A simple extension is found if the well-known concepts of
the Prandtl-Glauert rule are applied. For the two-dimen-
sional case it is found that the effect of compressibility on a
flow having a given vorticity distribution in a2 plane is to
reduce the velocities normal to the surface by the factor
V1—2{"? where Af* is the Mach number of the flow. There-
fore, if the strength of each vortex element is increased by 2
factor \/1——1—W’ the resultant velocities normal to the surface
will again be equal to those of the incompressible flow. In
this case, however, the tangential velocities at. the surface
and therefore the forces on the surface are increased by the

ratio ——=5 Npey e This concept is well known in thin-airfoil

ILI”
theory where it gives the result that the lift-curve slopes of

< ap . 1 .
thin airfoils are increased by JI—ir* As the total resist-

ance for Af<1 is still zero, this result indicates that the

leading-edge suction force has been increased over that of
1

the incompressible flow by the ratio Wiyl
JI—K
It appears that the incompressible equations governing
the leading-edge suction force (equations (21) and (22)) must
be corrected as follows:
The leading-edge suction force on a two-dimensional plate
will be .
— @
F, T—ir" (23)
when the vorticity distribution v at the leading edge or the
tangential velocities are given by the following relations:

. 2G
=Ji—31" ,

.g%
=

or

(24)

a.—m VI—E'I’z V8.

The value of the velocity in the y-direction on the triangular
wing has been caleulated to be

Ir%

Combining this expression with equation (12) gives

I,\/@é:,/—l_m
Ve 1—M"?

where R=2+/1+C? and M’ is the component of the flight
Mach number normal to the leading edge. The normal
force on a small element dR of leading edge from equation
(23) becomes

(25)

dF, pxCRI*x*[1—AL" '
aR= ) (26)

and the force on one edge of the isosceles triangle with root
chord ¢, is:

72 (e, YITC
F— pr’PO—\ll—ﬂI ”J‘ RdR

p—r"I’C’c,g(1+0’) V1—A1"? '
y @0
and the force in the flight direction from two edges becomes
F=2F,sin ¢
eI+ C 2 BI—M? 28)
- 2

Substituting from equation (14)

F LAIEC /13"

xb%q

Lo [JTFC JI=3" .
2 142 -

where b is the maximum span of the triangular wing. The
induced drag or, more exactly, the drag resulting from the
lift may be written

D,=La—F

=-2v(9_
=2

Writing the identity

A

JIF R \/1—31") (30)
1+=

_VI=FC

/_ [i= -\/ . (31)

equation (30) becomes

p~% (z-—“ 1““’;02) (32)

1+2
®
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It will be noticed that this result is identical with Jones’

result (reference 1) in the limiting case of C=0. The in-
duced drag coefficient is found to be

Oo =2y [ 2(14+2)-vi—per] (33)

where 4 is the aspect ratio. Equation (33) indicates that
the triangular wings can obtain a considerable suction force
at the leading edge and that the drag coefficient due to lift
of slender wings is very close to that obtained from elliptical
wings of the same aspect ratio at subsonic speeds. It should
be pointed out, however, that as soon as the wing leading edge
passes through the Mach cone, the possibility of obtaining
a leading-edge suction is gone and the resultant force must
become normal to the plate surface. This transition corre-
sponds quite similarly to the case of a two-dimensional air-
foil passing through the speed of sound.

DISCUSSION AND CONCLUSIONS

The lift at supersonic speeds of triangular wings having
straight treiling edges has been shown to approach the lift
of & two-dimensional airfoil as the leading edge approaches
the Mach cone springing from the apex of the triangle. For
the case where the triangular wing lies behind the Mach
cone, a suction has been found to exist on the leading edge.
In order to utilize this suction force in practice it would
appear necessary, as in subsonic flow, to provide an airfoil

section with a rounded leading edge. Triangular wings
should be capable of higher lift-drag ratios than unswept
wings at supersonic speeds when operating with their leading
edges not too far behind the Mach cone; the improvement
should be due to both reduced wave drag and reduced
induced drag.

The lift and drag of & series of limited sweptback wings
may also be calculated with the method developed. It will
be noted that the pressure distribution over the triangular
wing cannot be changed if the trailing edge is cut off from the
tip to the center line along an angle always greater than
the Mach angle. This fact arises from the nature of the
supersonic flow in which disturbances cannot propagate any
farther forward than the Mach cone from the origin of the
disturbance.. The aforementioned procedure produces there-
fore a series of tapered sweptback wings having pointed tips.
A new series can also be constructed by cutting off the tips
along lines having angles greater than the Mach angle.
In each case the pressures over the remaining portions of
the wing will be the same as though the cutbacks had not
been made.

LaneLEy MEMORIAL AERONAUTICAL LABORATORY,

Narronar Apvisory COMMITTEE FOR AERONAUTICS,
LangrLey Fiewup, Va., November 29, 1946.



APPENDIX A
CALCULATION OF VERTICAL VELOCITY INCREMENT

The value of 1 is, from equations (6) and (8),

W= ff Voo [ctnh i 1)] 1922 dp _E=BNE—FW T2 | (A1)

(1—g%*)*" lo*(a*—$%2") —2ay o +y*+ 27
Integrating by parts gives
r_ ¢ —620' — -
=1 [ | [ g (g —otnic Yoo e
; _ ' _ 1.2 2,2
+NEFTTD [ ot g st s N g |0 (42)

The integration of the term under the indefinite integral can be performed by parts to obtain the result

o (b o\ TP [@— 2 —FR) LY A, 3 (PP e—ay
i‘—‘ﬁ(; g etmb o ) | e e s F e ]+ﬁ’zta"‘lz Z—F '+ 2

Substituting in equation (A2) and rearranging terms gives:

o8 bl g NG ITEGER (€0 (B ey 528
=1 (et N e e e de 4)

It will be noticed in the preceding operation that all the terms containing the singularity of the form 1/z cancel. If
z is made to approach zero and terms are collected equation (A3) becomes

. c o _ I, ? e -
& =If_c TP J0i—g otnh™¥ d"“\/] —32<§) f—c o= _—+5’(1) do (44)
,_
Completing the integration of the second terms gives

Toe® 1
If cy1— 620’ rﬂ* een ‘/1—-5‘202\/1_12(%)’ da+h\/ 1=f 2(%> (48)

Differentiating expression (A5) with respect to y/r and performing the integration gives

o (3 =)
() e (@) e

the vertical velocity is thercfore constant over the plate surface and the expression f(¢)=+/C?—¢ is truly a solution
of equation (8). Tt is possible that this solution is not unique; however, other solutions would undoubtedly lead to
physically impossible conditions.
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APPENDIX B
CALCULATION OF AXIAL VELOCITY INCREMENT

The value of the z-component of velocity may be written from equation (11)

u=22I~Ja?—p¥( ’—!—z’)fc VCT—o® oyr—y—2 ) (Bl)‘.
= v —c FE—FA—2e Fy o
This integral can be broken up into two separate integrals, as follows:
_ NPT f =2 (2o ds—( e ) f VO—dde | po
=—@=psr |7 o 2xya + yre )’ v P—p ( o 2rycr A B
( ¢— g 7~ T A
The first integral appearing in equa.tlon (B2) can be integrated by parts to give, for the first complete term, t.he integral
szy\/fﬁ ﬁ (y +ZZ) a - - dG’ _ (B3)
(zi ﬂ?zﬁ)ﬂ C‘\/Ui—'ag(ag__ 227y0' + 2+zz . . — - A
27— R? F—-E’E’ '
Evaluation of this integral, which may be found in reference 7, equation (228), gives finally
— "—_ o — ) ..
Teyw wy—iz @ —FE 2 zy+izVo— '+ ) (B4)

3@ ‘/0, [:cy zz\x’ 52<y2+ ] \ﬁ&, [ry+1z\/x’—ﬁ’(y"+i’)]

the sign of the expression being opposite for the two sides of the plate. The second integral term of equation (B2) can
be integrated by breaking the integrand up into four pertial fractions, as follows: .

JO—3 —(_:c’:fB’Z’)sdo' — . (22— p22*)? da’ zi'j—'
Ire; . : e e N e RV Ay e
i NE—RGF A |~ U= FWED | oy o | - PN
+ (x*—B%2°)%d s (f—p%2%) do

| - ) i 2 (B5)
42 @—FG+AT "_my+zzﬁ:5§@2+zz)] PE = ﬁ’(y’—!-g’]z zy+zz\/5_’_ﬁ§;(y’_ﬁ

The expressions (B5) may now be integrated (reference 7, equatmn (207)) giving the expression for the complete
second term of equation (B2)

:ETI{‘/OZ [xy—zzw 24 2+2ﬁ‘* \/02 xy-l-zz\/m’—ﬂ’(y’—}-z*)]’}

gz
iz~ B+ &) xy—zz\'z’ BOP+2h  aytizP— ﬂ”(z?’-l-?)
TR Tmermm (B6)
«02 l:xy_‘zz _B( _|_22):[2 vOz [xy'{'lz —"13 Y )]
Combining equations (B4) and (B6) and setting z=0 yields for #_on the surface
IC* ({Bn
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