General solutions of optimum problems in nonstationary flight

Miele, Angelo.

A general method concerning optimum problems in nonstationary flight is developed and discussed. Best flight techniques are determined for the following conditions: climb with minimum time, climb with minimum fuel consumption, steepest climb, descending and gliding flight with maximum time or with maximum distance. Optimum distributions of speed with altitude are derived assuming constant airplane weight and neglecting curvatures and squares of path inclination in the projection of the equation of motion on the normal to the flight path. The results of this paper differ from the well-known results obtained by neglecting accelerations with one exception, namely the case of gliding with maximum range. The paper is concluded with criticisms and remarks concerning the physical nature of the solutions and their usefulness for practical applications.

An Adobe Acrobat (PDF) file of the entire report: