Thrust characteristics of a series of convergent-divergent exhaust nozzles at subsonic and supersonic flight speeds

Fradenburgh, Evan A Gorton, Gerald C Beke, Andrew
naca-rm-e53l23
March 12, 1954


An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.

An Adobe Acrobat (PDF) file of the entire report:
http://naca.central.cranfield.ac.uk/reports/1954/naca-rm-e53l23.pdf