A study of the problem of designing airplanes with satisfactory inherent damping of the dutch roll oscillation

John P. Campbell, Marion O. McKinney, Jr.
naca-report-1199
1954


Considerable interest has recently been shown in means of obtaining satisfactory stability of the dutch roll oscillation for modern high-performance airplanes without resort to complicated artificial stabilizing devices. One approach to this problem is to lay out the airplane in the earliest stages of design so that it will have the greatest practicable inherent stability of the lateral oscillation. The present report presents some preliminary results of a theoretical analysis to determine the design features that appear most promising in providing adequate inherent stability. These preliminary results cover the case of fighter airplanes at subsonic speeds. The investigation indicated that it is possible to design fighter airplanes to have substantially better inherent stability than most current designs. Since the use of low-aspect-ratio swept-back wings is largely responsible for poor dutch roll stability, it is important to design the airplane with the maximum aspect ratio and minimum sweep that will permit attainment of the desired performance. The radius of gyration in roll should be kept as low as possible and the nose-up inclination of the principal longitudinal axis of inertia should be made as great as practicable.

An Adobe Acrobat (PDF) file of the entire report:
http://naca.central.cranfield.ac.uk/reports/1954/naca-report-1199.pdf