Structural response to discrete and continuous gusts of an airplane having wing bending flexibility and a correlation of calculated and flight results

John C. Houbolt, Eldon E. Kordes

An analysis is made of the structural response to gusts of an airplane having the degrees of freedom of vertical motion and wing bending flexibility and basic parameters are established. A convenient and accurate numerical solution of the response equations is developed for the case of discrete-gust encounter, an exact solution is made for the simpler case of continuous-sinusoidal-gust encounter, and the procedure is outlined for treating the more realistic condition of continuous random atmospheric turbulence, based on the methods of generalized harmonic analysis. Correlation studies between flight and calculated results are then given to evaluate the influence of wing bending flexibility on the structural response to gusts of two twin-engine transports and one four-engine bomber. It is shown that calculated results obtained by means of a discrete-gust approach reveal the general nature of the flexibility effects and lead to qualitative correlation with flight results. In contrast, calculations by means of the continuous-turbulence approach show good quantitative correlation with flight results and indicate a much greater degree of resolution of the flexibility effects.

An Adobe Acrobat (PDF) file of the entire report: