Free fall and evaporation of N-Octane droplets in the atmosphere as applied to the jettisoning of aviation gasoline at altitude

Lowell, Herman H.

In connection with proposed rapid jettisoning of aviation gasoline at altitude, a theoretical study was made of the free fall and evaporation of N-octane droplets in the atmosphere ; N-octane was selected for study because of the expected similarity of over-all evaporation behavior of N-octane and gasoline. It was concluded that gasoline (or N-octane) droplets larger than 2000 microns in diameter would be unstable ; terminal speeds and Reynolds numbers were obtained for droplets not larger than 2000 microns at altitudes to 11,000 feet. The motion data were used in the calculation of N-octane evaporation rates under various conditions. It was found that a droplet having an original diameter of 2000 microns would fall about 4000 feet from 6000 feet under NACA standard atmosphere conditions before coming virtually to rest. Finally, it was concluded that temperature effects are of paramount importance; at highest air temperatures a 1000-foot ground clearance would probably be adequate to prevent ground contamination, whereas at lowest air temperatures only an atomizing spray arrangement would prevent ground contamination, irrespective of ground clearance.

An Adobe Acrobat (PDF) file of the entire report: