Linearized compressible-flow theory for sonic flight speeds

Heaslet, Max A Lomax, Harvard Spreiter, John R

The partial differential equation for the perturbation velocity potential is examined for free-stream Mach numbers close to and equal to one. It is found that, under the assumptions of linearized theory, solutions can be found consistent with the theory for lifting-surface problems both in stationary three-dimensional flow and in unsteady two-dimensional flow. Several examples are solved including a three dimensional swept-back wing and two dimensional harmonically-oscillating wing, both for a free stream Mach number equal to one. Momentum relations for the evaluation of wave and vortex drag are also discussed. (author)

An Adobe Acrobat (PDF) file of the entire report: