Dislocation theory of the fatigue of metals

Machlin, E S

A dislocation theory of fatigue failure for annealed solid solutions is presented. On the basis of this theory, an equation giving the dependence of the number of cycles for failure on the stress, the temperature, the material parameters, and the frequency is derived for uniformly stressed specimens. The equation is in quantitative agreement with the data. Inasmuch as one material parameter is indicated to be temperature-dependent and its temperature dependence is unknown, it is impossible to predict the temperature dependence of the number of cycles for failure. A predicted quantitative correlation between fatigue and creep was found to exist, which suggests the practical possibility of obtaining fatigue data for annealed solid solutions and elements from steady-state creep-rate data for these materials. As a result of this investigation, a modification of the equation for the steady-state creep rate previously developed on the basis of the dislocation theory is suggested. Additional data are required to verify completely the dislocation theory of fatigue.

An Adobe Acrobat (PDF) file of the entire report: