The development and application of high-critical-speed nose inlets

Baals, Donald D Smith, Norman F Wright, John B

An analysis of the nose-inlet shapes developed in previous investigations to represent the optimum from the standpoint of critical speed has shown that marked similarity exists between the nondimensional profiles of inlets which have widely different proportions and critical speeds. With the nondimensional similarity of such profiles established, the large differences in the critical speeds of these nose inlets must be a function of their proportions. An investigation was undertaken in the Langley 8-foot high-speed tunnel to establish the effects of nose-inlet proportions on critical Mach number to develop a rational method for the design of high-critical-speed nose inlets to meet desired requirements. The test results data have been arranged in the form of design charts from NACA 1-series nose-inlet proportions and can be selected for given values of critical Mach number and airflow quantity. Examples of nose-inlet selections are presented for a typical jet-propulsion installation (critical Mach number of 0.83) and for two conventional radial-engine installations (critical Mach number of 0.76).

An Adobe Acrobat (PDF) file of the entire report: