Relation between spark-ignition engine knock, detonation waves, and autoignition as shown by high-speed photography

Miller, Cearcy D

A critical review of literature bearing on the autoignition and detonation-wave theories of spark-ignition engine knock and on the nature of gas vibrations associated with combustion and knock results in the conclusion that neither the autoignition theory nor the detonation-wave theory is an adequate explanation of spark-ignition engine knock. A knock theory is proposed, combining the autoignition and detonation-wave theories, which introduces the idea that the detonation wave develops in autoignited or after-burning gases, and ascribes comparatively low-pitched heavy knocks to autoignition but high-pitched pinging knocks to detonation waves with the possibility of combinations of the two types of knocks. Analysis of five shots of knocking combustion, taken with the NACA high-speed motion-picture camera at the rate of 40,000 photographs per second reveals propagation speeds ranging from 3250 to more than 5500 feet per second. The range of propagation speeds from 3250 to more than 5500 feet per second is held to be considered with the proposed combined theory but not with either the simple autoignition theory or the simple detonation-wave theory.

An Adobe Acrobat (PDF) file of the entire report: