A theoretical investigation of the lateral oscillations of an airplane with free rudder with special reference to the effect of friction

Greenberg, Harry Sternfield, Leonard

Charts showing the variation in dynamic stability with the rudder hinge-moment characteristics are presented. A stabilizing rudder floating tendency combined with a high degree of aerodynamic balance is shown to lead to oscillations of increasing amplitude. This dynamic instability is increased by viscous-friction in the rudder control system. The presence of solid friction in the rudder control system will cause steady oscillations of constant amplitude if the floating angle of the rudder per unit angle of sideslip is stabilizing and greater than a certain critical value that depends on other airplane parameters, such as vertical-tail area and airplane moment of inertia about the vertical axis. The amplitude of the steady oscillation is proportional to the amount of friction and is generally quite small but increases as the condition of dynamic instability is approached. An approximate method of calculating the amplitudes of the steady oscillation is explained and is illustrated by a numerical example. A more accurate step-by-step calculation of the motion is also made and it is shown that the agreement with the approximate method is good.

An Adobe Acrobat (PDF) file of the entire report: