Effect of body nose shape on the propulsive efficiency of a propeller

Stickle, George W Crigler, John L Naiman, Irven

Report presents the results of an investigation of the propulsive efficiency of three adjustable propellers of 10-foot diameter operated in front of four body nose shapes, varying from streamline nose that continued through the propeller plane in the form of a large spinner to a conventional open-nose radial-engine cowling. One propeller had airfoil sections close to the hub, the second had conventional round blade shanks, and the third differed from the second only in pitch distribution. The blade-angle settings ranged from 20 degrees to 55 degrees at the 0.75 radius. The effect of the body nose shape on propulsive efficiency may be divided into two parts: (1) the change in the body drag due to the propeller slipstream and (2) the change in propeller load distribution due to the change in velocity caused by the body. For the nose shape tested in the report, the first effect is shown to be very small; therefore, the chief emphasis of the report is confined to the second effect.

An Adobe Acrobat (PDF) file of the entire report: