The efficiency of small bearings in instruments of the type used in aircraft

Norton, F H
naca-report-94
1921


This report deals with the construction and properties of bearings and pivots for use in instruments. The static and running friction for both thrust and radial loads was determined for a number of conical pivots and cylindrical and ball bearings. The static rocking friction was also measured for several conical and ball bearings under a heavy load, especially to determine their suitability for use in N. P. L. (National Physical Laboratory) type wind tunnel balance. In constructing conical pivots and sockets it was found that the pivots should be hardened and highly polished, preferably with a revolving lap, and that the sockets should be made by punching with a hardened and polished punch. It was found that for a light load the conical pivots give less friction than any other type, and their wearing qualities when hardened are excellent. Very small ball bearings are unsatisfactory because the proportional accuracy of the balls and races is not high enough to insure smooth running. For rocking pivots under heavy loads it was found that a ball-and-socket bearing, consisting of a hemispherical socket and a sphere of smaller diameter concentric with it, with a row of small balls resting between the two, was superior to a pivot resting in a socket. It was found that vibration such as occurs in an airplane will greatly reduce the static friction of a pivot or bearing, in some cases to as little as one-twentieth of its static value.

An Adobe Acrobat (PDF) file of the entire report:
http://naca.central.cranfield.ac.uk/reports/1921/naca-report-94.pdf