The behavior under shearing stress of duralumin strip with round, flanged holes

Schussler, Karl.

This report presents the results of an investigation to determine the behavior of dural strip with flanged holes in the center when subjected to shear stresses. They buckle under a certain load just as a flat sheet. There is one optimum hole spacing and a corresponding buckling load in shear for each sheet width, sheet thickness, and flange form. Comparison with non-flanged sheets revealed a marked increase of buckling load in shear due to the flanging and a slightly greater displacement. Strips were clamped between two stationary end rails and one sliding center rail at which the shear is applied. The force was measured with a tension stirrup up to 20 tons and a compression dynamometer up to 10 tons. The displacement was recorded with the Zeiss dial gauge. The following were investigated: 1) effect of strip width; 2) strip thickness; 3) diameter of flanging; 4) depth of flanging; 5) and hole distance.

An Adobe Acrobat (PDF) file of the entire report: