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SUMMARY

Use is made of previously calculated properties of a family of delta
wings with subsonic leading edges and diamond cross-sections to investigate
the effects on the drag and pressure distribution due to volume of variations
in the streamwise station at which the cross-sectional area is a maximum,

For each station of the maximum cross~-seotional area and each value of the
aerodynemic slenderness ratio, PBs/¢, the wing of the family which has least
drag for given length and volume is found. As the station of maximum oross=-
sectional area is moved af't from 65% of the length from the apex, the drag

of this optimum wing rises; the rise being steeper for lower values of Bs/2.
In parallel, adverse pressure gradients and the suction on the wing near the
trailing edge both increase so that it becomes less likely that the calculated
values will be reproduced in a real flow.

e - ot e mam,

*Now of Manchester University. The work was begun while he was a vacation
student at the R,A.E. in 1960.
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1 INTRODUCTI ON

One approach to the design of a large transport aircraft is to
accommodate the fuel and as much as possible of the payload within the
wing. Por supersonic flight this leads to a search for sharp-edged delta-
like wings with subsonic leading edges which have low wave drag due to
volume, Although other considerations make it likely that the planform of
such an aircraft would have streamwise tips and that its cross-sections
would bulge along the centre-line, relative ease of calculation leads us to
make preliminary investigations on delta wings with diamond cross-sections,

Such wings have been studied by various fully and partially linearized
theories appropriate to subsonic, transonic and supersonic speeds in an
extensive series of R.A.,E. papers., A number of them have also been tested
in wind tunnels and in free~flight. One result of this work has been to
establish that two particular wings, the "Newby" and the "Lord V", have low
drag for given volume and length over a range of the aercdynamic slenderness
parameter Bs/& (62 = M°~1, 8 = semi-span, ¢ = 1ength). These wings are
completely defined by their centre-sections which can be described by the
equations:

"Newby" 2(£,0) = * s 126(1 - ) (1)
" " v . 2 3
Lord V 2(8,0) = 5= TE(1 - E)(4 - €€ + 4E" - &) (2)

where the origin is at the wing apex, the x-axis is along the centre-line
of the wing, the z-axis is normal to the wing plane and E = x/¢. These
ocentre-sections are illustrated in Fig.1, with the corresponding cross-
sectional area distributions in Fig.2,

A convenient standard of comparison for the volume-dependent drag of
slender configurations is the drag of the optimum slender pointed body of
revolution of given length and volume (the Sears-Haack body):

128 V2 (3)
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We shall use Ko’ the ratio of the drag of a wing to the drag of the

Sears-Haack body of the same length and volume, as a measure of drag.
Fig.3 shows values of Ko for the "Newby" and "Lord V" wings. It is clear

that there is a difference of 10~15% between the values calculated by thin-
wing theory* and those derived by the integration of measured pressure

*We shall use "thin-wing theory" to mean the theory of inviscid irrotational
flow based on the linearized potential equation, in which boundary conditions
satisfied on the wing surface are applied in the plane of the wing and flow
variables required on the wing surface are evaluated in the plane of wing.
The pressure is obtained from the linearized Bernoulli equation. The
further qualification in "slender thin-wing theory" will imply that the
assumption of slenderness (IBZ¢XXl<<|?xyl+ [¢ZZ|) has been made in addition.
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distributions, On the other hand, the diffterences between the drags
of the two wings end the trends of the drags with Mach number are both
well represented by the theory.

We have said that these two wings have low drag and have
displayed the relevant values of Ko’ but it is not easy to make the

statement more precise, Even if we confine our attention to thin-wing
theory, meking all the assumptions implied therein, we do not know the
minimum drag of a wing with given planform and volume. However, if we
are prepared to limit ourselves to delta wings with diamond cross-~
sections whose centre-sections are polynomials of degree five, the
curve labelled "unrestricted optimum" of Fig.4 can be obtained from the
results of Ref.1, For 0.2 < Bs/Z < 0,8, one or other of the two wings
("Newby" and "Lord V") has a value of Kb which is within 104 of the

optimum, In view of the uncertainties of the theory, we may doubt the
value of an attempt to use it to find wings of this family with lower
values of Ko‘

The designer, however, is as concerned with how the volume is
distributed over the planform as with the volume itself, so we should
consider restrictions on the distribution of volume, For a slender
wing the constraints on the volume distribution which can be expected
to have mort effect on the drag are those imposed on the cross-sectional
area distribution. We consider the simplect of these: we fix the
lengthwise station at which the crpss-sectional area distribution has
its maximum value*,

2 RESULTS

The "Lord V" wing has an area distribution with its peak at 55%
of its length from the apex, Fig.k shows how its drag varies compared
with the optimum curve for wings of the present family which have their
maximum cross-sectional areas at the same station., The theoretically
possible improvement never exceeds 4%. The cross-sectional area dis-
tribution of the "Newby" wing has & maximum at 2/3 of its length; its
dreg is shown in Fig.4 compared with the corresponding minimum curve,
At Bs/¢ = 0.4, there is now apparewtly 15% to be gained.

The general picture of the variation in minimum drag with Bs/¢
when the station of maximum cross=-sectional area is fixed is shown in
Fig.5., The usual tendency for Ko to decrease as Ps/¢ increases is seen

to be most pronounced when the maximum cross-sectional area occurs aft.
When it is far enough forward the decrease in K0 as Ps/L increases

through small values is reversed at the larger values, Although for

0.3 < Bs/2 < 0.7 & wing with its meximum cross-sectional area near 60%
of its length is best, the proximity of the curves for 50% and 70%
suggest that the optimum is flat. The same values are shown in Fig.6 in
a plot of Ko against station of maximum cross-sectional area for fixed

Bs/¢. These show how the best position for the largest cross=section
moves back from 50% at Bs/¢ = O to 67% at Bs/¢ = 0,8, They also show a
repid and substantial increase in K at low values of Bs/¢ as the

meximum cross-section is moved aft. However, there is a fair-sized
region of the diagram where Ko is no more than 0,8 and the maximum

cross-section is not less than 65% of the length from the apex.

*liore precisely, we make S'(£) = O, See Appendix 1 for deteils,
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Since tentative layouts of supersonic transports indicate that the
maximum oross-seotional area should be considerably further aft than the
55% of the "Lord V", we shall look at some of the wings in this region in
more detail, Each of the eight points lettered A-H on Fig.6 ocorresponds to
a wing which, at its design value of Bs/¢, has the least drag of any wing
in the family we have considered with its maximum cross-sectional area at
the same station, The values of Ko are all less than 0,8, There are three

wings H,E,A with € = 0,65 designed for Bs/¢ = O, 0.6 and 0.8, two wings F,B
with € = 0,70 designed for Bs/f = 0,6 and 0.8, two wings G,C with & = 0,75
designed for s/ = 0,6 and 0,8 and wing D with E = 0,8 designed for

Bs/¢ = 0,8, The variation in drag of these wings at other values of Bs/e

is displayed in Fig.7. We see that a change in £ of 0,05 affects the drag
at a given @s/¢ more than a change of 0,2 in the Bs/& for which the wing

was designed, In particular, the advantage of H over E is so slight that

we coysider it no further*, thus limiting our attention to two design values
of Bs/L.

The centre-sections of the wings A-G are illustrated in Figs.8 and 9,
with the corresponding oross-sectional area distributions in Figs.10 and 11,
The wings which have £ = 0,75 and 0.8 (C,G,D) have points of inflexion in
their centre-sections, The 'dip' becomes larger faor the lower design value
of Bs/¢ and for the further aft E, In the case of wing D, the 'dip' persists
in the area distribution, Some of these dips may be introduced by the search
for an optimum within & restricted family of shaspes, In this case we should
expect there to be wings outside the family without the dips and with lower
dregs., It is of some interest that the first 20% of the wing has a shape
decided primarily by the choice of Bs/¢ and the last 20% is decided primarily
by the choice of E, as Fig.10 shows clearly, We do not find any evidenoce
that the drag is related to the maximum oross~sectional area, except for
wings which have their meximum areas at the same station,

The predictions of inviscid flow theory are lisble to be invalidated
by the occurrence of boundary lgyer separation forward of the trailing-edge,
either ordinary or shock-induced, The possibility of ordinary separation
from the wing surface is avoided by a pressure field over the wing in which
the pressure falls monotonically both in the stream direction and inwards
from the leading edge to the ocentre~line, as is shown in Ref,2, The same
pressure field avoids the possibility of shock~waves ocourring on the wing
in properly supersonie** inviscid flow, However, if the pressure at the
trailing-edge is below that at infinity, the recompression behind the wing
may take place through a shock system and if it does so in viscous flow
there mgy be a forward branch of the system on the wing surface with a
separated boundary layer behind it, Without a deeper investigation of the
flow near the trailing-edge we can only be sure of avoiding this separation
by requiring that the pressure coefficient remains positive at the trailing-
edge, In fact it may not be possible to find a wing which has favourdble
pressure gredients and a positive trailing-edge pressure coefficient.
Fortunstely there are many cases in which one or more of these conditions
is violated and the real flow still apprcximates to the inviscid flow model;
the various rises in pressure being small enough and slow enough for a thin
boundary layer or wzke to accommodate itself, However, we should be cautious

¥As we should expect, H and E ere almost the same shape,

*#At low supersonic Mach numbers it seems to be possible for a normal shock to
cccur near the trailing-edge of a delta wing in inviscid flow, If the
trailing~edge angle on the centre-line exceeds twice the maximum deflection
angle possible through an oblique sheck at the local Mach number of the flow
there, then it is likely that a normal shock will occur on the centre-line
upstream of the trailing-edge, on the analogy of the flow over a wedge where
the bow shock is detached, There seems to be no reason why this should not
be associated with a pressure distribution, as caloulated by thin-wing theory,
which is favourable in the sense desoribed above,
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in accepting the pressure drag estimates of inviscid theory when these
are associated with rapid increases in pressure in the stream direction
or with large suctions near the trailing-edge. Of course, failure to
realise the attached flow over the rear of such a wing could result in

a pressure drag which was lower rather than higher than the theoretical
estimate. However, this drag would depend on Reynolds number, and,

more seriously, the associated flow would be sensitive to trailing=-edge
conditions, At best the forward branch of the trailing=-edge shock system
could be expected to move across the rear of the wing as, for instance,
elevon settings were altered, At worst the flow might be unsteady. The
pressure distributions on wings A-G have been investigated with the above
considerations in mind,

Although the drag of the "Newby" wing changes rapidly with Bs/¢
(Fig.Lk), the character of the pressure distribution near the centre-line
shown in Fig,12 (extracted from Ref.3) is little affected., Ve have
therefore not considered the pressure distributions at a range of values
of Bs/¢ for all the wings. Fig,13 shows the pressure distribution on a
"Lord V" wing (again from Ref,3) at various spanwise stations at one
value of Bs/€. The character of the pressure distribution is well
represented by the variation at two spanwise stations¥, y/s = 0,05 and
v/s = 0.575, so we show the distribution on wings A-G at these stations
only,

The wings A~D whose pressure distributions at Bs/2 = 0.8 are shown
in Fig.14(a)=(d) are all designed for Ps/¢ = 0.8 and for values of & of
0,65, 047, 0,75 and 0,8 respectively., Both thin-wing theory and slender
thin-wing theory values have been calculated as described in Appendix 2,
but our discussion is in terms of the thin-wing theory values only.

Wing A has a wholly favourable pressure field, falling from front to

rear and from leading edge to centre~line. Its trailing-edge suction is
less than that of the "Newby" wing., Its calculated drag is a little
below that of the "Newby" wing at Bs/2 = 0.8; at 8s/¢ = O.4 its calculated
drag is well below that of the "Newby" wing and actually below the
neasured drag of the latter,

Wing B shows an insignificant adverse streamwise pressure gradient
and a little more suction near the trailing-edge then wing A. VWing C has
a slight adverse streamwise gradient and a marked increase in trailing-
gdge suction, Wing D has a definite adverse streamwise gradient, a
slight adverse gradient from leading edge to centre-line near & = 0,75
and a large trailing-edge suction., Moving the station of maximum cross=-
sectional area aft from 0,65 to 0,8 therefore not only increases KO from

0,65 to 0,8, as shown in Fig.6, but also reduces the likelihood of
realizing the assumed type of flow.

Referring now to Figs.i4(e) - (g), we see that the pressure dis-
tributions on wings E,F and G designed for Bs/¢ = 0.6 and & = 0,65, 0,7
and 0.75 respectively show the same trends_as those on wings A-D. If we
consider two wings with the same value of & optimized for different
values of Ps/¢ and compare the pressure distributions at the design
values of Bs/¢, we f£ind that the unfavoursble features are more severe
for the lower value of Bs/¢. To determine whether this is due to the
change in Bs/¢ at which the pressures are calculated or the change in
design Bs/¢, we show additionally on Fig.14(g) the pressure distribution
on wing G at 8s/¢ = 0.8, the design value for wings A-~D., Both the
adverse gradient and the trailing-edge suction are reduced at the
higher Bs/¢. Comparing wings C and G (€ = 0.75 for both) at Bs/¢ = 0,8,
we see that G has a steeper adverse gradient but less trailing=-edge

*The numerical values of y/s are chosen to tske advantage of Eminton's
work3, They, and the values of Bs/f, are related to tests of particular
wings.
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suotion, However, all these differences between the pressure distributions
on wings with the same & are relatively small, It is doubtful whether they
have any relevance outside the present theory or even outside the present
family of wings.

Finally, for completeness, the drags of wings A-H have been evaluated
by slender-body theory. The results are shown in Fig,15, One can conclude
that slender-body theory becomes less appropriate as the station of maximum
cross-sectional area is moved aft, as would have been expected from the
pressure distributions of Fig.ik.

CONCLUSIONS

Area distributions for delta wings with diamond cross-sections have
been found in which the maximum cross-sectional area oecurs towards the
rear of the wing and the calculated drag due to volume is low, at least at
the higher values of Bs/4, When the station of maximum cross-sectional area
is aft of 65% of the length from the apex, the drag increases as it moves
further aft for all values of Bs/4 < 0,8, When the maximum cross-sectional
area oocurs at any fixed station aft of 605, the wings designed for the
higher values of Bs/¢ have lower drag than those designed for lower values
of Bs/¢ at their respective design points.

Because of the predicted occurrence of unfavourable pressure fields and
large trailing-edge suctions, the postulated type of flow becomes less likely
to occur on the wings where the maximum cross-sectional area is further af't,
owing to possible boundary layer separations,

LIST OF SYMBOLS
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X,y,2 right-handed Cartesian coordinates, origin at wing apex, Ox along
wing centre-line and Oy to starboard in the wing plane

-8 -



. Ml M

[N

(%-1)

x/%

LIST OF SYIBOLS (CONTD)

value of E at which S'(§) = O

disturbance velocity potential

Author

Weber, J.
Maskell, E.C.

Weber, J.

Eninton, E,

Weber, J,

LIST QF REFPERENCES

Some notes on the zero-1lift wave drag of
slender wings with unswept trailing~-edges.
LeeCe Re & 143222, Jecenber, 1959,

On the aerodynamic design of slender wings.
Jite fcro, Soc. Vol,63, 2.709. December, 1959,

Pressure distribution at zero-lif't for delta
wings with rhombic cross-sections,

ateCo Cads 104525, October, 1959,

Slender delta wings with sharp edges at zero lif't,
LeR.Co19549.  ifay, 1957,




APPENDIX 1

CALCULATTON AND MINIMIZATION OF THE DRAG DUE TQ VOLUME

With the origin at the wing apex, Ox along the centre-line, Oy to
starboard in the plane of the wing and 0z completing the right-handed
system, the equation to the starboard upper surface of the delta wing
which we consider is:

2 2
2ay) = FE-v/0 -8 ) A4 E ()

where s is the semi=-span, ¢ is the length and & = x/¢, The thickness vanishes
along the leading edge y = s, 2z is a linear function of y, so the cross-
sections are rhombic, The centre=-section is given by the gquintic polynomial:

3
2 3

2(x,0) = L E(1 - &) 3' AE . (5)
50

The cross=-sectional area, S(E), is given by

s& 2,
s(8) = 4] 2(x,y)y = €% E5(1 - E) > s € (6)
° n=0
and the volume, V, by
¢ 3 N
v o= [ s (E)ax = > Terosrennt (7)
o} n=0

According to thin-wing theory, the drag of a wing of this family is
clearly a qpadratlc forn in the coefficients A « In Ref.1 (Table 2%) the

values of D/q& for ten 1ndependent wings of the family are guoted for
Bs/e = 0,2(0,1)0,8, This Table is reproduced as Teble 1 of the present
paper. If the drags of the wings of +this Table are denoted by Do’ D1, oo D9,

the drag of the genersal member of the family (&) is

" jros— - - AT L AL AR

*The algebra would be a little simpler if we used the presentation of
Table 3 of Ref.q1, However, the values quoted there havc been rounded off
and the slight loss of significance would upset the sensitive minimization
procedure,
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Appendix 1

D=(AO+A + A +A)(D0AO+DA + DA, +DA) D, Aoty
-D5A0A2 -D6AOA3 -D7A1A2 - DghyAs —D9A2A3 . (8)

The condition that the wing has ilts meximum cross-sectional area
at a particular lengthwise station £ = E is not easily formulated. We
replace it by the condition that the cross-sectional arca S(E) has
& local extremun at E = g ieCe

3

1@ = &) a (@B - @EY?) - o (%)

n=

The results produced can then be inspected to determine that the
extremum is a maximum and that this is the greatest local maximum,

To find the wing of the family which has the least drag for a
given volume of, say, 43 and given E, we have simply to solve the six
simultaneous equations:

/ (7
a (JL.,.)\[-Y--‘l)-&-pm):O n=0,1,2,3\

sL 2 M 52
1’3-1 = 0 > (10)
'
S'(E = 0 ,

for the coefficients An and the Lagrangien multipliers A and y, where
D/q is given in terms of the A by equation (8), V by equation (7) and

S*(E) by equation (9). Ve then know the shape of the wing by equation (&)
and its drag by equation (8).

This has been done for Bs/¢ = 0,2(0,1)0.8 and a range of values of E.

li-
The resulting velues of K = sz 2 have been plotted in the figures.
12

For the particular wings A-H of Fig.6, the coefficients An are

tabulated in Table 2, The shapes of these wings, plotted in Figs.8-11,
show that the local extremum at & is the only maximum of the cross-
seotional area distributions._ However, a check on the area distribution
of the wing corresponrhng to 2’;; 0.85 and Bs/& = 0,8 in Fig.b showed that
this has two maxima; the rearward one et € = 0,85 is slightly lower than
the forward one. No other checks have been carried out, but it is to be
expeocted that many of the wings corresponding to high values of E and low
values of Bs/¢ will have morc than one local maximum,

- 14 -



Appendix 1

The drag of the wings A-H is readily calculated by thin-wing theory
using equation (8) and Table 1. The drag has also been calculated according
to slender-body theory, (Slender-body theory and slender thin-wing theory
are equivalent so far as the drag of wings with straight unswept trailing=-
edges is concerned,) The formula appropriate to this family of wings has

been given by Weber 1, It is

+(AO+A1+A2+A3)2[k-&n%E{‘} (11)

where k = %g -3 £n2 is the value appropriate to rhombic cross-sections.




APPENDIX 2

e AT S e TR

CALCULATION OF PRESSURE DUE T0, VOLUME

Eminton has programmed the calculation, according to thin-wing theory,
of the pressure due to volume on wings of the present family., In Ref,3 she
tabulates the chordwise pressure distribution at two spamrise stations on
four basic volume distributions for two values of Bs/4. For the present work,
she has calculated thesc for a further value of Bs/f and the complete
tabulation 1is reproduced here as Table 3., The choice of the spanwise
stations and the two lower valuecs of Bs/é was originally to conform with
experimental configurations.

For the goneral wing of the family, equation (A%, the pressure
coefficient is given in terms of the c, (i =1,2,3,4) of Table 3 by

¢, = > Ay G (12)

The pressure cocfficient has also been calculated by slender thin-wing
theory, by equation (50) of Ref. k. The expression is not reproduced here
on account of its length,

- 13 =



TABLE 1

Values of D_/qe2 for ten basic wings of the family (thin-wing theory)

Coefficients Bs/4

Aoldy |8y 45 | Oe2 0.3 Ouls 0.5 0.6 0.7 0.8
11 0f O] 0 {0,3601 |0,3032 | 0,2658 |0.2391 | 0,2190 | 0,2039 | 0.1928
ol 1] 0} 00,2587 [0.2050 | 0,4701 | 0.1452 | 0,1266 | 0.,1122 | 0,1007
o| o] 4| 0 }0,2053 |0,1560 | 0,1250 | 0.1037 | 0,0882 | 0,0765 | 0,0673
0| of 0] 10,1703 |0,1251 | 0.0978 | 0.0797 | 0.0669 | 0,0575 | 0.0503
1[-1] 0| 0 |0.0506 |0,0L91 | 0.C478 | O,0467 | 0,0459 | 0,055 | 0.0k56
1] 0|=1| 0 |0.1168 {0,1410 | 0.1057 | 0.,1013 | 0.0977 | 0.0948 | 0,0930
1] Of Oj=1 |0.,1705 | 0,159 | 0.1495 | 0.1410 |0,1339 | 0,1282 | Q.12k2
O 1{~1] 0 |0,0176k | 0,01627 | 0,01498 | 0,01382 | 0,01281| 0,01191| 0,01110
Ol 4] Ol=1 jo,0488 | 0,041 | 0.0399 | 0,0362 |0,0329 | 0,0301 | 0.0277
0| 0| 1{=1 |0.00869 | 0.0076k | 0,00672 | 0,00592 | 0,00525| 0,00470| 0,0042k

ZABLE 2

Coefficients of lowest drag wings of the fanily for unit V/Zz

refercnce | design | design coefticients ﬁgsizn
letter Bs/2 E A N A A | (thin-wing
0 1 2 3 theory)
A 0.8 0.65 | 24,90 | =52,20 | 67.44 |-29,93| 0.646
B 0.8 0,70 | 27415 | 72,48 [103,14 | =45,22 | 0,651
C 0.8 0.75 26,65 | =62,52 | 66,04 | =12, 0.698
D 0.8 0,80 22,53 | -20,87 | -34.58 | 55.39 0.779
E 0,6 0.65 33,30 | =91.32 {125.75 | ~58,83 0,679
F 0.6 0,70 35¢45 [=107.97 [151416 | =66,97 0,706
G 0.6 0.75 31495 | =T7e43 | The86 | =12,0h| 0,775
H Ok 0.65 | 35,37 | =99.11 [133.57 |=60.66| 0.789

- 1L




Pressure coefficients for four basic wings of the family

TABLE

(thin-wing theory)

Bs/¢ = 0416

y/s E Cp1 Gp2 Cp3 CP4

0.05 0.1 0,901 0.218 0,035 0.005
0.2 0.560 0,351 0.125 0,037
0.3 0,282 0,392 0,228 0,105
Ol C.012 0, 341 0,303 0.196
0.5 -0,255 0.198 0,311 0.275
0,6 -0,522 ~0,035 0,211 0,289
007 "00788 "'Oo 359 -0-035 00160
Oo 8 "1 005ll' "Oo 7711- -0.)4-69 "Oo 209
0.9 -1.319 -1.280 -1.128 -0.937
1.0 "1 .585 "'1 0876 "'20053 "2.163

0.575 0.6 0,284 0,463 04393 0.279
0.7 ~04321 0.106 0.257 0,278
0.8 -0.711 -0,280 -0,020 0,120
009 -1 oOli-7 -00753 -0. 509 "'003214'
1.0 ~1,360 -1.320 -1,252 -1,188

Bs/‘e = 00577
] C

v/ ¢ D, “, b5 ‘0

0.05 0.1 0.778 0.178 0,027 0, 004
0.2 0.484 0,291 0,101 0,029
0.3 0,253 0. 328 0,185 0,083
Oul 0.031 0,290 C.249 0,157
005 "'0.188 00180 0. 260 0'223
O.6 "'Oo"-l'o? "'0.00’-I- 0.187 O. 21+O
0.7 -0.625 ~0.260 -0,001 0.147
008 -0. 8&-2 "'0.590 "Oc 336 "001 31
009 -1 0060 ""Oo 993 "Oo 81‘-9 -Ou 686
1 .0 "1 Y 278 -1 ol+69 "1 0571 "1 o628

0.575 | 0.6 O.443 Ou b6l 0. 331 0,213
0.7 =0, 144 0,169 0.238 0,223
0,8 ~0.493 -0,132 0,045 O.124
0.9 ~0,785 ~0,503 -0, 311 ~0,18k
1 'O "1 0051 "O. 9’-}-8 L "Oa 865 "Oo 809
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TABLE 3 (CONTD)

Bs/¢ = 0.800
C

y/s g cP1 cp2 cp} b,

0.05 0.1 0.664 O0.143 0. 021 0.003
0.2 Oeh11 0,236 0.079 0,022
0,3 0,223 0. 268 0. 147 0,065
Ouls 04 Ol O.243 0.200 0.123
0.5 -0.132 0,159 0.212 0.177
0.6 -0.308 0'017 O.1 61 001 9l|-
0.7 ~Cob8l -0,182 0,020 04129
008 “O- 659 -O'll'39 "O. 231-1- "'00076
0.9 "‘O. 831{- "'00753 "Oo625 “0.14-93
1.0 -1.008 -1.125 =1.179 -1.,203

0.575 | 0.6 0.667 0,457 0.270 04159
0.7 0.030 0,202 0.200 0.166
0.8 -0, 294 -0,027 0.071 0.106
009 "00550 -Oo 308 “'0.179 "0.105
1.0 "'O- 776 "Oo 649 “Oo 581 '00524'8
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FIG. 7. VARIATION OF DRAG FACTOR WITH MACH
NUMBER FOR WINGS A TO H (THIN-WING THEORY)
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THE CALCULATED LFFECT OF THE STATION OF IAZINUM CROSS=- 533,6,018.2

SECTIOQNAL AREA Ol THE WAVE DRAG OF DELTA WINGS,
Smith, J,H.B, and Thomson, W, September, 1961,

Use is made of previously calculated properties of a family of delta
wings with subsonic leading edges and diamond cross=sections to investigate
the effects on the drag and pressure distribution due to volume of variatlons
in the streamwlse statlon at which the cross-sectional srea 1s a maximum,
For each station of the maximum cross~-sectional aree and each value of the
aerodynamic slenderness ratio, Bs/f# , the wing of the family which has least
drag for given length and volume is found, As the station of maximum cross-—
sectional area is moved aft from 65% of the length from the apex, the drag
of this optirum wing rises; the rise being steeper for lower values of Bs/(,
In parallel, adverse pressure gradients and the suction on the wing near the
trailing edge both Intrease so that it beccmes less 1ikely that the
calculated values will be reproced in & real flov,
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THE CALCULATED EFFECT OF THE STATION CF lAXINUL CROSS=-
SECTIONAL AREA ON THE WAVE DRAG OF DELTA VINGS,
Smithy J,H,B, and Thomson, V, September, 1961,

Use i1s made of previously calculated properties of a family of delta
wings with subsonic leading edges and diamond cross=sections to investigate
the effects on the drag and pressure distribution due to volume of variations
in the streamwise station at which the cross=sectlonal area is a maxlmum,
For each station of the maximum cross-sectional area and each value of the
aerodynamic slenderness ratio, 3s/¢ , the wing of the family which has least
drag for given length and volume is found, As the station of maximum eross=-
sectional area is moved aft from 655 of the length from the apex, the drag
of this optimum wing rises; the rise being steeper for lower values of Bs/C.
In parallel, adverse pressure gradients and the suction on the wing near the
trailing edge both increase so that it becomes less likely that the
calculated values will be reproduced in & real flow,
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THE CALCULATED EFFECT OF THE STATION OF MAXIMUII CROSS-
53346404842

SECTIONAL AREA ON THE WAVL DRAG OF DELTA VINGS,
Smith, J.H,B, and Thomson, 1!, September, 1961,

Use 1s made of previously calculated propertles of a family of delta
wings with subsonic leading edges and diamond cross=sections to Investigate
the effects on the drag and pressure distribution due to volume of variations
in the streamwise station at which the cross=sectional area is a maximum,
For each station of the maximum cross=sectional area and each value of the
aerodynamic slenderness ratios Bs/{ , the wing of the family which has least
drag for given length and volume is found. As the station of maximum cross~
sectional area is moved aft from 65 of the length from the apex, the drag
of this optimum wing rises; the rise being steeper for lower values of B3s/l.
In parallel, adverse pressure gradients and the suction on the wing near the
tralling edge both increase sc that it becomes less 1likely that the
calculated values will be reproduced in a real flow.
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