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Swummary.—This report gives a theoret1cal method for calculating the natural frequencies and modes of yawing
vibration of a complete aircraft. . The basic feature of the treatment is the replacement of the continuous mass system
by one consisting of a finite number of discrete masses elastically interconnected. In the course of the analysis, use is
made of the deflection coefficient artifice in the formatlon of the equatlons of motion, and the escalator process in their
marshalling and numerical solution. -

The method has been applied to a single-engined fighter aircraft, for which the results of a resonance test were available.

' These results appear to be sorie 40 per cent. in excess of-their calculated counterparts and no satisfactory explanation
occurs to the authors to account for this incompatability. ,

1. Introduction.—This report deals with the yawing vibrations of an aircraft. As in previous
reports™?, the basic assumption is made that the complete aircraft with its distributed mass and
elastlcﬂ:y, corresponding ‘to an infinite number of degrees of freedom, may be replaced by an
approximately equivalent dynamical system consisting of a finite number of localised masses
elastically interconnected.. Advantage is taken of the escalator technique®!, in the marshalling
- and numerical solution of the appropriate equations of motion.

_ The case investigated in the present report is a single-engined fighter aircraft, on which
resonance tests had been carried out.

Each wing was divided into three discrete portions for each of which the position of the centre
of gravity and the mass were estimated from. drawings. The centres of gravity of the masses
were found to be very approximately on the flexural axis, which by calculation appeared to be
straight and practically normal to the main axis of the aircraft. Sofar asthe fuselageis concerned,
the mass of the front part was concentrated in the engine propeiler system, account being taken
of the moment of inertia in yaw. ~ The less concentrated rear part was divided into three portions
by planes normal to the longitudinal axis and the tail was regarded as rigid.

As in the earlier reports réfeired to, a- basic feature of the method is the employment of the
deflection coefficient aitifice’ The values.of these coefficients were calculated directly from
drawings, on the assumption that the wings and fuselage are separately encastré at their junction.
It should be made clear, however, that this assumption is one of expediency in the specification
of the elastic properties of the system. No such artificial condition is imposed in the analysis
of the motion. A calculation made from drawings revealed that there is only. a relatively
insignificant coupling between pitching and yawing elastic deflections of the wings and fuselage.
Although in the particular case the wing and fuselage flexural axes are not coplanar it was decided
to treat them as such on the assumption that the effects of non-fulfilment of this condition are
small enough to be neglected. In these circumstances the yawing vibrations may be separated,
and the whole motion regarded as taking place in a honzontal plane

* R.AE. Report No. S M.E. 4027—received 31st July, 1946.
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The propeller was treated as rigid and non-rotating. This, of course, is not true in fact: even
when the propeller is.not rotating, pitching and yawing vibrations are coupled in virtue of the
flexibility of the blades, their pitch and twist. This effect was ascertained and found to be
insignificant. When the propeller is rotating there is in consequence a coupling between pitching

and yawing vibrations due to gyroscopic action ; this coupling was likewise found to be relatively -
inconsiderable. "

On comparison of the theoretical results shown in Fig. 4 with the experimental results obtained
by resonance test and given in Fig. 5, it will be noticed that there is only a superficial agreement.
Indeed the test results appear to be some 40 per cent. in excess of the calculated results. It may
be that the assumptions made in order to separate the yawing vibrations are not well founded
and that in fact the mass centres are not on a rectilineal flexural axis, so that rolling vibrations
are perforce present. However, these assumptions were made purposely in order to simplify the
- analytical treatment, and to elucidate the trend of the phenomena involved.

On the other hand, unqualified reliance cannot be placed on the experimental results, owing
to the errors involved in their practical measurement, and the difficulty of exciting pure vibrations
of any particular character as may be seen from Fig. 5 (sce Ref. 5). Against this there is the
case that much better agreement was obtained on similar assumptions in which pitching and
rolling vibrations were treated as separating out.

To sum up, it appears from the foregoing that further consideration should be given to the
yawing problem to ascertain the reasons for the apparent discrepancies in this particular case.

2. General Theory—2.1. Wings—Referring to Fig. 1, 0X, OY are a system of fixed rectangular
axes formed by the undeflected positions of the fuselage and wing flexural axes. Let the system,
in vibration about its mean position, have $mall displacements relative to these axes as indicated
in the figure. FEach wing is regarded as consisting of three masses, viz., m,, m,, #,.

Now the effective elastic displacements of the wing masses are as follows:
: my: Xy — LDy my Xy — L,y my: Xy, — 1,0, .

Thus, making use of inertia forces, the equations of motion for small vibrations of a wing may be
written -

Xl -_— ll @0 - ’}’I’Ll CU2 1y11 + '}%2 CO2 X2y12 + 7%3 0)2 3y13 s e > . .« . (1)
Xy — L%y = m, w? 1 V12 + M 0% Xy 9 + 915 0® X3Ves, .. .. .- .. (2)
Xy — 13Dy = m; 0 Xy Y15 + My 02 X, Yy + 5 00 s Vg, - .. e (3)

where o /27 is frequency of vibration ;. and y, is the deflection parallel to OX at point s due to
unit load parallel to OX at point 7, when the wing is encastré at its junction with the fuselage.

If we write :
Vi, Xy = %, Vma X, =1y, Vg X; = 2
Wy Y = @, WaVas = Gy, M3 Yag = dgs,
\/ml My Vie = 15, \/m1 M3 Vis = Gyg, \/mz Wy Yoz = gs;
and 2 = 1/w?,
the equations (1), (2), (3) may be written

(ozu—Z)x+a12y—{—a13z:-—l1\/74711¢0, .. .. -(4)
amx+(azz—/l)y+a23z=—lgx/mzl¢u, .. e (5)
s X+ Aoy + (A — 2) 2= — L,V mg A D, . L .. (8)

Suppose now 4, (v = 1, 2, 3) is a root of equations (4), (5), (6), with @, = 0, and x,, Y,, %, are its
associated rectified modes, 7.e. in the particular case #,* + 4,2 - 22 = 1. These quantities are

obtained conveniently by the escalator technique?. Multiply equations (4), (5), (6) by x,, y,, and
z,, respectively and add.
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~ We obtain - S
(2, — A) (xx, 4+ yy, + 23) = — Q, A Dy .. .. .. .. (7)

where o -
: Q,_:Z1VMlx,+Z2\/m2y,—l—ZS\/mgz,, e e .. .. (8)
and < : '
r=1,23. '
Now multiply equation (7) by x, and take the summation for » = 1 to 3.
We obtain ' _
3 . N .
mX,—x—— 5 4% e e
Vi, X, =% ol P 1@, | (9)

[N.B. s % =1, % xy,:()etc."‘} _

Similarly, by multlplymg equation (7) in turn by v,, 2, and taking their summations, :

WZ’2:y=_._“‘zuo_;wﬂ)@0,: e e * (10)
Vﬁ&zﬁ*-%ﬂdﬂ%;'p,-- . Qeﬂ :(%

Further, multiply (9) (10), and (11) by LA my, b s, Iy Vi ma, respectlvely, and add.
We obtain :

mm&+%@&+%@&=_§ fz'e' e (19)

1 (Z — l) . S
2.2. Fuselage (front part). ——Slmllarly, for the front part of the fuselage we have .
(Vi — Yo — Li @y = (mu)y 0 (Vi) (yu)y + (Pa)y @ ‘(@1)1‘ (2l x - e e (13)
(@1 — @o = (m1); @® (Yi)s (211)y + (Po)s @° (Po)s (bl .. s e o (14)

where the suffix f denotes that the fuselage is here under consideration. °
(m4);, ($1);, are mass and moment of inertia respectively.
(Yu)s (2u)y, (¢ar)y, are deflection coefficients with the front part of the fuselage regarded as encastre
at its junction with the wings. They are defined as
(¥1); = linear deflection parallel to OY due to unit load parallel to OY,
(z1); = angular deflection relative to OX due to unit load parallel to OY, or
linear deflection parallel to 0Y due to unit couple acting in the sense OX to 0Y,
($11); = angular deflection relative to OX due to unit couple acting in the sense 0X to OY.

Equations (18) and (14) may be written :—

(b — A &+ by = — Vi A (Yo+Li®y), .. .. . .. .. .. (15
b’ + (b — NV = — V(P A0y, .. .. e .. (18)
where :

(ml)} (3’1‘1)f = by ; V(ml)f (P1)y (le)f.:: bia; (Pr)y (;Sll)f = buy;

N, (V) = o, VB, @) =y 1= 1ot

If 4,’, (r = 1, 2) is a root of equations (15), (16), with Y, = @, = 0, and &', 3", are its associated
rectified modes we have by analysis similar to that for the wings,
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\/(ml)f (Yl)f— x/ = - [? (AI}_A’?}') lYO—*— ? (Q: _xr ) Z@Ojl > (17)
VI )y =y = - [%‘ 2y Yok 3 iy ), s

where

Pr’ - \/(77&1) X s Q - ,\/(%;—)—f Ll xf, —]_ \/@fyfl *
And further

() (V) = [%(TE__A) Yo—l—%(TZ;ti_Q_’;)ngo},.. (9
(m)y L (Vi) + (80 (@, = — [ = ({itQ_ﬂ 1Y, + %(Tei—z) Z e @

2.8. Fuselage (vear part).—For the rear part of the fuselage we have equations of motion as
follows :

(Yo)y — Yo + L@ = (m); 0® (Vo) (Yas)y 4 (5); @® (Ya)y (Ves)y +- (7”4);’ o® (Ya)y (¥ai)s .o (21
(Yo)y — Yo+ L®o = (ma)r 0 (Ya)r (Yas)s -+ (M05); 0 (Y)y (¥35)y + (104); @® (V) (Vaa)y . (22)
(Yo — Yoo L@y = (mo); 0 (Yo); (Yau)r + (15); 0® (Vo) (Vaa)y -+ () 0 (Ya)s (Yaa); - - (28)

The notation should now be self-explanatory.
Equations (21), (22), (23), may be written

(Bs — A)2" + byt + bys v’ = — V(my), 4 (Yo — L, Dy), .. . . . o (24)
by 2" A (baa — A) 4 F b v’ = — V(mg), 2 (Yo — Ly @) (25)
bys 2’ + bas '+ (bss — A) 0" = — V(m), 4 (Yo — L, B, (26)
Where .
() (Ver)y == Do, €t V() (a); (Var); = bus, ete.;
and

Vims) (Yo, =2, Vi) (Ya)y =/, V), (Yo, =05 2=1/o?.
If 2," (r = 3, 4, 5) is a root of equations (24), (25), (26), with

Y,=®,=0, and 2/,, #,, v',, are its associated rectified modes®, we have

\/@(Yz)fzz’:—[%(fj)AY+2(ZQ_72)A¢OJ, o A(27)
«/(W?Jf(ys)fzﬁ':—,[}z: (f’r—%x) AYO—I— ?(E’r—%z) 1@0}, (28
V), (Vo) = v/ = — [% (11,’;’_%'2) 2Y, % (z%ljr’z) ,1@0]{ L (@)

where

P =N {ma); 2V (magw, + V)0,

Q = — [\/(mz) 22, + \/(mg) Lyu, —|— \/(1%4) L;v 7.
And further

(i (Y + (V) (my (Y = = [ 3 P aves 3280 a0 ], ga0)
(mly L (Y0 + (mo) Ly (Y3) - )y L (Vo) = + | = (5_@/1) 1Y, + .2 - Q_Zz) mo] (31)

4



2.4. Derivation of Frequency Equation.—From the equilibrium of the inertia forces parallel to
0Y, we have

2(my - 1y m5) Yo+ (1) (Y0)y 4 )y (V) + (e (Vi) + () (Vi) =05 .. .. (32)
and by moments about O, in the plane XO0Y '

(ml)f L, (,Y1)f + (pl)f (¢1)f Ay by Xy my by Xy + g 1y X . .
' —[(ma); Lo (Yo); - (ma); Ly (Ys); 4 (ma); Lo (Vo)) = . . (38)

Hence, on substituting the values given by (12), (19), (20), (30), (31), we obtain the equations
FuAaY,+ Fu(A)id,=0, .. .- .. .. .o (34)
Fup(AVAY)+ Fau(d) 20,=0, . .. . .. (35):
where . 3
R 2(my + 1, + my) ,
Fu‘(l) = ‘1; = 7 R x .. . .. (36)
5 P'Q’ . .
Flg(l)_?m, .. .. . .. s .- .. ... (37)
- 0z R 0 -
F”m)_?(ﬂ?—l)—{—?(l/—z)' e . .. .. (38)

The frequency equation is
Fi(A) X Fo(4) —[Fe (M))*=0, . .. .. .. (39

and when a root of this equation has been found the corresponding modes are given by (9), (10),
(11}, (17), (18), (27), (28), (29).

3. Numerical Example—3.1. Details of Calculation Leading to Formation of Frequency
Egquation—The units adopted are as follows :—

For force, pounds-weight ; for length, inches; for time, seconds; in which circumstances
the unit of mass will be

g (in/sec/sec) 1b, or approximately 386 Ib.
In the aircraft investigated, the calculated values_of the various quantities were as follows:—
my, = 2+585, m, = 0-610, m, = 0-259 in Lb sec units.
1, =535, 1, = 1320, I, = 190-5in;
v = 0-2088 x 10~%in/Lb, y,, = 0-8536 x 10~%in/Lb, v,3 = 1-3341 X 10~%in/Lb ,
Vas = 8-5047 X 107%in/Lb, y,s = 15-928 X 10~ %in/Lb, yg = 39-129 x 10~¢in/Lb .

(my); = 5-5285, (p,), = 3150-5,
(yu)y = 121-39 X 10=% in/Lb, (z), = 2-756 X 10~ “rad/Lb
($u)y = 0-25 X 10-*rad/Lb in, L, = 63-33in .

" (mg);y = 4-780, (my); = 0-4637, (m,); = 0-6140 in Lb sec units ,

(Yeady =0, (Yua)y =0, (3o =0, '

(¥33)y = 140 X 107°in/Lb, (ys); = 250 X 10~ in/Lb, (¥a); = 850 x 10~%in/LDb ,
L,=26-0,L,=116-9, L, = 223-21in . -



Taking 1 = 10°4, and 1’ = 10° 1, it was found that:

For the wings ) o oL ,
A, =14-613;%, =0-10635 y, = 0-56201, 'z, = 0-82026; (), = 146-563 .
A, = 0-98186; x, = — 0-40318, v, = — 0:72972, 2, = 0-55225; (Q, = — 56:274.
1y = 0-25955; x, = 0-90828, 1y, = — 0-38943, z; = 0-14897; (Q, = 52-432."

For the front part of the fuselage
b = 1097-79; " = 0-64880, y," = 0-76095; P,’ = 1-5255, Q," = 139-3186.
A, = 360-95 ; x' = 0-76095, x', = — 0-648_80;P2' = 1-7802, Q,’ = 76-886.

For the vear part of the fuselage o
2’y =1557-98; z'3=0, u, = 0- 26116 0" = 0-96529; Py = 0-93423; Q,' = 189-614. -

Iy = 98-831; 24— 0, u, — 0-96529, v, — — 0-26116; P’ — 0-45270 + (' — 31-168 .
I’ =0; 2 =1, 15" = 0. o5 = 0; Py’ = 2-1863; (' — 56-843.
Hence, - i , : : ‘
e[ 2-3272 0-87278  3-2012 0-20494 11-681}
Fu(2) =10 [(109779 ) T 35798 —7) | (36095 — ) (883 —H) T —71 .
P (1) — 106[ 21258 17714 . _137-56 14-110 _124-274} ,
R (1097-79 —1)  (557-98 — 1) ~ (360- 95—17) (28-81—17) - —1 I’
oy el 19,408-9 35,9535 1 5,911-5
Fy (1) =10 [(1097-79—2) T B57-98—7) © (36095 —7)
971- 44 42,9613
T 28831 —7) T (14613 —1)
L 6338857 549813 3,231-1]
(098186 —7) " (025965 —7) T 1 I

3.2. Numerical Solution of Frequency Equation.—The solution of equation (39) was effected by
rewriting it in the form

Fy,(2) F12 A _ D,

i Fiz (ﬂ-) Fzz (/1) ?0 g
and plotting curves for the functions "
| O Fu(d) 4 Fu(2)
and .
Fi (3) Fo, (2)

The points of intersection of these curves give the values of 4 sat1sfy1ng the frequency equation,
and also the corresponding value of @,/Y,.

It should be noted that the curves intersect at 1 = 109779, 557-98, 360-95 and 28-831, but
that these values do not correspond to frequencies of the system. They are roots introduced
artificially in virtue of the form in which the frequency equation is written. - The graphs of these
curves to give the four lowest frequencies are shown in Figs. 2 and 3.

3.3. Summary of Results

The calculated natural frequencies of the aircraft in yawing vibration were as follows :—

Fundamental, 5-46 c.p.s.; 1st Overtone, 8:44 c.p.s.; 2nd Overtone, 10-45 c.p.s.;
3rd Overtone 30-0c. p S.
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Conversion factors:

1 inch in = 25-400 millimetres mm
1 pound mass (Avoir) 1b = 0-453 59 kilogramme kg
1 pound weight Lb = 0-453 59 kilogramme weight Kg

— 4-448 2 x 10° dynes
To convert British to metric units multiply by the figure given.

No. Awuthor

1 J. Morris and 1. T. Minhinnick ..

2 J. Morris and G. S. Green
J. Morris and J. W. Head

4 J. Morris
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F1c. 1. Diagrammatic Outline of a Skeleton Aircraft Mass System in Yawing Vibration,
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FRONT . VIEW

PORT SIDE OF FUSELAGE
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F16. 5. Modes and Frequencies by Resonance Test.
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