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Summa~'y.--The report gives an outline of the development of the principles on which potential problems in lifting- 
plane theory are solved by  the use of a vortex lattice for the purpose of computing downwash. The conditions of 
convergence necessary for an accurate solution are defined, and the main purpose of the report is to show that  those 
connected with t-he lattice have been, or can easily be satisfied. 

Published solutions by  this method have been mainly concerned with spanwise load grading and local aerodynamic 
centre and examples are given here of earlier checks on accuracy for rectangular and triangular wings, and a yawed 
infinite wing, based either on an alteration of the lattice spacing or on comparison with downwash obtained by surface 
integrals. The study of accuracy is now advanced by a comparison based on exact values calculated from surface 
integrals given by  W. P. Jones, and applied to a rectangular and a sweptback wing. The downwashes obtained from the 
lattice are shown to converge to the exact values, but by  a comparison of two solutions for the sweptback wing it is shown 
that  the beneficial coupling effect of the lattice makes it unnecessary to obtain individual downwash values to great 
accuracy, at least for spanwise load grading and aerodynamic centre calculations. 

Trial calculations reveal that  there would be no difficulty in extending the convergence to detailed pressure distri- 
bution or other properties of any thin wing, but it is desirable to give prior attention to the main effects of wing 
thickness and viscosity. 

1. I~troductio~.--Recent criticism of the work which has been completed on the calculation 
of aerodynamic wing loading by  a theory involving the use of a lattice for computing downwash, 
coupled with the fact that  the planning of extensive programmes of research may depend on an 
accurate judgment of this work, makes it advisable for a clear statement of the objective to be 
rendered. A previous note 1 on the accuracy of the calculations was issued in May, 1946, but with 
the completion of more work it is possible to state the case with greater knowledge. 

2. Outline of Theory.--The work which has so far been completed has been based on the 
following developments : - -  

(a) A generalisation of the work originated by Blenk" on a rectangular wing, and extension 
to arbitrary plan form and .to include wing twist, discontinuities due to deflected 
flaps, effects of compressibility, and so on. 

(b) The solution of potential problems, and many  non-potential problems as, for exampIe, 
those which include the effects of viscosity, to a prescribed degree of accuracy, by  the 
use of a network instead of a continuous medium for the evaluation of downwash. 
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These two lines of advance are being dealt with concurrently in a programme which has so 
far been mainly directed to an exploration of whether problems expressible in terms of vortex 
sheets can be solved by the use of a network of vortices simple enough to make the work economi- 
cally suitable for general use. Favourable circumstances are met at the outset in that  lifting line 
theory, in which the chordwise distributed vorticity is reduced to a single line vortex for the 
purpose of downwash calculation, has been in use for years with marked success, and it is 
reasonable to anticipate that  improved accuracy is obtainable by building on the foundations 
of lifting line theory without going so far as to lose the essential simplicity of the representation. 

2.1. At the outset, it was necessary to make a choice between spending a great amount of 
t i m e  in carrying to the limit one typical case, with complete proofs as to accuracy, or of pro- 
ceeding on the assumption that  the developments were valid and covering, in consequence, 
much more ground. Because of the importance of the application of the work to design problems, 
the latter choice was made, and there is no doubt about the correctness of the decision, for it 
has led to considerable advances in general knowledge and the provision of a framework of 
general information from which it is apparent that  a rigid proof of accuracy for a simple case 
would be useless from the point of view of the general application of the theory. The difficulty 
in providing positive proof of accuracy is that  the simpler forms of corroborative evidence, 
e.g., wind tunnel tests, are not pure potential solutions, the provision of which for a complicated 
case is an exceedingly difficult matter. 

2.2. Early in the work, comparisons were made between solutions obtained by using exact 
integrals of downwash and b y  the lattice, and, after a suitable procedure for allowing for the 
discontinuity in plan had been developed, the effort was concentrated on covering a wide range 
of thin wing solutions with a complication sufficient only to ensure that  the spanwise load grading 
and local aerodynamic centre were given to good accuracy. From the coefficients given with 
these solutions the pressure distribution over the surface could be worked out, but  this was 
obviously a case where the user must take the risk of unspecified accuracy. I t  was known some 
years ago that  the two chordwise terms used for the calculations were inadequate to give the 
detailed pressure distribution to great accuracy in the region of a discontinuity, and, so far, 
a solution to the required degree of complication to give final covergence has not been worked 
out. The writer has satisfied himself by  trial calculations that  the same method taken to more 
terms will give a convergent pressure distribution, but  there is little point in finishing a calculation 
of this nature until  the main effects of wing thickness and perhaps viscosity have been investi- 
gated, as these are always present in any applicati0n of the theory. 

2.3. For most of the work which has so far been published, the lattice is used as a quick method- 
of evaluation of downwash, and, as it will be shown below that  this process is convergent, the 
work conforms to the now established practice of lifting plane theory in whatever form this 
may be expressed. 

The use of a lattice, however, will be shown below to offer certain advantages in saving of 
labour, because it introduces a beneficial coupling between the downwash values. 

For wings with deflected flaps, the use of a lattice offers in addition a means of simplifying the 
solutions so tha t  these can be effected rapidly when the detailed pressure distribution is not 
required, but  only accuracy in the spanwise load grading and local aerodynamic centre. 

3. Development of the Dow~4wash Calculatio~4s.--At an early stage it was decided to standardise 
the principle of representing a continuous circulation in tile spanwise direction by a system of 
rectangular vortices for purposes of downwash calculation, by making the strength of each 
rectangular vortex the same as the value of the continuous circulation at the midpoint of tile 
transverse vortex. I t  was an obvious move to t ry out this sytem by, comparison with lifting line 
theory, with which agreement is essential to form a proper foundation for the work, and this 
procedure has the advantage tha t  the downwash associated with this theory is defined by a 
simple mathematical  formula. 

2 



As a result of a s tudy of the induced downwash, it was found tha t  a corrector vortex was 
required at the position 0.9625 and, with this included in the pattern, the downwash was correct 
for all practical purposes up to 0.8s, but  not beyond, when a spacing of 20 to the span was used. 
I t  also appeared tha t  0.9s could be reached by using precisely the same pattern with the spacing 
halved, and tha t  this method of extension was repeatable. The way in which the whole scheme 
becomes practical when the corrector vortex is added is shown in Fig. 1, in which are plotted 
the induced downwash as calculated by the lattice compared with the same calculated mathe- 
matically for the 19-vortex pattern, i.e., excluding the two end corrector vortices, and the 21-vortex 
pattern. The details of caiculation can be readily deduced from the information given in R. & M. 
1910 (1943) 3 and 2591 (1947) ~. 

The results of a further investigation are given in Table 1, which compares the values of 
induced downwash corresponding to lifting-line theory, as obtained by a lattice of vortices for 
several spanwise gradings of K/4sV,  with the exact values. I t  will be noted tha t  the 21-vortex 
pat tern is reasonably good to ~ = 0.8, even for ~¢°(1 -- ~2)1/,, but  that  a considerable general 
improvement is shown when the 41 pat tern is used. The general convergence in the spanwise 
direction with respect to number of vortices seems to be well established. 

3.1. The convergence in the chordwise direction is based on two-dimensional considerations, 
and the sequence is as in Fig. 2. The idea is tha t  any chordwise function can be represented for 
purposes of downwash calculation and not necessarily for loading, by  replacing the continuous 
function by a finite number of line vortices spaced at even distances along the chord, e.g., 4 at 
1, 3, 5 and 7 eighths of chord, and so on. The magnitudes of the line vortices are then calculated 
by making the two-dimensional values of the downwash due to the line vortices the same as those 
due to the continuous distribution at stations midway between the line vortices, the spare 
condition being used to make the total  vorticity correct. The first approximation involves one 
line vortex only, and the analysis must therefore be limited to the term cot 0/2. The line vortex 
of equal total magnitude is placed at the half-chord, and the control point, for which the down- 
wash due to the line vortex equals tha t  due to the distributed vorticity will be at 1.0 chord. 
Because the downwash due to cot 0/2 is uniform, it is possible to improve the representation by 
moving the vortex and control point forward until the vortex coincides with the centre of pressure 
(C.P.) of the continuous distribution, i.e., the vortex is now placed at 1/4 chord and the control 
point at 3/4 chord. As the solution is based on the use of the continuous distribution, and the 
representation of line vortices is used only for tile determination of downwash, this variation 
would have no effect on a wing of constant chord, and only a minor effect in the general case. 
The first approximation is correct for two-dimensional flow, but  there is an appreciable error 
when the flow is three-dimensional. 

3.2. The second approximation involves a limited number of vortices, say 4 or 6, or more, 
and it  will be seen that,  for the 4-vortex system as shown in Fig. 2, for which the magnitudes 
are given in Table 7 of R. & M. 2591 ~, the C.P.'s of the system for the terms cot 0/2, sin 0, and 
sin 20, are 0. 313, 0.5, and co instead of the values 0.25, 0.5 and co given by the continuous 
loading. The wing loading system does not, of course, depend directly on these values, which 
are incidental to a system designed for the computation of downwash, but  it  is of interest to 
note that  the C.P. for the cot 0/2 term of the lattice could be altered from 0. 313 to 0.25 by moving 
the system forward by 0. 063 chord. A variation of this kind would seriously impair the symmetry  
of the arrangement and the ease of application of the method, but  would lead only to a trivial 
variation in the solution. Where 12 chordwise vortices are used (see Table 12) the C.P. of the 
cot 0/2 lattice is at 0.271, a much nearer approach to the quarter  chord. With the second approxi- 
mation, the two-dimensional values of downwash are accurate, while the errors in the three- 
dimensional values are greatly reduced. The number of vortices in the second approximation 
requires adjustment depending on the plan of the wing. 

When the number of vortices has been increased sufficiently, e.g., the approximation n, it 
will be found tha t  the C.P. will be the same for the continuous and line vortex systems, and tha t  
the values of downwash will be accurate for both two and three dimensions. The success of 

3 



tile application depends, however, upon a close approximation to the limit having been reached 
with a few vortices, and there is abundant  evidence that  a considerable amount of useful and 
accurate work can be effected with the 4 or 6-vortex pattern, although in some special and 
advanced cases a greater number will be necessary. 

4. General Scheme of Co~vergencies.--The following convergencies must be nearly simultaneously 
complete if an accurate solution for a wing is to be obtained : - -  

(a) Convergence of solution with respect to lattice spacing spanwise. 
(b) Convergence with respect to lattice spacing chordwise. 
(c) Convergence with respect to number and position of control points. 
(d) Convergence with respect to the number of unknown coefficients or loading functions 

used in the solution. 

The first two depend upon varying the size of the mesh of the lattice ; the fourth upon the use 
of a Fourier series or other special functions by  which the vortex sheet representing the wing is 
defined ; and the third to a certain extent upon the other three. 

The degree of complexity of the solution which is required to establish convergence of the 
four items will vary  with the nature of the problem to be treated and with the characteristics 
in question. For example, a wing of circular plan form will require much less work than a wing 
with discontinuities in plan, and the effect of deflecting flaps will be greatly to increase the 
complication. Also, experience has showri that  there is a variation in rate of convergences : 
for example, the grading of spanwise circulation converges quickly, andof ten  involves only one 
chordwise term, cot 0/2 ; and a considerable amount of evidence has been collected which sup- 
ports the view that  the local aerodynamic centre can be adequately defined by the use of two 
chordwise terms only. Much valuable information can be obtained by a s tudy of the circulation 
and aerodynamic centre, but  trial calculations have shown that  a reasonably accurate calculation 
of pressure distribution in the neighbourhood of a discontinuity in plan would require at least 
three or four terms and there is no doubt that  an approach to the accurate solution in the vicinity 
of a corner would require a large number of terms. 

4.1. The method of obtaining covergence can vary considerably. For instance, the number of 
control points can, and should in many cases, be greater than the number o f  unknown co- 
efficients, and, by subsequent normalisation of the equations connecting the unknowns, the 
effect of any error at an individual control point reduced considerably. In fact, it appears tha t  
the averaging effect of this process is often particularly valuable in assisting the convergence 
of the solution. 

4.2. I t  should now be quite clear to the reader that  when a solution is published the meaning 
to be attached to it is that  the work has been carried out to a degree of complication sufficient 
to establish to a reasonable degree of accuracy certain properties, of which the circulation and 
the local aerodynamic centre are two of the most important. I t  should not be assumed that  the 
solutions m a y  not later be improved, if the necessity arises, by  extending the work to give 
accuracy m respect to further properties of the wing, when the pressure distribution at selected 
stations is required to specified accuracy. I t  should be remembered that  there is no hope of 
finality in this work, as the analysis could gradually be extended to questions which are merely 
academic and could have no possible practical application, for instance, the behaviour of the 
solution in the immediate vicinity of a corner on the wing plan. 

Because of the indefinite nature of the convergences and the fact that  finality in the provision 
of potential solutions is quite impossible, the main effort has been put into making maximum 
use of the application of the work. Published solutions which claim to have reached a certain 
degree of convergence have been checked by internal evidence and by any external evidence 
which bears on the problem, and the writer has so far found, nothing which can be used to prove 
tha t  the developments are invalid. A final point is tha t  there is little merit in over-elaboration 
of a solution for a thin wing when it is known that  all wings have a finite thickness. 



4.3. We now present some of tile latest evidence as weii as evidence which has been collected 
at intervals during the development of the work from the original rectangular wings. The object 
of providing this evidence was to show that  tile calculations were proceeding on the right lines 
and not that  a hypothetical ' exact solution ' had yet been reached. 

5. Examples of Convergence : Rectangular Wing.--The solution for a rectangular wing of aspect 
ratio 6 was originally calculated by the use of the 84-vortex lattice using 6 control points, 
located at ~, ~,1 and ~ chord a n d ~  = 0.2 and 0.8. The same wing was also considered some 
years ago by Argyris using 6 control points in very nearly the same position, but with the down- 
wash at each point calculated from the formula applicable to the surface integral instead of by 
a network or simpler means. In this work Argyris corrected some of Blenk's 2 results which were 
known to be slightly in error. The two results are now given in Table 2 and Fig. 8, and, although 
neither solution has been taken to the limit, and so complete agreement is not to be expected, 
the agreement was close enough to support the conclusion that the downwash for a straight 
wing could be calculated by the use of a network of vortices. 

5.1. Although calculations of downwash at an individual point are of limited use in assessing 
the accuracy of the overall solutions, because they involve too narrow an issue, they can be 
used to show that  the calculations of downwash by the lattice method are convergent. It  is 
possible to make an advance in the work by the use of exact mathematical  formulae, given by 
W. P. Jones ~ in R. & M. 2225, by which the values of the downwash at the mid-chord points of 
a rectangular wing of aspect ratio 6 can be calculated for vorticity distributions corresponding 
to the most important terms of the series normally used. The accuracy of the values given by 
Jones was a little uncertain and they have now been recomputed to greater accuracy by the 
Staff of the Mathematics Division of the Laboratory, who have provided the exact values now 
given in Table 3. The values corresponding to vortex sheets 2V(1 -- ~2)1/~ cot 0/2, 2V~(1 -- ~72) ~/2 
cot 0/2, 2V~2(1 --~2)1/~ cot 0/2, and 2V~4(1 --~72) ~/2 cot 0/2 for the mid-chord point at ~ ---- 0.2, 
0.5, and 0.8 are given in this table. In order to show how the lattice calculations converge, 
work has been completed which includes the use of 4, 6 or 8 vortices to the chord and 21 or 41 
to the span. In R. & M. 2591 * it is shown how, after a certain side displacement from the control 
point, the number of vortices is reduced to one for tile cot 0/2 or sin 0 term, and the effect of 
varying the number of columns with the full number of vortices has now also been studied. It is 
most convenient to define the system by the semi-range, expressed as a proportion of the span, 
covered on each side of the control point by the columns with the full vortex system, for example, 
9 columns of 21 vortex ~-4  columns on each side ~-~ 0.2 span semi-range. 

5.2. Before considering final details of the convergence revealed by the figures of Ta:bles 3 
and 4, we consider some points of interest. The downwash factors are usually obtained direct 
from the critical tables (R. & M. 2461 ~) to three places of decimals, and an examination of the 
integrals has shown that  there would be no appreciable advantage in increasing the places of 
decimals to four in the close range over which the full number of vortices are used. Outside this 
range, where one only vortex per station is used, error assessment indicates that there is a slight 
advantage in using four places of decimals, and, in order to allow this to be clone accurately, 
additional tables of downwash have been included as an Appendix. These tables are supple- 
mentary to the ' Tables of complete downwash due to a rectangular vortex' (R. & M. 24616). 
All future work will therefore use three places of decimals within the close range, and four places 
outside this. 

We now consider the magnitude of the range over which the full number of vortices are used. 
If examinat:ion be made of items 2, 3 and 4, items 7, 8 and 9, and other similar sets of calculations 
given in Tables 3 and 4, it will be seen that  the computed downwash has for all practical purposes 
converged to its final value at semi-range 0.3, and all future work will adopt this value as the 
standard for either 21 or 41 vortex work. 

5.3. A selection of results for points 1, 2 and 3 has been plotted in Figs. 3 and 4. It will be seen 
that for points 1 and 2 the lattice with 21 spanwise vortices will give a very close approximation 



to the true values of the downwash, while for point 3 it may be necessary to go to 41 spanwise 
vortices if an accuracy of closer than 1 per cent is required. The results establish without doubt 
that  the lattice process converges rapidly for the rectangular wing. It  Seems that  for this wing 
all the accuracy normally required is obtainable by using not more than 8 vortices chordwise, 
but further work on another wing described below with 12 vortices will show that greater accuracy 
is obtainable if required. 

6. Examples of Convergence : Infinite Yawed Wing.--Calculated values of the downwash at 
selected points on an infinite wing of constant chord at 45 deg yaw have been made with various 
patterns of lattice to compare with the exact values. The four cases treated are shown in Fig. 5 
and include patterns equivalent to the 21-vortex solution ; 84-vortex solution ; and 126-vortex 
solutions with 2yv = 0.25 chord, which is the same as a spacing of 0. ls with aspect ratio 5, and 
2y~ = 0.35 chord, equivalent to a spacing of 0. ls with aspect ratio 6.6. The latter case has 
been included as the pattern changes its character when yv is varied. 

The values of downwash were computed by summing the effects of the individual vortices 
by the standard method and using the standard chordwise factors, the spanwise loading function 
being taken as unity. The summation was carried out to the limit of the published tables 
(y = 76) and the limits for an infinite number of terms estimated by using the condition, which is 
easily verified for an unyawed vortex, that  the limit is approached hyperbolically. It  would be 
possible to examine the limit more closely by pure mathematical  analysis but it is thought that  
the addition accuracywould be so small as not to warrant the time spent on it. 

6.1. For an infinite wing with circulation K = }aVc, the true value of w/V over the wing is 
1/%/2 or 0.707. In Table 5 are given the values of w/V for the same circulation obtained by 
summation of the effects of the lattice of vortices. The result given by the single vortex is a 
trifle high, which is consistent with the known fact that  solutions by this pattern usually give a 
slightly low value of the circulation. The other values which include points at 0.5, 0.75 and 
0.83 chord are extremely close to the true value, and better agreement is hardly to be expected 
considering that  the limits of the sums of the downwashes due to the lattice pattern are obtained 
by a method which is not exact. 

This work shows that  there is no fundamental error for a sweptback wing due to the use of 
a lattice orientated parallel to the wing direction. 

7. Examples of Convergence: Tria¢¢guIar Wing.--Further work has been carried out on the 
triangular wing for which a number of solutions have been described in R. & M 259P. In order to 
remove the variations near the tip which, although of no practical importance, tend to mask 
the degree of convergence, a comparison is now made of two solutions (a) 126-vortex, 6-point 
solution, with control points at )1 = 0-2, 0.6 and 0.8 and at 0.5 and 0.83 chord and (b) 328- 
vortex, 12-point solution, with control points at ~7 = 0.2, 0.5, 0.7, and 0-8 and at 0.25, 0.5 
and 0.75, chord. The solutions were standard solutions wi th  the application of t he  centre line 
correction, and the additional condition was used that the local a.c. at the tip is at 0-25 chord.  
It has been explained in R. & M. 259P that this condition is a likely one in that  it agrees with 
the assumption that  the curvature of flow at the tip remains finite. The two solutions are given 
in Table 6, and Fig..9 and show that, as far as the load coefficient and local aerodynamic centre 
are concerned, the solutions have converged for all practical purposes with respect to the alteration 
of lattice spacing and number of control points within the limits of the loading functions used. 
The slightly low value of dCL/d~ for the 126-vortex solution is usual and is corrected by the 
formula given in R. & M. 2591. 

8. Examination of V-W¢ng~--A considerable amount of work, both theoretical and in the 
wind tunnel, is being carried out on the wing defined in report 7 11609, i.e., a V-wing of aspect 
ratio 3 with uniform chord, and 45 deg of sweepback. This wing provides a more difficult case 
than a straight wing as it involves the important discontinuity in direction of trailing edge at 
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the wing centre, the effect of which it  is required to establish. An examination is the more 
desirable in that  it is intended to use this wing for a more detailed investigation into pressure 
distribution. 

A plan of the wing is given in Fig. 6, showing the five points at ~ = 0, 0" 2 and 0.8 at which 
the accuracy of the lattice calculations of downwash is to be gauged. Because of the time in- 
volved in calculating tile accurate surface integrals, it has been necessary to limit the investigation 
to the spanwise distribution represented by ( 1 -  ~2)1/2, and to one or two terms chordwise, but  
the results given for the rectangular wing in section 5 leave no doubt that  this is sufficient to 
establish the general accuracy. 

8.1. Exact  values of the downwash w/V have been calculated by a surface integral for points 
2, 3, 4, 5 for the vortex distribution 2(1 --~2)t/2 cot 0/2, and for point 1 for the distribution 
2(1 -- ~,)1/2 Ecot 0/2 -- sin 01. The variation for point 1 is necessary because the (1 -- ~7") ~/2 loading 
function does not contain the singularity which is present in the complete loading functions 
for a wing with discontinuity, the effect of which is to cause the downwash at points on t h e  
discontinuity to remain finite. 

In the absence of the special spanwise loading functions it therefore becomes necessary to 
introduce the condition k ---- 0 at the control point, k being the intensity of vorticity, but  it is 
important  to note tha t  this does not invalidate the demonstration of convergence. 

The evaluation of the surface integrals was undertaken by the Mathematics Division of the 
Laboratory, the required formula being given .by W. P. Jones 8 in R. & M. 2145. 

8.2. The true surface integrals, and values obtained by lattices of varying complexity are 
given for the five points in Tables 7, 8 and 9. The major effort has been connected with the 
points at the half chord because previous experience has shown that  accuracy is more difficult 
to obtain the further forward the control points are placed. The figures for points 1, 2, and 4 
are plotted in Fig. 6. It  will be seen that  it is inadvisable generally to use a semi-range of less 
than 0" 3, and, taking this value as the criterion, the lattice gives an answer exceedingly close 
to tile exact value for point 2 when the 21/6, 21/8, 21/12 or 41/12 lattices are used. As regards 
point 4, this has been shown by past experience to be one of the most difficult points to deal with 
as it is near the tip and in the region of rapidly decreasing circulation. The results, however, 
show that  the lattice calculations are convergent, there being a considerable improvement from 
tile 21/6 value of 0.909 to the 41/12 value of 0.945, the true value being 0.960. There is no 
doubt that  the calculations with an 81 lattice would give still closer agreement. 

8.3. Finally, the values for point 1 obtained by the standard process are all high and do not 
appear to be converging to the  exact value. As a result of this disagreement, the use of the 
process at a discontinuity was examined and it was decided that  a slight modification was 
justifiable and necessary. The modification is shown in Fig. 7 which is concerned with tha t  part  
of the wing in the neighbourhood of the discontinuity. The use of the standard lattice is equivalent 
in one respect to representing the area by the stepped diagram as shown. The rectangles represent 
the average area of the wing satisfactorily except tha t  the one enclosing the discontinuity is too 
far forward. The modificatibn consists in shifting this rectangle backwards as a unit  with its 
enclosed pat tern of vortices and control points to make the areas A and 13 equal. In the general, 
or non-symmetrical case, the shift backwards would be governed by averaging on the area 
CDEFGH. 

The success of this modification is shown by the  results given in Table 9, and in Fig. 6, where 
the figures of items 4, 5 and 12 relating to the revised lattice, with the centre rectangle only 
shifted back 0.5 semiwidth of vortex, indicate satisfactory convergence to the true value of w/V. 

8.4. Although convergence is not complete for points at the discontinuity and near the tip, 
i t  is at least certain tha t  the values of w/V given by the latest lattice of 41 spanwise and 12 
chordwise are very much nearer the exact values than those obtained by the lattice of 21 spanwise 
and 6 chordwise. 
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For point 1, the figures in the order 21/6 (original lattice, 0.2 semi:range), 41/12 (modified 
lattice, 0-3 semi-range), and exact, are 2.317, 2.163, 2 .190;  for point 2, 2.082, 2.089 and 
2.085 ; and for point 4, O. 905, O. 945, and O. 960. 

The investigation can, if required, be carried to a further degree of accuracy, but the following 
work will show that  it is doubtful whether such a step will be necessary. 

9. Simplificatio~¢ of Dow~¢wash Calculatio~¢s" Spa't~wise.--Before making a final assessment 
of the accuracy of solutions based on the 21/6 lattice which have previously been published, 
an account is given of a simplification of the work by employing the principle of interpolation. 
Tile simplification is such that  it is easily possible to use the 41/12 lattice, with the advantage 
of superior accuracy, and the demonstration of this gives an opportunity of expounding a quicker 
method of setting out the calculations. 

Consider firstly a control point at ~ = 0, or at the Wing centre. I t  is obvious from published 
work, for example, Table 3 of R. & M. 259P that  the magnitude of the downwash factors rapidly 
diminishes as the distance from the control point increases, and the simplification is based on 
the omission of some of the smaller factors and their replacement by  proportions of the factors 

' retained. 

A study of the rate of decrease of the factors showed that  standard interpolation formulae 
were not valid, except when the factors were very small. A successful method of interpolation 
was obtained by polynomial interpolation on the factors multiplied by y", where y is the dis- 
placement from the control point less one vortex width. The details of interpolation must be 
omitted, due to lack of space, but there is no new principle involved and the final results only are 
given. In Table 10 are given the location of the spanwise vortices retained, and the factors to 
be applied to the downwash to compensate for the missing Stations. The results are given for 

= 0, 0.2, 0.6 and 0.8 and apply to any lattice of 41 spanwise. For ~ = 0, only one half the 
wing need be included. 

Plans have been made for further simplification by working on the chordwise distribution in a 
similar way, but this development must be omitted from the present report. 

9.1 An example is now given of the details of the calculation of downwash (the short process) 
for point 1. By the use of a table of distances as shown in R. & M. 25914, the downwash factors 
for 12 chordwise vortices, or 1 chordwise vortex near the tip, can be written down direct as shown 
in Table 11, being taken from critical and other tables from relative distances given on the 
calculating machine by a simple calculation. This table is converted direct to the composite 
factors for cot 0/2, and sin 0 of Table 13 by using the appropriate factors given previously in 
Table 7 of R. & M. 2591 ~, and now augmented in Table  t2 by  the addition of figures for a 12 
point solution. Another column of Table 13 gives ( 1 -  ~,)1/, increased by the interpolation 
factors of Table 10, and the downwash w/V corresponding to the vortex sheet 2V(1 -- ~)1/2 
[cot 0/2 -- sin 0] is 2(1 -- ~72) ~/" (factors) [cot 0 / 2 -  sin 0] multiplied by a factor related to 
the lattice, in this case 20/3. This integral becomes 2. 173 as against the value of 2. 163 obtained 
by the long process, and the exact value 2. 190. 

A selection of values obtained by the long and short processes, is given in Table 14 for com- 
parison with the exact values for points 1 to 5, and it will be seen that  in every case the long 
can be replaced b y  the short without sacrificing any appreciable accuracy. 

10. Accuracy of Published Solutions.--It is clear from these results that  the figures given by 
the lattice of 41 spanwise and 12 chordwise, even if not exact, are very much closer to the exact 
values than those given by the previously used lattice of 21 spanwise and 6 chordwise, and this 
is true whether ol- not the short method of calculation is used. For example, in the order 21/6, 
41/12, and exact, the figures for point 1 are 2.317, 2. 173, and 2. 190 ; for point 2, 2.082, 2. 104, 
and 2. 085 ; and for point 4, 0. 905, 0. 940 and 0.960. 
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Hence, a measure of the accuracy of the solutions already published and obtained by the use 
of the 2i lattice, can be found by computing further solutions based on calculations by  the 
41/12 lattice. The comparison is for the moment limited to the two quantit{es which have been 
the main  objective of the work so far completed, i.e., the load grading and the aerodynamic 
centre, and it is not intended for this to be the final ,~erdict on pressure distribution. Two eight 
point solutions have been calculated for the sweptback wing of Fig. 6, the first using the 21/6 
lattice with semi-range 0.2, and the  second the equivalent of the 41/12 lattice with semi-range 
0.3, the values ,of the downwash being obtained however by  the short process as described in 
section 9. For these solutions, the control points were located at ~ = 0, 0.2, 0.6 and 0-8 and at 
0.5 and 0.83 chord and the loadihg functions used were (1 _~)1/~; ~"(1--~)~/~, ~ ( 1 -  ~")~/~, 
with the special function P = 0~65P~ -~ 0.35P~, as described in R. & M. 2596 ", in ' order to 
allow for the centre-line correction. The values of ' the latter function used in the calculations, 
and applicable to the lattice of 41 spanwise, are given in Table 16. 

10.1. The two solutions are given in Table 15 and  have been plotted in Fig. 10 from which it 
will be seen that  the agreement is remarkably good, the only difference being a slight variation 
in the curve of local aerodynamic centre. I t  is therefore concluded that  the answer would be 
little different if the downwash integrals had been exact. Although the degree of agreement is 
surprising in view of the changes i n  individual downwash values, it supports other evidence 
tha t  published solutions based on the 21/6 integrals are sufficiently accurate. I t  is clear tha t  the 
lattice representation adds something beneficial to lifting plane theory, presumably due to a 
favourable coupling between the downwash values, even though each is not necessarily given to 
close accuracy. 

11. Conclusions.--The report has provided corroborative evidence that  published potential 
solutions of spanwise load grading and local aerodynamic centre do not suffer appreciable in- 
accuracy on account of any defect in calculations of downwash at control points, and are therefore 
almost as if the downwa~hes had in fact been calculated to great exactitude by surface integrals. 

Tr im calculations by the writer have shown that  the same methods and loading functions are 
likely to give convergence is detailed pressure dfstribution, but three or four terms instead of 
two may be needed in the region of a discontinuity. As the application of the work to practical 
problems must invariably involve wing thickness and viscosity, there is little point in paying 
minute attention to thin wing solutions. The effort should be put into finding the simplest 
variation to allow for wing thickness, concentrating first on load grading and local aerodynamic 
centre after which the detailed pressure distribution can receive attention. 

In conclusion the writer wishes to acknowledge the help received from Dr. E. T. Goodwin 
and Mr. F. W. J. Olver of Mathematics Division, both in respect to advice received in discussion 
of some of the mathematical  problems involved, including the use of statistics and interpolation, 
and in the general implication of the work of computing the surface integrals. Acknowledgments 
are also due to Mr. W. P. Jones, who has helped the writer considerably in elucidating some of 
the problems and difficulties concerned in the use of his surface integrals. 
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A P P E N D I X  

Tables supplementary to R. & M. 2461 

Value of--F 

± x  

0 
5 

10 
15 
20 
25 
30 
40 
50 
60 
80 

100 

Y = 26 

X @ve 

0.00296 
0.00240 
0.00190 
0.00148 
0.00115 
0.00091 
0.00072 
0.00048 
0.00033 
0.00024 
0.00015 
0.00010 

X - - v e  

0.00297 
0.00353 
0.00403 
0.00445 
0.00478 
0.00502 
0.00521 
0.00545 
0.00560 
0.00569 
0.00578 
0.00583 

Y = 28 

X + r e  

0.00256 
0.00210 
0.00170 
0.00135 
0.00107 

0.00069 
0.00046 
0.00033 
0.00024 
0.00014 
0.00009 

X - - v e  

0-00256 
0.00301 
0.00341 
0.00376 
0.00404 

0.00442 
0-00465 
0-00478 
0.00487 

• 0.00497 
0.00502 

Y = 30 

X + r e  

0.00222 
0-00186 
0.00152 
0'.00123 
0.00099 

0.00065 
0-00044 
0.00032 
0.00023 
0.00014 
0.00010 

X - - v e  

0.00222 
0.00259 
0.00293 
0.00322 
0.00346 

0.00380 
0.00401 
0.00413 
0-00422 
0.00431 
0.00435 

Y = 32 

X + r e  

0.00196 
0.00166 
0.00137 
0.00113 
0.00092 

0.00062 
0.00043 
0.00031 
0.00023 

0.00009 

X - - v e  

0.00196 
0.00225 
0.00254 
0.00278 
0.00299 

0-00329 
0.00348 
0.00360 
0.00368 

0.00382 

Y = 3 4  Y = 3 6  Y = 3 8  

± X  X + v e  X - -ve  X + v e  X - -ve  X + v e  X - -ve  

0 
5 

10 
15 
20 
30 
4 0 '  
5 0  
60 

100 

0.00173 
0.00148 
0.00124 
0.00103 
0"00085 
0.00059 
0.00041 
0"00030 
0.00022 
0.00009 

0.00173 
0-00198 
0-00222 
0.00243 
0.00261 
0.00287 
0.00305 
0.00316 
0.00324 
0.00337 

0.00154 
0.00134 
0-00113 
0.00095 
0.00079 
0-00055 
0.00040 
0.00029 
0.00022 
0.00009 

0.00154 
0.00175 
0.00196 
0.00214 
0.00230 
0-00254 
0-00269 
0.00280 
0.00287 
0.00300 

0.00138 
0.00120 
0-00103 
0.00088 
0.00074 
0.00053 
0.00038 
0.00028 
0.00022 
0.00009 

0"00138 
0.00157 
0.00174 
0.00189 
0.00203 
0.00224 
0-00239 
0-00249 
0.00255 
0.00268 

Y = 4 0  

X ÷ v e  X - -ve  

0.00125 
0.00140 
0-00155 
0.00169 
0.00181 
0.00200 
0.00213 
0.00223 
0.00229 
0.00241 

0.00125 
0-00110 
0-00095 
0.00081 
0.00069 
0.00050 
0-00037 
0.00027 
0.00021 
0.00009 

± x  

0 
5 

10 
20 
30 
40 
60 

100 

Y = 

X + v e  

0.00114 
0.00100 
0"00087 
0.00065 
0"00047 
0'00035 
0"00020 
0'00009 

42 

X - - v e  

¥ = 

X @re 

44 

~£" - - v e  

Y = 46 

X @ve X - -  v e  

0.00094 
0.00105 
0.00114 
0.00132 
0.00146 
0.00156 
0-00169 
0.00180 

Y = 48 

X ± r e  

0.00087 0.00114 
0.00127 
0.00140 
0.00162 
0.00180 
0.00192 
0.00207 
0.00218 

0-00104 
0-00092 
O-0O081 
0.00060 
0.O0045 
0.00034 
0.00020 
0.00009 

0.00104 
0.00115 
0-00126 
0.00147 
0.00162 
0-00173 
0.00187 
0.00198 

0.00094 
0.00084 
0.00075 
0-00057 
0-00043 
0.00033 
0-00020 
0.00009 

0.00069 
0.00053 
0-00041 
0.00031 
0-00019 
0.00009 

) ~  - -  v e  

0.00087 

0.00105 
0-00121 
0.00133 
0.00143 
0.00155 
0.00165 

11 



AP P END IX--coratinued 

Vahte of - -F  (continued) 

± X  

0 
10 
20 
30 
40 
60 

100 

Y = 

X ± r e  

0.00080 
0"00064 
0.00050 
0-00039 
0.00030 
0-00019 
0.00008 

50 

X m v e  

0.00080 
0.00096 
0.00110 
0-00121 
0.00130 
0-00141 
0.00152 

Y = 52 

X + r e  

0.00074 
0"00060 
0.00048 

0-00029 
0.00018 
0-00008 

X m v e  

0-00074 
0-00088 
0"00100 

0.00119 
0"00130 
0"00140 

Y = 54 

X + v e  

0.00068 
0.00056 
0.00045 

0.00028 
0.00018 
0.00008 

X m v e  

0'00068 
0.00081 
0,00092 

0.00109 
0.00119 
0.00129 

Y = 56 

X + r e  

0.00064 
0.00052 
0.00042 

0.00027 
0-00017 
0.00008 

X - - v e  

0.00064 
0-00076 
0-00086 

0-00101 
0"00111 
0.00120 

Y = 5 8  Y = 6 0  Y = 6 2  Y = 6 4  

± X  X + r e  X - -ve  X + r e  X - -ve  X + v e  X - -ve  X + v e  X - -ve  

0 
10 
20 
40 
60 

100 

0.00060 
0.00049 
0.00040 
0.00026 
0.00017 
0.00008 

0.00060 
0-00070 
0.00079 
0.00093 
0.00102 
0.00111 

0.00056 

0.00038 
0'00025 
0.00016 
0.00008 

0.00056 

0.00073 
0.00086 
0.00095 
0-00103 

0.00052 

0.00036 
0.00024 
0.00016 
0.00008 

0.00052 

0-00068 
0.00080 
0.00088 
0.00096 

0.00049 

0.00034 
0.00023 
0.00016 
0.00008 

0"00049 

0 . 0 0 0 6 4  
0.00075 
0-00082 
0.00090 

Y = 6 6  Y = 6 8  o Y = 7 0  Y = 7 2  

± X  X + v e  X - -ve  X + r e  X - - r e  X + v e  X - - r e  X + r e  X - -ve  

0 
20 
40 
60 

100 

0.00046 
0.00033 
0.00022 
0.00015 
0.00008 

0.00046 
0.00059 
0.00070 
0.00077 
0.00084 

0 .00044  
0.00031 
0.00021 
0.00015 
0"00008 

0.00044 
0.00056 
0.00066 
0.00072 
0.00079 

0.00041 
0-00030 
0.00021 
0"00014 
0.00007 

0.00041 
0.00052 
0.00061 
0.00068 
0.00075 

0 .00038 '  
0.00028 
0-00020 
0-00014 
0.00007 

0.00038 
0.00049 
0.00057 
0.00063 
0.00070 

Y = 7 4  

± X  X + v e  X - -ve  

0 
20 
40 
60 

100 

0.00036 
0.00027 
0.00019 
0.00013 
0.00007 

0.00036 
0.00046 
0.00054 
0-00060 
0-00066 
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A P P E N D I X - - c o n t i n u e d  

Values of - 4  F 

Y = 5 3  Y = 6 1  Y = 6 9  Y = 7 7  

=k}X X + v e  X --ve X + v e  X --ve X + r e  X --ve X + r e  X - - r e  

0 
5 

10 
20 
40 
60 

100 

0.00285 
0.00184 
0.00113 
0.00047 
0.00014 
0.00007 
0.00003 

0.00285 
0.00386 
0.00457 
0.00523 
0.00556 
0.00563 
0.0O567 

0.00215 
0.00148 
0.00097 
0.00044 
0.00014 

0.00003 

0.00215 
0.00282 
0.00333 
0.00386 
0.00416 

0.00427 

0.00168 
0.00121 
0.00084 
0.00041 
0.00014 

0-00003 

0.00168 
0.00215 
0.00232 
0-00295 
0-00322 

O. 00333 

0.00135 
0.00101 
0.00073" 
0.00038 
0-00013 

0.00002 

0-00135 
0.00169 
0-00197 
0-00232 
0.00257 

O- 00268 

Y = 8 5  Y = 9 3  Y = I O 1  Y = 1 0 9  

4-}X X + r e  X --ve X + r e  X - - r e  X + r e  X --ve X + v e  X --ve 

0 
5 

10 
15 
20 
40 
50 

100 

0.00110 
0.00085 
0.00064 

0-00035 
0-00013 

0.00110 
0.00136 
0-00157 

0.00186 
0-00208 

0.00092 
0.00073 

0-00042 

0-00009 
0.00002 

0.00092 
0.00112 

0-00143 

0-00176 
0.00183 

0.00078 
0.00063 

0.00038 

0-00008 
0-00002 

0.00078 
0.00094 

0.00119 

0.00149 
0-00155 

0.00068 
0.00055 

0-00035 

0.00008 
0-00002 

0.00068 
0-00080 

0.00100 

0.00127 
0.00133 0.00002 0.00219 

¥ = 1 1 7  Y = 1 2 5  Y = 1 3 3  Y = 1 4 1  

~ } X  X + v e  X --ve X + v e  X - - r e  X + r e  X --ve X + v e  X - - r e  

0 
5 

10 
15 
25 
50 

100 

0-00058 
0-00049 

0.00032 

0.00008 
0-00002 

0.00058 
0.00068 

0.00085 

0.00109 
0.00115 

0.00051 
0.00043 

0.00029 

0.00008 
0.00002 

0.00051 
0.00059 

0.00073 

0-00094 
0.00100 

0.00045 
0.00038 

0.00027 

0-00008 
0.00002 

0.00045 
0.00052 

0.00063 

0.00082 
0.00088 

0-00040 
i 

! 0.00029 1 

0.00017 

0.00002 

0.00040 

0.00051 

0.00063 

0.00078 

I Y = 1 4 9  Y = 1 5 7  Y = 1 6 5  Y =  173 

± } X  X + v e  X --ve X + v e  X --ve X + v e  X --ve X + r e  X --ve 

0 
10 
15 
25 
50 

100 

0.00036 
0.00027 

0.00016 

0-00002 

0.00036 
0.00045 

0.00056 

0.00070 

0.00032 
0.00024 

0.00015 

0.00002 

0.00032 
0.00041 

0.00050 

0.00063 

0.00030 

0.00019 

0.O0007 
0.00002 

0.00030 

O.0O040 

0.00052 
0.00057 

0.00026 

0.00018 

0.00006 
0.00002 

0-00026 

0.00035 

0.00047 
0.00051 
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APPENDI X--continued 

Values of --4 F (continued) 

Y = 1 8 1  Y = 1 8 9  5 ~ = 1 9 7  Y = 2 0 5  

+ ¼ X  X + v e  X - - v e  X + v e  X - - v e  X + v e  X - - v e  X + v e  X - - v e  

0"00024 
0"00011 
0"00002 

0"00024 
0"00038 
0"00047 

0.00022 0"00022 
0"00010 0"00035 
0-00002 0"00043 

0.00020 
0"00010 
0.00002 

0.00020 
0.00031 
0.00039 

0.00019 
0"00009 
0.00002 

0.00019 
0.00029 
0"00036 

+ ~  

0 
30 

100 

Y = 213 

X + r e  

0.00018 
0.00009 
0.00002 

X - - v e  

0.00018 
0.00026 
0.00033 

Y = 221 

X + v e  Z - - v e  

0.00016 
0.00024 
0"00031 

Y = 229 

X + v e  X - - v e  

0.00016 
0.00023 
0.00029 

Y = 237 

X + v e  

0"00016 
0.00009 
0.00002 

0-00016 
0 '00008 
0.00002 

0"00014 
0"00008 
0"00002 

Z - - v e ,  

0.00014 
0"00020 
0 '00026 

0 
30 

100 

0 
30 

100 

X + v e  

Y = 2 4 5  

X - - v e  

0.00014 
0.00020 
0.00025 

0.00014 
0.00007 
0"00002 

Y = 253 

X + v e  Z - - v e  

0-00012 
0.00018 
0.00023 

Y = 261 

X -]-ve X - - v e  

0.00012 
0.00016 
0.00021 

Y = 269 

0.00012 
0-00007 
0.00002 

0.00012 
0.00007 
0.00002 

X + v e  

0.00011 
0.00007 
0.00002 

Z - - v e  

0"00011 
0.00018 
0.00020 

~-¢x 

0 
30 

100 

Y = 277 

X + r e  

0.00010 
0.00006 
0.00002 

X - -Me 

0.00010 
0.00015 

0 . 0 0 0 1 9  

Y = 285 

X + v e  Z - -  v e  

0.00010 
0.00014 
0 '00018 

Y = 293 

X + v e  X - - v e  

Y = 301 

X + v e  

0"00010 
0.00006 
0.00002 

0"00010 0.00010 
0.00006 0.00013 
0.00002 0.00017 

0.00009 
0.00006 
0 '00002 

X - - v e  

0.00009 
0.00012 
0.00016 
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T A B L E  1 

Comparison of Induced Downwash Calculated by Lattice of Vortices for Several Gradings of K/4sV with the Exact Values for 

Lifting-Line Theory 

cal 
0 .2 

Places of 
decimals 

fin factors 

4 

Spacing in 
terms of 
semi-span 

o.1 

Number 
of 

vortices 

21 

0.5 4 0.1 21 

0.7 4 0"1 21 

0 ' 8  3 0"1 21 

0.8 4 0.1 21 

0"8 4 0"05 41 

0"9 4 0 '05 41 

Lattice 

1.003 

1-003 

1"007 

1-004 

1-006 

1"006 

~7(1 --  z/2)Xl~ 

Exact Latticel 

1.000 

1.000 

1-406 

1.000 

1.000 1.606 

1.000 

1.000 

Exact  

1-400 

1.600 

Lattice Exact 

0.978 0.970 

1.431 1.420 

1-426 1-420 

~4(1 _ _  ~2)1/2 

Lattice 

0.360 

O" 991 

V~(1 - ~ ) 1  ,~ 

Exact Lattice 

0.340 0.001 

0.963 0.553 

0.523 

Exact 

--0.023 

0.508 

0.508 

Vs(1 _ ~2)1/2 

Lattice Exact 

- - 0 . 1 5 1 - - 0 . 1 7 4  

0.233 0.177 

~/ lo (1  __  ~/2)1/2 

Lattice Exact 

--0" 192 --0"211 

O. 025 -- O. 034 

--0.017 --0.034 

1.155 1.1o6 



' T A B L E  2 

Rectangular Wing, Aspect Ratio 6 • S ix  Point Solutions, V = O. 2 and O. 8 

Blenk-Argyr is ,  based  on Surface in tegrals  ' Based  on 84-vortex la t t ice  

(t O 
(t l  

a2 
6 0 

61 

6 2 

dcdd~ 

a . c .  

!0 .06713  , 
0 .00156  

0 . 0 0 0 0 9  
i 0 . 0 3 1 9 6  

+ 0 . 0 2 3 1 2  
+ 0 . 0 0 4 7 4  

r 

' 4 . 2 3 1  
i 

i O-2391~behind L.E.  

a 0 
a l  
( t 2  

CO 

g 1 
62 

dc ddc~ 

a . c .  

0"06768 
- -0 .00095  
- -0 .00018  

0.03468 
- -0 .02668  
- -0 .00502  

4.295 

O" 2393~ behind  L.E.  

0 
0 .05 
0 .10  
0 .15  
0-20 
0-25 
0 .30  
0 .35 
0 .40  
0 .45 
0 .50  
0 .55 
0-60 
0 .65 
0 .70  
0 .75  
0 .80  
0"85 
0 .90  
0 .95  
1 "00 

c~dc~ 

1-182 
1 182 
1 180 • 
1 177 
1 173 
1 167 ' :  
1 159 
1 149 
1 . 1 3 7  
1.122 
1"103 
1-079 
1-051 
1.015 
0.972 
0.917 
0.849 
0'.761 
0-644 
0 .472 
0.000 

Local  a.c. 

0.247 
0.247 
0 . 2 4 7  
0 .246  
0.246 
0-245 
0.244 
0.243 
0.242 
0.240 
0.239 
0,238 
0.236 
0.234 
0.233 
0-231 
0-229 
0.227 
0.225 
0.223 
0.221 

0 
0.05 
0 .10  
0. i5 
0.20  
0 .25 
0 .30  
0 .35 
0 .40 
0-45 
0 .50  
0 .55 
0 .60  
0 .65 
0 .70  
0-75 
0-80 
0 .85 
0 .90 
0 .95 
1.00  

C~dCL 

1.180 
1.179 
1.178 
1.174 
1-170 
1-165 
1-158 
1.148 
1.136 
1.121 
1-103 
1.080 
1.052 
1.017 
0.973 
0.920 
0.852 
0.764 
0.646 
0.474 
0.000 

Local a.e. 

0 - 2 4 9  
0-248 
0.248 
0.248 
0.247 
0.246 
0.245 

~0.244 
O. 242 
0.241 
O. 239 
0 .238 
0.236 
0.234 
0.232 
0.230 
0.227 
0-225 
0.223 
0.221 
0.218 

a.c. abbreviation for aerodynamle centre 
L.E . . . . .  leading edge 
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Comparison of Computed Values 

TABLE 3 

of w/V at Mid-chord Positions on a Rectangular Wing of Aspect 
Ratio 6 

Vortex sheet k = 2V(1 --  ~72)~/2 cot 0/2 

Item Integration Point 1 Point 2 Point 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

W. P. Jones, exact 
Lattice 21 to span, 
Lattice 21 to span, 4 to chord, 
Lattice 21 to span, 4 to chord, 
Lattice 21 to span, 6 to chord, 
Lattice 21 to span, 6 to chord, 
Lattice 21 to span, 8 to chord, 
Lattice 21 to span, 8 to chord, 
Lattice 21 to span, 8 to chord, 
Lattice 41 to span, 4 to chord, 
Lattice 41 to span, 4 to chord, 
Lattice 41 to span, 4 to chord, 
Lattice 41 to span, 8 to chord, 
Lattice 41 to span, 8 to chord, 

surface integral .. 
4 to chord, semi-range 0.2" 

semi-range O. 4 
semi-range O. 5 
semi-range O. 2 
semi-range O. 4 
semi-range O. 2 
semi-range O- 4 
semi-range O. 5 
semi-range O- 1 
semi-range O. 2 
semi-range O. 3 
semi-range O. 2 
semi-range O. 3 

1"270 
1"259 
1"264 
1"264 
1"263 
1"267 

1.238 
1.263 
1.267 

1"163 
1-152 
1"156 
1-156 
1"157 
1"159 

1"135 
1"156 
1"159 

0.931 
0.914 
0.918 
0.918 
O. 920 
0.923 
0.920 
0.923 
0.923 
O. 908 
O. 920 
0.922 
O. 926 
0.928 

Vortex sheet k = 2Vu(1 -- ~2)1/~ cot 0/2 

Item Integration Point 1 Point 2 Point 3 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

W. P. Jones, exact 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice ill to span, 
Lattice 41 to span, 
Lattice 41 to span, 
Lattice 41 to span, 

surface integral . . . .  
4 to chord, semi-range 0-2 
4 to chord, seml-range 0.4 
4 to chord, seml-range 0.5 
6 to chord, semi-range 0.2 
6 to chord, semi-range 0.4 
4 to chord, semi-range 0.2 
4 to chord, semi-range 0.3 
8 to chord, semi-range 0.2 
8 to chord, semi-range 0.3 

0.316 
0.313 
0"313 
0.313 
0.314 
0.314 
0.313 
0"314 

0.738 
0.729 
0.729 
0.729 
0.733 
0.732 
0.730 
0-730 

1.003 
0.982 
0.983 
0.983 
0.989 
0.989 
0.983 
0.984 
0.993 
0.994 
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Comparison of Computed 

T A B L E  4 

Values of w/V at Mid-chord Positions on a Rectangular Wing of Aspect 
Ratio 6 

Vortex  sheet  k = 2V~/2(1 - -  ~ 2 ) 1 [ 2  cot 0/2 

I t em In tegra t ion  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

W. P. Jones,  exac t  
La t t ice  21 to span, 
La t t ice  21 to span,  
La t t i ce  21 to span,  
La t t ice  21 to span, 
La t t ice  21 to span, 
La t t ice  41 to span, 
La t t i ce  41 to span, 
La t t i ce  41 to span, 
La t t ice  41 to span, 
La t t ice  41 to span,  

surface in tegra l  . .  
4 to chord, semi-range 
4 to chord, 
4 to chord, 
6 to chord, 
6 to chord, 
4 to chord, 
4 to chord, 
4 to chord, 

semi-range 
semi-range 
semi-range 
semi-range 
semi-range 
semi-range 
semi-range 

8 to chord, semi-range 
8 to chord, semi-range 

0.'2" 
0"4 
0"5 
0"2 
0"4 
0"1 
0"2 
0"3 
0"2 
0"3 

Poin t  1 Poin t  2 Poin t  3 

- - 0 . 0 8 8  
- - 0 . 0 8 2  
- - 0 . 0 8 0  
- -0 -080  
- - 0 . 0 8 3  
- - 0 . 0 8 2  
- - 0 . 0 8 6  
- -0"083 
- -0 .081  

0.287 
0.287 
0 .288 
0 .288 
0 .288 
0.288 
0 .282 
0 .288 
0-288 

0.856 
0.838 
0.838 
0.838 
0.845 
0.845 
0 .836 
0.839 
0 .839 
0.847 
0 .848 

Vor tex  sheet  k = 2V~#(1 - -  97~)1/2 cot 0/2 

I t e m  In teg ra t ion  Poin t  1 Poin t  2 Po in t  3 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

La t t ice  21 to span, 
La t t i ce  21 to span, 
La t t ice  21 to span, 
La t t ice  21 to span, 
La t t ice  21 to span,  
La t t i ce  41 to span,  
Lat t ice  41 to span, 
Lat t ice  41 to span, 
La t t i ce  41 to span, 
La t t i ce  41 to span, 

4 to chord, semi-range 
4 to chord, semi-range 
4 to chord, semi-range 
6 to chord, semi-range 
6 to chord, semi-range 
4 to  chord, semi-range 
4 to chord, semi-range 
4 to chord, semi-range 
8 to chord, semi-range 
8 to chord, semi-range 

02 ii oo53 0"4 . .  - -0"052  
O" 5 • • - -0"  052 
O" 2 •. - -0" 053 

0.1 • • - - 0 . 0 5 3  
O. 2 . .  - - 0 -  053" 
0"3 . :  - -0"052  
0 .2  . .  
0"3 . .  

- -0"010  
- - 0 . 0 1 0  
- -0"010  
--0"011 
- -0 .011  
- -0 -015  
- - 0 . 0 1 2  
- - 0 . 0 1 2  

0 .558 
0 .558 
0 .558 
0.563 
0 .563 
0 .552 
0-553 
0-553 
0.559 
0.559 
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Downwash at Points on an Infinite 

TABLE 5 

Yawed Wing obtained by Summation of Effects of a Lattice of 
Vortices 

Description Point  w~ V 

True vahle for all-points . . . .  0.707 

1 vortex on chord, chord = By, . -  1 0 '  722 

2 O. 704 
4 vortices on chord; chord = 8y~ 

6 vortices on chord, chord = 83, 9 

6 vortices on chord, chord = @'o 

3 

4 

5 

6 

7 

0-705 

0.706 

0.705 

0.705 

0.706 

TABLE 6 

Comparison of Two Solutions for a Triangular Wing 

126 vortex, 6 point  328 vortex, 12 point  

dc~/da 2. 513 2. 590 

Load coeff. Local a.c. Load coeff. Local a.c. 

0 
0.05 

• - 0 " 1 0  
0.15 
0.20 
0.25 
0.30 
O' 35 
0.40 
0.45 
0.50 
0.55 
O. 60 
O. 65 
O. 70 
O. 75 
0.80 
0.85 
0.90 
0.95 
1 '00 

1.328 
1.326 
1-320 
1 310 
1 293 
1 278 
1 256 
1 228 
1 196 
1 158 
1 115 
1 065 
1 008 
0"944 
0.873 
~ : 7 9 2  
0"701 
0-598 
0-478 
0-328 
0.000 

0-298 
0.297 

0 . 2 9 7  
0.295 
0.293 
0.291 
0.288 
0.285 
0.282 
0-278 
0.274 
0-27O 
0.266 
0-262 
0-258 

1.335 
1.333 
1.327 
1.317 
1.303 
1.285 
1.262 
1.235 
1.202 
1.163 
1.119 
1.068 
1.009 
0,943 
0.868 

_0,254 . . . . . . . . . .  0.784 
0.252 0.690 
0.250 0.584 
0.248 0.462 
0.248 0.314 
0-250 0.000 

0.302 
0.302 
0 . 3 0 1  
0.299 
0.297 
0.294 
0.291 
0.288 
0.284 
0.279 
0.275 
0.270 
0 '266  
0 '261 
O" 257 
O" 253 
O" 250 
0.248 
0"247 
0.247 
0.250 

• 1 9  
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T A B L E  7 

Computed Values of w/V for:a Sweptback Wing of Aspect Ratio 3 
Corre@onding to the Vortex Sheet k = 2V(1 _,/~)v2 cot 0/2 

I tem Integration Point 2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Surface integral using formula given by W. P. Jones 
Lattice 21 to span, 4 to chord, semi-range 0-2 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 21 to span, 
Lattice 41 to span, 
Lattice 41 to span, 
Lattice 41 to span, 
Lattice 41 to span, 

4 to chord, semi-range O-3 
6 to chord, semi-range O. 2 
6 to chord, semi-range O" 3 
8 to chord, semi-range 0.2 
8 to chord, semi-range 0-3 
12 to chord, semi-range 0.2 
12 to chord, semi-range 0.3 
8 to chord, semi-range O" 2 
8 to chord, semi-range O" 3 
12 to chord, semi-range O. 2 
12 to chord, semi-range 0.3 

2. 085 
2.120 
2. 128 
2. 082 
2. 086 
2. 077 
2. 080 
2. 087 
2- 088 
2- 099 
2. 104 
2- 084 
2. 089 

TABLE 8 

Computed Values of w/g for a Sweptback Wing of Aspect Ratio 3 
Corresponding to the Vortex Sheet k = 2V(1 --  ~)1/2 cot 0/2 

Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Integration 

Surface integral using formula given by W. P. Jones 
Lattice 21 to st~an, 6 to chord, semi-range 0-2 .. 
Lattice 21 to span, 6 to chord, semi-range O. 3 .. 
Lattice 21 to span, 8 to chord, semi-range O. 2 .. 
Lattice 21 to span, 8 to chord, semi-range O. 3 .. 
Lattice 21 to span, 12 to chord, semi-range 0.2 .. 
Lattice 21 to span, 12 to chord, semi-range 0-3 . .  
Lattice 41 to span, 8 to chord, semi-range 0.2 .. 
Lattice 41 to span, 8 to chord, semi-range 0.3 .. 
Lattice 41 to span, 12 to chord, semi-range 0.2 .. 
Lattice 41 to span, 12 to chord, semi-range O. 3 .. 

Point 4 

0.960 
0-905 
O. 909 
0.917 
O. 920 
0"931 
O" 934 
0.941 
O. 945 
O- 943 
0.945 
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T A B L E  9 

Computed Values of w/V for a Sweptback Wing of Aspect Ratio 3 
Corresponding to the Vortex Sheet k = 2V(1 - -  ~2)1/2 (cot 0/2 -- sin O) 

I t e m  

2 
3 

4 

6 
7 
8 
9 

10 
11 
12 

13 

In tegra t ion  

Surface in tegral  using formula  given b y  W. P. 
Jones .. 

Lat t ice  21 to span, 6"to chord, semi-range 0 .2  . 
La t t ice  21 to span, 6 to chord, semi-range 0-3  . 
Revised la t t ice  21 to span, 6 to chord, semi- 

range 0" 2 . . . . . . . . . . .  
Revised la t t ice  21 to span, 6 to chord, semi- 

range 0" 3 . . . . . . . . .  
La t t i ce  21 to span, 8"to chord, semi-range 0 .2  
La t t i ce  21 to span, 8 to chord, semi-range 0 .3  . 
La t t i ce  21 to span, 12 to chord, semi-range 0 .2  
La t t ice  21 to span, 12 to chord, semi-range 0 .3  
La t t ice  41 to span, 8 to chord, semi-range 0-3  . 
La t t i ce  41 to span, 12 to chord, semi-range 0 .3  
Revised  la t t ice  41 to span,  12 to chord, semi- 

range 0- 2 . . . .  
Revised la t t ice  41 to span, 12 to chord, semi- 

range 0- 3 . . . . . . . . . .  

Poin t  1 

2K(1 - -  ~ ' ; ' )1 /2  c o t  0/2 

3.875 
3-874 

3.461 

3.459 
3.826 
3.825 
3.813 
3.809 
4.362 
4-274 

3-903 

3.901 

2V(1 - -  72)1/2 sin 0 

1.558 
1.555 

1.337 

1-335 
1.548 
1.547 
1-554 
1-552 
2-034 
2-000 

1. 740 

1-738 

Difference 

2-190 
2-317 
2 .319 

• 2 .124 

2.124 
2 .278 
2 .278  
2-259 
2-257 
2-328 
2-274 

2.163 

2. 163 
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TABLE 10 

Simplification of Downwash Calculations by Omission of Vortices, and Factorial Treatment of 
those Retained 

* Position of control point  

= 0  ~ = 0 . 2  

Stat ion 
re ta ined 

0 ~ 

0.05 
0 .10 
0.15 
0-20 
0,.40 
0.60 

. 0 . 8 0  
0-98125 

Factor 

1 
2 
2 
2 
3-0154 

13.1458 
2 ~ 1 1 1 8  
13"7270 
2 

Stat ion 
retained 

0.98125 
0"80 
0.60 
0 . 4 0  
0.35 
0.30 
0-25 
0-.20*. 
0.15 

0 . 1 0  
0.05 
0.00 

- - 0 . 2 0  
- -0 -40  
- - 0 - 6 0  
- - 0 . 8 0  
- -0 .98125 

Factor  

1 
5.0302 
5.4023 
1-5675 
1 
1 

' 1  " 

1 
1 

1 
1.5077 
6.4717 
2.1195 

. . . .  3 . 5 5 7 1  
6.3440 
1 

Total  . 4 1  Total  41 

= ).6 ~/ = 0-8  

! 

Stat ion 
re ta ined 

O" 98125 
0 .9  
0-8  
0.75 
0.70 
0.65 
O. 60* 

Factor  

1 
2-9097 
1.0625 
1.0278 
1 
1 
1 

Stat ion 
re ta ined Factor  

0.98125 1 
0.95 1 
0 .90 1 
0.85 1 
0.80* 1 
0.75 1 
0 .70 1 

0.55 
0.50 
0.45 
0 .4  
0 .2  
0 .0  

- - 0 . 2  
- - 0 . 4  
- - 0 - 6  
- - 0 . 8  
- -0 .98125 

1 0.65 
1 0.6  
1 0 .4  
1.5077 O. 2 
6.4717 0 
1.8053 - - 0 . 2  
5-4700 - - 0 . 4  
3.8078 
1.3750 
7.5625 
1 

41 

- - 0 - 6  
- - 0 . 8  
- -0 .98125 

1 
1.5077 
6.4717 
1.8053 
5.4700 
1.7453 
8.75 

- - 2 . 5 0  
8.75 
1 

Tota l  Total  41 
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T A B L E  11 

Factors for Integration of Downwash at Point 1. Short Process 

4"-007 
4.010 
4"016 
4-032 
4"088 
4"691 

, --0-691 
- - 0 " 0 8 8  
--0.032 
--0.016 
--0.010 
-- 0- 007 

0.05 _. _ 0.10 .-. 

--1-325 --0"255 
--1.320 --0"248 
--1"310 --0-233 
--1.282 - -0"197  
--1-166 --0"127 
--0"501 --0"062 
--0.104 --0.031 
= - 0 : 0 3 8  - - 0 . 0 1 7  
--0.019 --0.011 
--0.011 --0-007 
--0"007 =-0"005 
--0.005 --0.004 

_0 .15  

--0.100 
--0.092 
--0-078 
--0.058 
--0,037 
--0.023 
--0-014 
- -0 .010 
--0.007 
--0-005 
--0.004 
~--0.003 

O: 20 

--0.048 
=0"041 
--0"033 
--0"024 
--0"017 
--0.012 
--0.008 
--0.006 
--0.005 
--0.004 
--0.003 
--0-002 

0.4 

--0-006 
--0.005 
--0.004 
--0.004 
--0.003 
--0.003 
--0.002 
--'0.002 
--0.002 
--0.001 

_--0.001 
--0.001 

• 0 . 6  

--0.002 
_0.002 

--0.002 
--0.001 
--0-001 
--0-001 
--0-001 
--0.001 
--0,001 
--0.001 
--0.001 

, - -0 .001 

0 . 8  

--0-0008 

0.98125 

--o.00Ol 

T A B L E  12 

Factors to Represent Chordwise Functions as Line Vortices 

Solution 

12 point 

Position on 
chord from 

L.E. 

0.0417 
0.1250 
0.2083 

cot 0/2 

0.1612 
0-0771, 
0-0550 

sin 0 

0.0099 
0.0175 
0.0215 

0.2917 
0.3750 
0.4583 
0.5417 
0.6250 
0.7083 
0.7917 
0.8750 
0.9853 

0.0435 0.0240 
0.0358 0--0257 
0.0301 0.0264 
0.0254 0.0264 
0.0215 0.0257 
0.0179 0.0240 
0.0145 0-0215 
0.0110 0.0175 
0.0070 0.0099 

sin 20 

o.0182 
0.0262 
0-0250 
0.O2Ol 
0.0128 
0-0044 

- 0 . 0 0 4 4  
- o . o 1 2 8  
--0.0201 
--0.0250 
--0.0262 
--0.0182 

T A B L E  13 

Station cot 0/2 sin 0 (1 --  ~7)1/2 × factors 

0 
0.05 
0.10 
0.15 
0.2 
0.4 
0.6 
0.8 
0.98125 

1.61851 
--0.50407 
--0.08956 
--0.03288 
--0.01525 
--0.00211 
--O.00079 
--0.00040 
--0-00005 

0.50000 
--0.14293 
--0.02330 
--0.00823 
--0.00388 
--0.00069 
--0.00030 
--0.00015 
--0.00002- 

1 

1.9974 
1.9900 
1-9774 
2.9545 

12.0481 
1.6894 
8.2362 
0.3854 
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TABLE 14 
Comparison of Short and Long Processes for Downwash Calculation 

Vortex Sheet 

2V(1 -- ~2)1/2 (cot 0/2 --  sin 0) 

2V (1 -- rfi):/2 cot 0/2 

2V(1 -- ~/~)1/2 sin 20 

2V~]2(1 __ ~)i/2 cot 0/2 

2VP65/~ 5 cot 0/2 

2VP6a/a 5 sin 20 

Solution 

Exact 
41/12 Long 
41/12 Short 

Exact 
41/12 Long 
41/12 Short 

41/12 Long 
41/12 Short 

41/12 Long 
41/12 Short 

41/12 Long 
41/12 Short 

41/12 Long 
,'[ 41/12 Short 

2"190 
2-162 
2"173 

2.08 
2.089 
2.104 

Point 

2"08 

2"114 

4 

0"96 
0-945 
0"940 

0.925 
0.925 

0.652 
0.652 

0"769 
0.769 

0.531 
0"530 

1"21 

1"206 

TABLE 15 
Comparison of Two Solutions for Sweptback Wing 

Solution based o n  Solution based on 
~] original 21/6 lattice 41/12 lattice, short process 

C~ Local a.c. CL~ Local a.c. 

0 
O" 05 
0"10 
0-15 
0-20 
0-25 
0"30 
0"35 
0"40 
0"45 
0"50 
0 '55 
0"60 
0"65 
O" 70 
O- 75 
0-80 
0"85 
0"90 
0"95 
1 "00 

1. 030 
1.045 
1.072 
1. 093 
1.110 
1 • 122 
1.132 
1" 138 
1- 142 
1-141 
1" 136 
1- 124 
1" 105 
1" 077 
1- 037 
O. 984 
0.912 
0"817 
O" 689 
O" 501 
O" 000 

O. 340 
O. 326 
O. 302 
O- 286 
O- 273 
O- 264 
O. 258 
O. 253 
O. 248 
O. 243 
O. 237 
O. 231 
O. 223 
0.214 
O- 204 
0-191 
O- 177 
O. 159 
O. 138 
0.114 
O. 086 

1.030 
1.046 
1. 073 
1. 095 
1.112 
1. 125 
1- 134 
1.141 
1.144 
1. 143 
1. 136 
1. 124 
1-105 
1. 076 
1. 036 
O. 982 
0.910 
0.814 
O- 686 
0-498 
O. 000 

O- 339 
O" 324 
0"300 
O" 283 
O" 270 
O" 261 
O" 255 
0" 249 
O- 244 
O- 239 
O- 234 
O- 228 
O" 221 
0"213 
O" 203 
O" 192 
O" 179 

,0"163 
O" 145 
O" 124 
O- 099 

dc~/dot 2" 714 2. 671 

a.c. 0-926 ~ behind apex  0. 9247 behind apex 
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TABLE 16 

Values of P~ and Pb for O. 05 Lattice 

P.  P~ 0 " 6 5 P a + 0 " 3 5 P b  

0"05 0"05 0"05 
True lattice w/V True lattice w/V T r u e  lattice w/V 

0 
0-05 
0-10 
0.15 
0.20 
0.25 
0.30 
0.35 
0-40 
0-45 
0.50 
0.55 
0.60 
0.65 
0-70 
0.75 
0.80 
0.85 
0.90 
0.95 
O. 9625 
0.98125 
1"00 

0.1431 
0.1258 
0.0989 
0.0836 
0"0737 
0.0661 
0.0599 
0.0547 
0.0500 
0-0458 
0-0420 
0.0384 
0.0350 
0.0318 
0.0286 
0.0254 
0.0221 
0-0187 
0.0149 
0.0103 
0.0089 
0.0062 
0-0000 

0.1480 
0.1268 
0.0970 
0-0830 
0.0733 
0.0659 
0.0598 
0.0546 
0.0500 
0-0458 
0-0420 
0-0384 
0.0350 
0.0318 
0.0286 
0.0254 
0.0221 
0-0187 
0.0149 
0.0103 

0.0062 
0-0000 

1.0 
0"5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.2420 
0-2305 
0.2073 
0.1795 
0-1531 
0.1352 
0.1218 
0.1107 
0.1010 
0.0924 
0-0846 
0-0773 
O.O704 
0.0638 
0.0573 
0"0509 
0.0443 
0.0374 
0.0299 
0.0206 
0.0178 
0.0125 
0.0000 

0-2451 
0-2317 
0"2077 
0"1793 
0"1518 
0"1347 
0"1215 
0"1105 
0.1009 
0.0924 
0-0846 
0-0773 
0.0704 
0.0638 
0.0573 
0.0509 
0.0443 
0.0374 
0.0299 
0.0206 

0.0125 
0"0000 

1 "00 
0-75 
0"50 
0"25 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0"1777 
0"1624 
0"1368 
0"1172 
0"1014 
0-0903 
0"0816 
0.0743 
0.0679 
0.0622 
0"0569 
0"0520 
0.0474 
0.0430 
0-0386 
0.0343 
0.0299 
0-0252 
0-0201 
0.0139 
0-0120 
0.0084 
0"0000 

0"1820 
0-1635 
0'1358 
0"1167 
0"1008 
0"0900 
0-0814 
0"0741 
0'0678 
0.0622 
0.0569 
0.0520 
0"0474 
0.0430 
0"0386 
0.0343 
0.0299 
0.0252 
0.0201 
0"0139 

0-0084 
0.0000 

1.0000 
0-5875 
0-1750 
0.0875 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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